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1. Executive Summary 

The European Space Agency Climate Change Initiative on Land Surface Temperature (hereafter LST_cci) 
aims to provide Land Surface Temperature (LST) LST Essential Climate Variable (ECV) products and validate 
these data to provide an accurate view of temperatures across land surfaces globally over the past 20 to 
25 years.  

This Algorithm Development Plan (ADP) provides the details on the expected evolutions to the current 
and expected Land Surface Temperature (LST) products available from processing Cycle 1 or pre-cursor 
studies. It includes planned developments to: 

❖ The algorithms themselves 

❖ The necessary auxiliary data for best implementation of the algorithms 

❖ The calibration database for determining retrieval coefficients 

❖ The radiative transfer models 

❖ The cloud masking schemes  

The algorithms under development in the next processing cycles will be those selected from the Round 

Robin intercomparison exercise [RD-30]. These were identified as the best algorithms for a future climate 

quality operational system. Nonetheless, it is expected that a combination of evolutions to each of the 

points above will improve the implementation of these algorithms. The evolutions outlined in this 

document will be implemented in an end-to-end system to generate the first LST_cci climate data records. 

It is also important to note that this document will be regularly updated as new information comes to 
light from the feedback expected from the validation and intercomparison, and from the climate 
assessment of the LST CCO products. 

Table 1: Algorithm Developments enumerated and described. The status of each development is indicated by 

colour: white (not started), orange (in progress), green (implemented in next Processing Cycle), grey (cancelled – 

with reason given). New developments are indicated in red. 

Algorithm 
Development 
Number

Description Status Comments

LST-CCI-ADP-1 Upgrade to RTTOV 12.3 for development of all 
LST_cci LEO TIR ECV Products and IR Climate Data 
Records (CDRs) 

 Implemented for 
V2.00 Products 

LST-CCI-ADP-2 An extended version of the Benchmark database 
using ERA5 Atmospheric profile Data, CAMEL 
Emissivity Data and ESA CCI Land Cover data will 
used to determine retrieval coefficients for TIR 
algorithms 

 Implemented for 
V2.00 Products 

LST-CCI-ADP-3 All GEO products will be reprocessed with a GSW 
calibrated with the benchmark dataset constructed 
for the Round Robin, in order to provided 
harmonized data for the Merged Product 

 Superseded by LST-
CCI-ADP-18 
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Algorithm 
Development 
Number

Description Status Comments

LST-CCI-ADP-4 Temperature-dependent coefficients will be 
explored in detail for the UOL algorithm for the 
next processing cycle to minimise any possible 
impact of non-linearity 

 Investigation still be 
explored – now 
scheduled for Phase-
2 extension 

LST-CCI-ADP-5 Development for the GSW algorithm will focus on 
improved derivation of the retrieval coefficients 
using the new calibration database, and improved 
input auxiliary datasets 

 Implemented for 
V2.00 Products 

LST-CCI-ADP-6 All development will move to using ERA5 data, 
which will minimise any non-linearity between 
adjacent time steps since the profiles are only 1-
hour apart 

 Implemented for 
V3.00 Products 

LST-CCI-ADP-7 All retrieval algorithm and cloud masking 
developments will move to using land cover 
information from Land Cover CCI 

 Implemented in 
V2.00 Products 

LST-CCI-ADP-8 Class 33 (bare soil) of the Land Cover CCI 
classification will be sub-divided into distinct sub-
classes based on soil taxonomy 

 Implemented in 
V2.00 Products 

LST-CCI-ADP-9 We will continue to use FCOVER output from the 
Copernicus Global Land Cover Services. Since there 
is no FCOVER output from the CCI programme 
using such a dataset is not inconsistent with the 
wider CCI programme 

  

LST-CCI-ADP-10 In the next Cycle the Combined ASTER and MODIS 
Emissivity for Land (CAMEL) database will be used 
to calculate LST 

 Implemented for 
V2.00 Products 

LST-CCI-ADP-11 It is proposed to move towards using ESA Snow 
Cover CCI products for snow masking providing 
they become available for future Cycles. If these 
are not available in time for re-processing of the 
LST_cci products then the IMS remains the default 

 ESA Snow Cover CCI 
products they are 
scheduled for Phase-
2 extension 

LST-CCI-ADP-12 In the processing of the ATSR-SLSTR CDR the 
overlap analysis for the next Cycle will include 
SLSTR 

 Implemented in 
V3.00 Products 

LST-CCI-ADP-13 Diurnal information from the high temporal 
resolution geostationary satellites for each land 
cover class will be incorporated into the time 
difference assessment for the ATSR-SLSTR CDR 

 The time correction 
has focused on a 
wide temporal 
window of overlap 
between Terra-
MODIS and 
ATSR/SLSTR 
respectively 
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Algorithm 
Development 
Number

Description Status Comments

LST-CCI-ADP-14 The ATSR-SLSTR CDR will implement the best 
performing cloud mask from WP2.4 developments 

 Delays to WP2.4 
mean the 
probabilistic cloud 
mask has been 
implemented 

LST-CCI-ADP-15 The Merged IR CDR will implement the GSW 
algorithm for all input sensors to ensure 
consistency 

 Superseded by LST-
CCI-ADP-18 

LST-CCI-ADP-16 The next production Cycle 2 will begin to 
implement concepts from the standardised 
uncertainty approach adopted for IT sensors to the 
microwave sensors 

 Implemented in 
V3.00 Products 

LST-CCI-ADP-17 The Quality flag Processor for microwave sensors 
will be improved for: (a) the inundation flag, by 
using actual estimates of inundation; (b) the snow 
flag, by using the ESA CCI snow product if it 
becomes available; and (c) the convection flag, by 
revising the current cloud detection algorithm 

 Implemented for 
V2.00 Products 

LST-CCI-ADP-18 All LEO and GEO products will be reprocessed with 
a single-channel (SMW) algorithm calibrated with 
the benchmark dataset constructed for the Round 
Robin, in order to provide harmonized data for the 
Merged Product  

 The agreed approach 
is to now utilise the 
maximum 
information 
available per 
instrument rather 
than degradation 

LST-CCI-ADP-19 Apply intercalibrations to the Level-1 BTs for LEO 
data which is input to the ATSR-MODIS-SLSTR CDR 

 Implemented in 
V3.00 Products 

LST-CCI-ADP-20 For input to the ATSR-MODIS-SLSTR CDR apply 
time corrections to the Level-3U LST for AATSR and 
SLSTR to bring to same nominal local overpass time 
as ATSR-2 and Terra-MODIS using Terra-MODIS as 
the reference sensor 

 Implemented in 
V3.00 Products 

LST-CCI-ADP-21 Implement the uncertainty component due to 
TCWV on the application of the coefficients for all 
LEO and GEO infrared products 

 Implemented in 
V3.00 Products 

LST-CCI-ADP-22 Exploit the capabilities of advanced algorithms, 
such as Optimal Estimation, to confront the 
challenges of higher resolution sensors and scale 
change 

 Implemented in the 
prototype high 
resolution products 
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Algorithm 
Development 
Number

Description Status Comments

LST-CCI-ADP-23 All LEO and GEO products will be reprocessed with 
the best algorithm to maximise the capabilities of 
each instrument rather than degrade to common 
algorithms 

 Implemented in 
V4.00 (Phase-2) 

LST-CCI-ADP-24 Implement an orbital drift correction method for 
NOAA-AVHRR LST products and other TIR satellites 
which may experience orbital drift during part of 
their lifetimes 

 Different correction 
methods are being 
evaluated and tested 
in the 
implementation 

LST-CCI-ADP-25 Utilise Sentinel-2 data and the Optimal Estimation 
approach to downscale LST from moderate 
resolution instruments 

 Being implemented 
in the prototype high 
resolution products 

LST-CCI-ADP-26 Implement the Optimal Estimation approach in 
developing the microwave product 

 Being implemented 
in V4.00 (Phase-2) 

LST-CCI-ADP-27 Maximise the value of the Split-Window approach 
and the OE approach in a Hybrid solution 

 Being implemented 
in V5.00 

LST-CCI-ADP-28 Implement the 1-hourly ERA5 profile data for cloud 
masking all LEO data 

 Implemented in 
V5.00 

LST-CCI-ADP-29 Update the intercalibration using ocean matchups 
to extend the dynamic range 

 Implemented in 
V5.00 

LST-CCI-ADP-30 Add the Orbital Drift Correction as an additional 
field to the product, keeping the original 
uncorrected LST as the default LST field 

 Being implemented 
in V5.00 

LST-CCI-ADP-31 Increase the stability of the moderate resolution 
products by switching to a climatology of CAMEL 
emissivity 

 Being implemented 
in V5.00 

LST-CCI-ADP-32 Derive high resolution emissivity as input to the 
prototype high resolution LST products 

 Being implemented 
in V5.00 

LST-CCI-ADP-33 Utilise LST-derived parameters and other auxiliary 
products to downscale MW LST from SSMIS and 
AMSR2.  

 Being implemented 
in V5.00 
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2. Introduction 

The European Space Agency Climate Change Initiative on Land Surface Temperature (hereafter LST_cci) 
aims to provide Land Surface Temperature (LST) LST Essential Climate Variable (ECV) products and validate 
these data to provide an accurate view of temperatures across land surfaces globally over the past 20 to 
25 years.  

This Algorithm Development Plan (ADP) provides a description of the expected improvements to be made 
to both the infrared (IR) and microwave (MW) algorithms over the course of each processing Cycle after 
Cycle 1. The algorithms themselves are described in detail in the Algorithm Theoretical Basis Document 
(ATBD) [RD-29]. This document instead details the upcoming developments to be undertaken to improve 
the output products so as to better address the climate requirements for LST as presented in the 2016 
GCOS Implementation Plan [RD-19]. The algorithms identified in [RD-29] have been recommended as the 
best algorithms for a future climate quality operational system. The retrieval algorithms were selected 
during an open algorithm intercomparison round-robin which assessed the performance of a number of 
different LST retrieval algorithms for a set of specific thermal infrared and microwave satellite sensors 
[RD-29].  

The evolutions to these form part of the end-to-end system being implemented to generate the first 
LST_cci climate data records. A flow chart summarising the algorithm processing is provided in Figure 1 
for thermal infrared sensors and in Figure 2 for microwave sensors. 

 

 

Figure 1: Data flows for LST_cci product prototype production system for thermal infrared sensors. 
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Figure 2: Data flows for the SSM/I and SSMIS LST ECV prototype production system. 

At each subsequent reprocessing It is expected that ongoing algorithm assessment will be carried and 
evolutions made to ensure the best performing algorithm is always implemented. This will aim to produce 
the most accurate LST retrieval for each LST_cci product. Therefore, this document is updated as at each 
processing Cycle with the proposed improvements for the following Cycle. Table 2 indicates the 
Processing Cycle and Product Numbering nomenclature. It is assumed, unless otherwise stated, that all 
later Product Versions contain the advancements described in this document from earlier Product 
Versions. 

Table 2: Processing Cycle and Product Numbering nomenclature. 

Year Processing 
Cycle

Product 
Version

Instrument Satellite(s)

1 1 1.00 ATSR-2 ERS-2 

AATSR Envisat 

MODIS Terra 

Aqua 

SLSTR Sentinel-3A 

SEVIRI MSG-1-4 

SSM/I DMSP F-13,17 

ATSR CDR ERS-2, Envisat 
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Year Processing 
Cycle

Product 
Version

Instrument Satellite(s)

2 1.5 2.00 ATSR-2 ERS-2 

AATSR Envisat 

MODIS Terra 

Aqua 

SLSTR Sentinel-3A 

Sentinel-3B 

SEVIRI MSG-1-4 

Imager GOES 12-16 

JAMI MTSAT-2 

SSM/I DMSP F-13,17 

3 2 3.00 ATSR-2 ERS-2 

AATSR Envisat 

AVHRR/3 NOAA-15-19 

Metop-A-C 

MODIS Terra 

Aqua 

SLSTR Sentinel-3A 

Sentinel-3B 

SEVIRI MSG-1-4 

Imager GOES 12-16 

JAMI MTSAT-2 

SSM/I DMSP F-13,17 

ATSR-MODIS-SLSTR CDR ERS-2, Envisat, Terra, Sentinel-3 

Merged IR CDR LEO+GEO IR 

Ph2-
Y1 

3 4.00 ATSR-2 ERS-2 

AATSR Envisat 

AVHRR/3 NOAA-15-19 

Metop-A-C 

MODIS Terra 

Aqua 

SLSTR Sentinel-3A 

Sentinel-3B 

SEVIRI MSG-1-4 

Imager GOES 12-16 
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Year Processing 
Cycle

Product 
Version

Instrument Satellite(s)

JAMI MTSAT-2 

SSM/I DMSP F-13,17 

ATSR-MODIS-SLSTR CDR ERS-2, Envisat, Terra, Sentinel-3 

Merged IR CDR LEO+GEO IR 

AMSR-E Aqua 

ETM+ / TIRS Landsat-7 / -8 

2.1. Purpose and Scope 

This document presents the algorithm development plan for the algorithms to be used for LST data 
products provided by LST_cci. 

2.2. Reference Documents 

The following is a list of documents with a direct bearing on the content of this report. Where referenced 
in the text, these are identified as RD-xx, where 'xx' is the number in the table below. 

 

Id Reference

[RD-1] Prata, F., Land Surface Temperature Measurement from Space: AATSR Algorithm 
Theoretical Basis Document. 2002. 

[RD-2] Wan, Z. and Dozier, J., (1996) A generalised spilt-window algorithm for retrieving 
Land-Surface Temperature from space, IEEE Trans. GeoSci. Remote Sens. 

[RD-3] Ghent D, Trigo I, Pires A, Sardou O, Bruniquel J, Gottsche F, Martin M, Prigent C, 
Jimenez, C, and Remedios. J., 2016. ESA DUE GlobTemperature Product User Guide 
V2 

[RD-4] Merchant, C., Ghent. D., Kennedy, J., Good., E., and Hoyer, J. 2016. Common 
approach to providing uncertainty estimates across all surfaces, H2020 EUSTACE 
Report 

[RD-5] Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF 
atmospheric reanalyses of the global climate . Copernicus Climate Change Service 
Climate Data Store (CDS), date of access. 
https://cds.climate.copernicus.eu/cdsapp#!/home 

[RD-6] Ghent, D., Corlett, G., Gottsche, F., & Remedios, J. (2017). Global land surface 
temperatures from the Along-Track Scanning Radiometers. Journal of Geophysical 
Research: Atmospheres, 122 

[RD-7] Le Gleau, H. (2019) Algorithm Theoretical Basis Document for the Cloud Product 
Processors of the NWC/GEO. 
http://www.nwcsaf.org/Downloads/GEO/2018/Documents/Scientific_Docs/NWC-
CDOP2-GEO-MFL-SCI-ATBD-Cloud_v2.1.pdf 

[RD-8] Camacho, F., Cernicharo, J., Lacaze, R., Baret, F. and Weiss, M., 2013. GEOV1: LAI, 
FAPAR essential climate variables and FCOVER global time series capitalizing over 

https://cds.climate.copernicus.eu/cdsapp#!/home
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Id Reference

existing products. Part 2: Validation and intercomparison with reference 
products. Remote Sensing of Environment, 137, pp.310-329. 

[RD-9] Combined ASTER and MODIS Emissivity database over Land (CAMEL) Emissivity 
Monthly Global 0.05Deg V001 [Data set]. NASA EOSDIS Land Processes DAAC. doi: 
10.5067/MEaSUREs/LSTE/CAM5K30EM.001 

[RD-10] Saunders, R., RTTOV-7 - SCIENCE AND VALIDATION REPORT, 2001, EUMETSAT. 

[RD-11] Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kaliberg, P., 
Kobayashi, S., Uppala, S., Simmons,  S. (2011).  The ERA-Interim archive Version 2.0. 
ERA Report Series, 
old.ecmwf.int/publications/library/do/references/show?id=902776. 

[RD-12] Kirches, G., Brockman, C., Boettcher , M., Peters, M., Bontemps, S., Lamarche, C., 
Schlerf , M., and Santoro, M.(2016), Land Cover CCI PRODUCT USER GUIDE 
VERSION 2 http://data.ceda.ac.uk/neodc/esacci/land_cover/docs/ESACCI-LC-PUG-
v2.5.pdf 

[RD-13] Fennig, K., Schroder, M., and Hollmann, R.: Fundamental Climate Data Record of 

Microwave Imager Radiances, Edition 3, 10.5676/EUM SAF CM/ FCDR MWI/V003, 

2017.  

[RD-14] Prigent, C., Jimenez, C, and P. Bousquet, Satellite-derived global surface water 

extent and dynamics over the last 25 years, J. Geophys. Res., in review. 

[RD-15] Prigent, C., I. Tegen, F. Aires, B. Marticorena, and M. Zribi (2005), Estimation of the 
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2.3.  Glossary 

The following terms have been used in this report with the meanings shown. 

 

Term Definition

ATSR Along-Track Scanning Radiometer 

https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-oli-and-tirs-calibration-notices
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-oli-and-tirs-calibration-notices
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Term Definition

ATSR-2 Along-Track Scanning Radiometer-2 

AATSR Advanced Along-Track Scanning Radiometer 

ALB2 ATSR Land Biome Classification 

ATBD Algorithm Theoretical Basis Document 

BOA Bottom of Atmosphere 

BT Brightness Temperature 

C3S Copernicus Climate Change Service 

CAMEL Combined ASTER and MODIS Emissivity for Land 

CCI Climate Change Initiative 

CDR Climate Data Record 

ECMWF European Centre for Medium-Range Weather Forecasts 

ECV Essential Climate Variable 

Envisat Environmental Satellite 

ERA5 ECMWF Re-analysis 5 

ERS European Remote-Sensing Satellite 

ESA European Space Agency 

GEO Geostationary Orbit 

GSW Generalised Split Window 

IGBP International Geosphere–Biosphere 

ISRF Instrument Spectral Response Function 

LEO Low Earth Orbit 

LSE Land Surface Emissivity 

LST Land Surface Temperature 

LST_cci ESA CCI on LST 

MODIS Moderate Resolution Imaging Spectroradiometer 

MW Microwave 

NDVI Normalised Difference Vegetation Index 

NN Neural-Network 

NWC SAF Satellite Application Facility on Support to Nowcasting & Very Short Range 
Forecasting 

RTM Radiative Transfer Model 

RTTOV Radiative Transfer for TOVS 

SEVIRI Spinning Enhanced Visible and InfraRed Imager 

SLSTR Sea and Land Surface Temperature Radiometer 

SSM/I Special Sensor Microwave/Imager 

SSMIS Special Sensor Microwave Imager Sounder 

SST Sea Surface Temperature 
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Term Definition

SW Split Window 

TCWV Total Column Water Vapour 

TIR Thermal Infrared 

TOA Top of Atmosphere 

UOL University of Leicester 

VCM Vegetation Cover Method 
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3. Algorithm Development Plan for Infrared LST Products 

3.1. Current Status of Infrared LST Products 

In the LST_cci open algorithm intercomparison round-robin, the performance of different LST retrieval 
algorithms for a set of specific thermal infrared and microwave satellite sensors was assessed to identify 
the best algorithms for a future climate quality operational system. The algorithms chosen for the thermal 
infrared (IR) were:  

❖ the University of Leicester (UOL) Algorithm 

 for the Advanced Along-Track Scanning Radiometer (AATSR) LST ECV dataset 

 for the AATSR / Sea and Land Surface Temperature Radiometer (SLSTR) / Moderate 
Resolution Imaging Spectroradiometer (MODIS) CDR 

❖ the Generalised Split Window (GSW) Algorithm 

 for the MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) LST ECV datasets 

 for the Merged Dataset (AATSR / MODIS / SEVIRI) 

 

These algorithms are the ones which will continue to be improved over the course of the processing 
Cycles. The full descriptions are provided in [RD-29], but we present a brief summary here. 

3.1.1. Version 2.00 

3.1.1.1. UOL Algorithm 

The standard algorithm ([RD-1], for (A)ATSR and SLSTR) uses a nadir-only (SW) algorithm with classes of 
coefficients for each combination of biome-diurnal (day/night) condition. Non-linearity is parametrised 
across the swath. The full form of the algorithm is presented as follows: 

 

 

𝐿𝑆𝑇 = 𝑑(sec(𝜃) − 1)𝑝𝑤 + (𝑓𝑎𝑣,𝑖 + (1 − 𝑓)𝑎𝑠,𝑖) + (𝑓𝑏𝑣,𝑖

+ (1 − 𝑓)𝑏𝑠,𝑖)(𝑇11 − 𝑇12)1 / (cos(𝜃 / 𝑚))

+ ((𝑓𝑏𝑣,𝑖 + (1 − 𝑓)𝑏𝑠,𝑖) + (𝑓𝑐𝑣,𝑖 + (1 − 𝑓)𝑐𝑠,𝑖))𝑇12 

 

where the six retrieval coefficients as,i, av,i, bs,i, bv,i, cs,i and cv,i are dependent on the biome (i), fractional 
vegetation cover (f) - the retrieval coefficients as,i, bs,i and cs,i relate to bare soil (f = 0) conditions, and av,i, 
bv,i and cv,i relate to fully vegetated (f = 1) conditions. The fractional vegetation cover (f) and precipitable 
water (pw) are seasonally dependent whereas the biome (i) is invariant [RD-6]. 

The retrieval parameters d and m are empirically determined from validation and control the behaviour 
of the algorithm for each zenith viewing angle (θ) across the nadir swath. The parameter d resolves 
increases in atmospheric attenuation as the water vapour increases, an effect that is accentuated with 
increasing zenith viewing angle. The parameter m is supported by previous studies [RD-6], which suggest 
a non-linear dependence term on the BT difference T11 - T12 would elicit improvement in the accuracy 
of the LST retrievals. The rationale here is that the BT difference increases with increasing atmospheric 
water vapour, since attenuation due to water vapour is greater at 12 μm than at 11 μm. 

The nature of the algorithm means that land surface emissivity is implicitly dealt with through the 
regression of retrieval coefficients to biome and bare soil / fully vegetated states. In other words, while 
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LSE is not an estimated output the algorithm still uses LSE knowledge, any uncertainty of which is 
propagated in the LST derivation. This knowledge is passed to the algorithm through the biome and 
fractional vegetation states, which themselves are regressed to emissivity states in the coefficient 
generation. Dynamic Fractional Vegetation Cover (FVC) ancillary data will be retrieved from auxiliary data. 

For the generation of the retrieval coefficients for each biome–diurnal (day/night) combination vertical 
atmospheric profiles of temperature, ozone, and water vapour, surface and near-surface conditions and 
the surface emissivities are required. These are input, in addition to specifying the spectral response 
functions of the instrument, into a radiative transfer model in order to simulate TOA BTs. Retrieval 
coefficients are determined by minimizing the l2-norm of the model fitting error (ΔLST). 

3.1.1.2. Generalised Split Window (GSW) Algorithm 

The generalised split window algorithm is a view-angle dependent split-window algorithm proposed for 
LST retrieval by [RD-2]. It is based around channels in the 11 and 12 µm regions.  

The success of the generalized split-window LST algorithm depends on knowledge of the band emissivities 
for real land surfaces. In the LST_cci GSW method, emissivity information will be used explicitly rather 
than incorporating this information implicitly through biome coefficients.  

Having determined the emissivity of the pixel coefficients these can be applied to derive an LST estimate 
similar to that given below: 
 

𝑇𝑠 = 𝐶 + (𝐴1 + 𝐴2

1 − 𝜀𝑚𝑒𝑎𝑛

𝜀𝑚𝑒𝑎𝑛
+ 𝐴3

Δ𝜀

𝜀𝑚𝑒𝑎𝑛
2 )

𝑇1 + 𝑇2

2
+ (𝐵1 + 𝐵2

1 − 𝜀𝑚𝑒𝑎𝑛

𝜀𝑚𝑒𝑎𝑛
+ 𝐵3

Δ𝜀

𝜀𝑚𝑒𝑎𝑛
2 )

𝑇1 − 𝑇2

2
 

 

Where C, A and B are coefficients derived from linear regression using simulated data as done for the UOL 
algorithm but adapted for the GSW. T1 and T2 are the 11 and 12 µm brightness temperatures. 𝜀𝑚𝑒𝑎𝑛 is 
the mean emissivity of the two thermal channels used in the GSW algorithm: 
 

𝜀𝑚𝑒𝑎𝑛 = 0.5 (𝜀11 + 𝜀12) 

Δ𝜀 is the difference between the two thermal channels, calculated as: 

Δ𝜀 = 𝜀11 − 𝜀12  

The coefficients for GSW are dependent on satellite viewing angle and water vapour. The bands for water 
vapour are of width 15 kg⋅m-2 so that the first water vapour band is from [0,15) kg⋅m-2. The bands for 
satellite zenith angle are of width 5°. The retrieval coefficients are linearly interpolated between viewing 
angle and water vapour bands to minimise step changes. 

3.1.2. Version 3.00 

3.1.2.1. Single-channel (SMW) Algorithm 

While the Round Robin intercomparison correctly identified the UOL and GSW algorithms as the best 
algorithms for the respective products, this did not take account of the lowest common denominator in 
the multi-sensor CDRs, which is the number of channels. For some single-sensor products (early GOES and 
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MTSAT) only one thermal infrared channel can be used. This impacts the Merged Product, and so for these 
products a single-channel algorithm will be applied. 

The specific algorithm chosen is that used by the CM SAF for MVIRI retrievals and has been successfully 
applied to SEVIRI with good results [RD-33] and is close to the formulation for GOES [RD-34]: 

𝐿𝑆𝑇 = 𝐴 +
𝑇x

𝜀x
+ 𝐵

1

𝜀x
 +  𝐶 

Where A, B and C are coefficients derived from linear regression using simulated data as done for the split 
window algorithms but adapted for the SMW. 𝑇𝑥 is the single channel brightness temperature and 𝜀𝑥 is 
the spectral emissivity for this channel. 

The coefficients for GSW are dependent on satellite viewing angle and water vapour. The bands for water 
vapour are of width 15 kg⋅m-2 so that the first water vapour band is from [0,15) kg⋅m-2. The bands for 
satellite zenith angle are of width 5°. The retrieval coefficients are linearly interpolated between viewing 
angle and water vapour bands to minimise step changes. 

3.1.3. Version 4.aa 

3.1.3.1. Optimal Estimation (OE) Algorithm 

For higher resolution instruments we need to exploit the capabilities of advanced algorithms. We will start 
with the Optimal Estimation (OE) approach which has successfully been applied to high resolution LST 
data [RD-35]. This approach is sometimes referred to as Inverse Theory, and is a technique developed to 
help solve problems which are either over- or under- constrained and there is some degree of uncertainty 
in the measurements or formulation. It has proved to be of great use in Earth Observation, specifically in 
resolving multispectral measurements to give multilevel atmospheric profiles. 

As an example consider an EO satellite which observes TOA BTs at 𝑖 different wavelengths. The 
measurements are collated into the single observation vector (𝐲). The objective is to retrieve a profile (𝒙), 
containing 𝑛 different atmospheric and/or surface parameters. If the actual state of the atmosphere and 
surface was known at the time of observation then: 

 𝒚 = 𝑭(𝒙) +  𝝐,  

where 𝑭 represents the Forward Model which computes the radiative transfer process based on the input 
profile (𝒙), and 𝝐 is the combined forward model and measurement error. The maximum probability 
solution can be found by minimising the cost function, C, as demonstrated by [RD-36], that is: 

𝐶(𝒙) = (𝒙 − 𝒙𝒂)𝑇𝑺𝒂
−1 (𝒙 − 𝒙𝒂) + (𝐲 − 𝐅(𝒙))

𝑇
𝑺𝒚

−1 (𝐲 − 𝐅(𝒙)) 

where xa is an a priori estimate of the true state with a covariance described by the matrix Sa and the 
observation vector has a covariance matrix described by the matrix Sy. [RD-36] essentially describes how 
the maximum probability solution is calculated based on a compromise between the confidence 
associated with the predicted state and the confidence associated with the observation. The retrieval 
process is illustrated in Figure 3. 

The observations given to the retrieval can apply the instrument specific SRF for the desired number and 
configuration of channels. The main iterative loop provides a configurable platform to simulate the TOA 
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brightness temperature and retrieve the surface parameters. The flexibility in this module extends to 
multiple algorithms, related to the degree on non-linearity in the system and the speed of the 
convergence.  

In comparison to SW techniques, OE methods ensure greater consideration of the true physics. Generally, 
this ensures that the retrieved state is more likely to reproduce the observation vector when used as input 
in a forward model. In contrast, for deployment in an ECV production chain sensitivity to atmospheric 
profiles of temperature and water vapour will be assessed through the round robin exercise. A further 
advantage of the OE methodology is in the retrieved uncertainties and radiance residuals inherent to the 
retrieval process. The retrieval automatically produces an uncertainty which is back traceable, allowing 
the determination of the contributions of the underlying variables [RD-37]. 

LST-CCI-ADP-10: Exploit the capabilities of advanced algorithms, such as Optimal Estimation, to confront 
the challenges of higher resolution sensors and scale change. 

 

 

Figure 3: Retrieval flow chart for the OE method applied to TOA BTs and external LSE data. 
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3.1.4. Version 4.00 

3.1.4.1.1 Hybrid Algorithm 

The Hybrid Algorithm follows a similar logic to the downscaling approach in Section 3.2.3.3.2. The 
rationale is that we utilise the power of the Split-Window technique (such as detailed in Section 3.1.1.2) 
to resolve the atmospheric correction and then apply a Bottom-Of-Atmosphere (BOA) OE scheme to 
optimise the LST and LSE outputs. So for instance we take the MODIS LST product at 1 km resolution, if 
this is product we are producing, and use NDVI derived a priori LSE data to iteratively update the LST in 
an OE scheme. In this methodology the OE scheme will assimilate the medium resolution MODIS LST and 
the Copernicus-derived LSE and attempt to minimise the difference between the MODIS calculated BOA 
brightness temperatures (BTs) and simulated BOA BTs generated from the MODIS LST and the Copernicus-
derived LSE. 

The processing first obtains the normalised difference vegetation index (NDVI) from the Copernicus Global 
Land Service (CGLS) and maps this onto the MODIS LST swath. The NDVI data is used with the NDVI 
threshold method of [RD-43] to estimate the LSE. These a priori LST and LSE are used with Planck’s Law 
to estimate the BOA BT values. In order to transfer the traceable uncertainties from the Split-Window 
algorithm, the random component of the total uncertainty from the MODIS LST algorithm is applied as a 
noise on these BOA BT values using a Gaussian random distribution. The OE scheme iteratively updates 
the estimates for LST and LSE used in the retrieval until an empirically determined threshold is reached 
from where there is no longer any significant improvement to be made by further iteration. 

This methodology produces a full uncertainty breakdown including both the input total uncertainty of the 
MODIS LST retrieval as well as the uncertainties due to the BOA OE iterations. 

LST-CCI-ADP-27: Maximise the value of the Split-Window approach and the OE approach in a Hybrid 
solution. 

3.1.5. Version 5.00 

For Cycle 5 (Phase-2 Cycle 2) the split-window algorithms are stable and will continue to be used for all 
moderate resolution products (ATSRs, MODIS, SLSTRs, AVHRRs, SEVIRI, MTSAT/Himawari. GOES). The 
Optimal Estimation (OE) algorithm is also stable and will continue to be used for the high resolution 
products in their native resolution (Landsat), with the Hybrid algorithm being used for the downscaled 
products from MODIS / SLSTRs. No new algorithm developments are foreseen in terms of the specified 
algorithms or their functional forms. 

3.2. Algorithm Development Plan for Infrared Sensors 

3.2.1. Version 2.00 

After Cycle 1, all single-sensor GEO products will be reprocessed with a GSW calibrated with the 
benchmark dataset constructed for the Round Robin. A natural consequence of this is that all single-
sensor GEO ECV Products will also be consistent with LEO ECV Products with respect to coefficient 
generation. 
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3.2.1.1. Radiative Transfer Modelling 

Radiative Transfer for TOVS (RTTOV) is a fast Radiative Transfer Model (RTM) from the NWP-SAF [RD-10]. 
It is an efficient radiative transfer forward model for the visible, infra-red and microwave wavelengths. In 
contrast to models using a line-by-line methodology, RTTOV conceptualizes the simulation in terms of 
channel radiances. 

For Cycle 1, all the Low Earth Orbit (LEO) ECV Products have been developed using RTTOV Version 11.3 to 
determine the retrieval coefficients. While this is consistent with previous studies, such as in the ESA DUE 
GlobTemperature [RD-3] and Sentinel-3 Mission Performance Centre (S3MPC) [RD-28] it does not utilise 
the most recent knowledge of global surface emissivity as provided by the Combined ASTER and MODIS 
Emissivity database over Land (CAMEL) [RD-9] dataset. The latest version of RTTOV, 12.3, integrates this 
recent dataset in its radiative transfer. Thus, all LST_cci LEO TIR ECV Products and IR Climate Data Records 
(CDRs) will benefit from this upgrade starting from Cycle 1.5. The expected impact here is for improved 
retrieval coefficients. 

LST-CCI-ADP-1: Upgrade to RTTOV 12.3 for development of all LST_cci LEO TIR ECV Products and IR Climate 
Data Records (CDRs). 

In addition to the retrieval algorithms, RTTOV is also used in the UOL_3 and Bayesian cloud masking 
algorithms to calculate the probability of cloud cover in the observations given the background state. 
Retrieval coefficients are derived using forward modelling and building regressions between the skin 
temperature and the TOA radiances to create a Calibration Database for determining retrieval 
coefficients. RTTOV is also used in the threshold tests employed in the NWC-SAF cloud masking algorithm. 

3.2.1.2. Calibration Database for Determining Retrieval Coefficients for the TIR Algorithms 

Globally robust, traceable retrieval coefficients for both the GSW and UOL approaches are generated 
using RTTOV, which allows fast processing of sufficient numbers of profiles to adequately characterise a 
wide range of potential atmospheric states representative of each biome (UOL algorithm) or each water 
vapour – viewing angle combination (GSW algorithm). 

In Cycle 1 the profile data has been sourced from ERA-Interim, which provides a large number of input 
profiles which encompass the full range of atmospheres and surfaces observed by TIR instruments. A 
uniform random sampling strategy is used to select a number of clear sky profiles for each biome class. A 
large sample of locations are selected randomly across land and ice surface types over all latitude and 
longitude bands to represent the full range of surface types across land areas [RD-6]. A temporal sampling 
strategy ensures intra- and inter-annual coverage; profiles are selected from the 15th day of each month 
between 2002 and 2011 with identified profiles closest to the day and night overpass times of the satellite 
of interest. Representative emissivity information is extracted for the locations of the profile data from 
auxiliary datasets. These selected profiles are then inputs to the RTTOV forward model along with the 
various sensor spectral response functions. RTTOV then yields the brightness temperatures and LSTs for 
the given sensor and location and these are used to generate retrieval coefficients for all cases of biome 
type, fractional vegetation and water vapour using linear regression. The Calibration Database comprises 
a global set of independent profiles and emissivity values covering all land cover types and distributed 
across all latitude and longitudes and capturing the seasonality of the land surface, as well as the 
coefficients generated from these profiles. 

While the same general approach to coefficient generation is to be utilised for all subsequent processing, 
the source of the input profiles and surface states will be upgraded from those used in Cycle 1. Specifically, 
an extended version of the Benchmark database constructed for the Round Robin [RD-30] will be used to 
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determine retrieval coefficients for TIR algorithms. This extended benchmark dataset will use ERA5 
Atmospheric profile Data, CAMEL Emissivity Data and ESA CCI Land Cover data. ERA5 profiles and CAMEL 
emissivity data are used as an input to RTTOV. Representative profiles distributed across the globe are 
extracted, including simulated brightness temperatures, LST, elevation and other atmospheric 
information. 

LST-CCI-ADP-2: An extended version of the Benchmark database using ERA5 Atmospheric profile Data, 
CAMEL Emissivity Data and ESA CCI Land Cover data will used to determine retrieval coefficients for TIR 
algorithms. 

The use of ERA5 brings consistency with other ECVs across CCI. Moreover, the temporal and spatial 
resolution is also improved upon compared with ERA-Interim so the expectation would be for more 
representative atmospheric and surface states in the Calibration Database to better capture 
heterogeneity and thus retrieval coefficients that generate physically more robust LST estimates. 

The CAMEL dataset of surface emissivity represents the most up-to-date knowledge of global surface 
emissivity on a sufficiently high temporal resolution – in this case monthly. This dataset is embedded in 
the RTTOV 12.3 functionality and at a spatial resolution more compatible with the ERA5 atmospheric and 
near-surface data. 

3.2.1.3. Algorithm Stratification 

3.2.1.3.1 UOL Algorithm 

Validation and simulations from [RD-6] suggests improved accuracy and precision for the UOL algorithm 
could be achieved by stratifying the retrieval coefficients by temperature. The rationale here is that the 
onboard calibration for the ATSRs and SLSTR is driven by the need for highly accurate sea surface 
temperature (SST). Calibration is thus performed to cover the dynamic range of SST, and measurements 
outside this do not have the same traceable source of calibration while also being more non-linear. 
Temperature-dependent coefficients could address this and will be explored in detail for the next 
processing cycle. This will be performed globally for all years and sensors against the multi-sensor 
matchup database (MMDB). This is possible since the MMDB is indexed in such a way that the subset of 
data applicable for the MMDB can easily be identified and reprocessed quickly. The likely impact would 
be improved LST estimates with lower uncertainties. 

LST-CCI-ADP-4: Temperature-dependent coefficients will be explored in detail for the UOL algorithm for 
the next processing cycle to minimise any possible impact of non-linearity. 

3.2.1.3.2 GSW Algorithm 

The parameters in the GSW algorithm for SEVIRI are estimated for different classes of total column water 
vapour in bands of 7.5 kgm-2 and for classes of viewing zenith angle of 5o, ensuring that all ranges of 
atmospheric attenuation within the thermal infrared are covered. Literature [RD-26; RD-27] indicates this 
level of stratification is suitable for global retrievals of LST using the GSW approach. Instead, algorithm 
development will focus on improved derivation of the retrieval coefficients using the new calibration 
database, and improved input auxiliary datasets. These ensure the retrieval is robust to different input 

conditions from the Level-1 brightness temperatures, auxiliary data, and instrument viewing geometry. 

LST-CCI-ADP-5: Development for the GSW algorithm will focus on improved derivation of the retrieval 
coefficients using the new calibration database, and improved input auxiliary datasets. 
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3.2.1.4. Identification of Observations Valid for Land Surface Temperature Estimation from Thermal 
Infrared Sensors 

Cloud screening is a fundamental step for Thermal Infrared (TIR) LST retrieval. For LST_cci products the 
cloud mask is given, or applied to, Level 2 and Level 3 LST products.  

Traditionally, threshold based techniques have been used to detect cloud but these often fail under 
difficult circumstances – for example, in the detection of thin cirrus or low-level fog. Two cloud detection 
algorithms are considered here: 

❖ The UOL_3 algorithm 

❖ Bayesian algorithm 

❖ the NWCSAF Cloud Mask Algorithm 

 

The full details of the approaches are given in the ATBD [RD-29], but we provide a very brief summary 
here for the UOL_3 and NWCSAF algorithms, and in Section 3.2.2.1.2 for the Bayesian algorithm. In Cycle 
1 only the UOL_3 (LEO products) algorithm and NWCSAF (GEO products) algorithm were applied. For some 
products, such as MODIS and SLSTR, the respective operational cloud masks were applied. 

For subsequent processing cycles the best cloud masking per single-sensor product will be used. For the 
GEO single-sensor products this will remain the NWCSAF approach since it has been developed over many 
years for the operational SEVIRI products and utilises information on the diurnal cycle for the cloud 
detection. 

For the LEO single-sensor products the UOL_3 algorithm is expected to be applied. This will be an 
improved implementation from that applied in Cycle 1 for the ATSRs, which will be customised for 
additional sensors (MODIS, SLSTR and AVHRR). The expected impact here is for a reduction in some of the 
known issues with the operational cloud masks which do not take account of the coincident conditions.  

3.2.1.4.1 UOL_3 Algorithm 

The UOL_3 algorithm is a semi-Bayesian cloud masking approach using the probability of clear-sky 
conditions which has been developed at University of Leicester [RD-6]. A pixel-level cloud mask is derived 
using a combination of simulated brightness temperatures and observational climatology. The approach 
is equally valid for both day and night-time retrievals as this method is independent of visible wavelength 
information.  It has been implemented in the ESA DUE GlobTemperature project previously for ATSR data 
records [RD-6] and is being implemented operationally for SLSTR [RD-17].  

This cloud masking algorithm uses atmospheric profile data to predict clear-sky conditions for the 
coincident space and time of a given satellite sensor observation. Coincident clear-sky brightness 
temperatures are derived by bilinear interpolation between surrounding ECMWF profile locations and a 
temporal interpolation between the 6-hourly analysis fields. ERA-Interim data has been used for profiles 
in Cycle 1 and Cycle 1.5. 

3.2.1.4.2 NWCSAF Cloud Mask Algorithm 

This cloud mask has been designed to be applicable to imagers on board meteorological geostationary 
satellites [RD-7]. It is based on a series of satellite dependent threshold tests [RD-7]. Steps in the process 
include: i) identifying pixels using a series of multispectral threshold tests based on factors such as viewing 
geometry, surface temperature and atmospheric water content, elevation, and climatological data; ii) a 
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smaller series of multispectral tests; iii) analysis of the temporal variation in a short time period for 
detection of rapidly moving clouds; iv) a specific treatment targeting low clouds in twilight conditions; v) 
an analysis of solar channels at high spatial resolution to detect sub-pixel clouds; and vi) a spatial filtering 
for cold / snow areas, cloud edges, and isolated cloud pixels. 

3.2.1.5. Auxiliary Datasets for Thermal Infrared Retrievals 

The following section gives a description of the planned auxiliary datasets to be used for the thermal 
infrared retrieval algorithms. 

3.2.1.5.1 Biome 

In Cycle 1 biome information for the LST_cci products has been provided by the ATSR Land Biome 
Classification (ALB2) [RD-6]. For the next and all subsequent cycles the biome system used will be that 
provided by the ESA CCI Land Cover maps developed by the Land Cover CCI [RD-12] and hybridised for 
LST_cci (Table 3). This hybrid land cover scheme (LCCS) will be used in the UOL retrieval algorithm, in 
combination with other variables, to determine the most appropriate coefficients to apply. It will also be 
used in the UOL_3 and Bayesian cloud masking algorithms. 

LST-CCI-ADP-7: All retrieval algorithm and cloud masking developments will move to using land cover 
information from Land Cover CCI. 

While an aim here is consistency across the CCI projects, it is also critical to use the most appropriate 
system for thermal infrared data. In that respect we propose to modify the system to sub-divide class 33 
(bare soil) into distinct sub-classes based on soil taxonomy. The rationale here is that emissivity variability 
is highest for different types of bare soil and for biome-based algorithms distinguishing between different 
bare soil types is crucial for improving robustness of the retrieval algorithms. It is consistent with the CCI 
programme in general while allowing for an extra dimension to support the specific needs of LST_cci. 
Since the existing ALB2 is a static mask there would be expected to be an impact on the LST estimates 
through use of more dynamic information. 

LST-CCI-ADP-8: Class 33 (bare soil) of the Land Cover CCI classification will be sub-divided into distinct sub-
classes based on soil taxonomy. 

 

Table 3: Land Cover CCI  biome definition. 

Biome 
number

Definition

0 No data 

10 cropland rainfed 

11 cropland rainfed herbaceous cover 

12 cropland rainfed tree or shrub cover 

20 cropland irrigated 

30 mosaic cropland 

40 mosaic natural vegetation 

50 tree broadleaved evergreen closed to open 

60 tree broadleaved deciduous closed to open 

61 tree broadleaved deciduous closed 

62 tree broadleaved deciduous open 
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70 tree needleleaved evergreen closed to open 

71 tree needleleaved evergreen closed 

72 tree needleleaved evergreen open 

80 tree needleleaved deciduous closed to open 

81 tree needleleaved deciduous closed 

82 tree needleleaved deciduous open 

90 tree mixed 

100 mosaic tree and shrub 

110 mosaic herbaceous 

120 shrubland 

121 shrubland evergreen 

122 shrubland deciduous 

130 grassland 

140 lichens and mosses 

150 sparse vegetation 

151 sparse tree 

152 sparse shrub 

153 sparse herbaceous 

160 tree cover flooded fresh or brakish water 

170 tree cover flooded saline water 

180 shrub or herbaceous cover flooded 

190 Urban 

200 bare areas of soil types not contained in biomes 21 to 25 

201 unconsolidated bare areas of soil types not contained in biomes 21 to 25 

202 consolidated bare areas of soil types not contained in biomes 21 to 25 

203 bare areas of soil type Entisols Orthents 

204 bare areas of soil type Shifting sand 

205 bare areas of soil type Aridisols Calcids 

206 bare areas of soil type Aridisols Cambids 

207 bare areas of soil type Gelisols Orthels 

210 Water 

220 Snow and ice 

230 Sea-ice 

 

3.2.1.5.2 Fractional Vegetation 

Fractional vegetation cover information for LST_cci is provided by the Copernicus Global Land Cover 
Services FCOVER dataset V2.0 (https://land.copernicus.eu/global/products/fcover). This global dataset is 
available at 1/112° resolution every 10 days from 1999 onwards. It is acquired using a moving temporal 
window of around 30 days [RD-21, RD-6]. Fractional vegetation is used in the UOL retrieval algorithm, in 
combination with other variables, to weight the appropriate retrieval coefficients applied in the algorithm. 
Since there is no FCOVER output from the CCI programme using such a dataset, which has been shown to 
be well validated [RD-8], is not inconsistent with the wider CCI programme. 

LST-CCI-ADP-9: We will continue to use FCOVER output from the Copernicus Global Land Cover Services. 
Since there is no FCOVER output from the CCI programme using such a dataset is not inconsistent with the 
wider CCI programme. 

https://land.copernicus.eu/global/products/fcover
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3.2.1.5.3 Emissivity 

For initial LST_cci products in Cycle 1, the CIMSS Baseline Fit Emissivity Database [RD-18] has been used.  
CIMSS is a monthly dataset 0.05° with emissivities available at ten wavelengths between 3.6μm and 
14.3μm. It has been derived using the MODIS operational land surface emissivity product and by applying 
a baseline fit method to fill in the spectral gaps between the six infrared emissivity wavelengths provided.  

In the next and Cycle the Combined ASTER and MODIS Emissivity for Land (CAMEL) database will be used 
to calculate LST. Emissivity from CAMEL is also employed in deriving retrieval coefficients for the LST 
retrieval algorithm by way of the Calibration Database. The is a global monthly mean emissivity dataset 
spanning the years 2000 – 2016. A climatology of CAMEL data will be used after 2016 if regular updates 
of this dataset are not available. It assimilates both ASTER Global Emissivity Database retrieved values and 
University of Wisconsin-Madison MODIS Infra-red Emissivity dataset values. The CAMEL dataset contains 
12 emissivity values at different wavelengths from 3.6 to 14.3 µm at a resolution of 0.5° [RD-9]. Due to 
the dataset originating from satellite observations, it is highly relevant to realistic materials observed from 
space and should remove materials in spectral libraries, which are too fine a scale to be useful. The 
expected impact of this change in emissivity database to be used would be improved LST estimates for 
the GSW algorithm. 

LST-CCI-ADP-10: In the next and Cycle the Combined ASTER and MODIS Emissivity for Land (CAMEL) 
database will be used to calculate LST. 

3.2.1.5.4 Atmospheric Variables 

Precipitable water is used in the UOL retrieval algorithm, along with coefficients selected using biome and 
fractional vegetation information, to derive LST. Water vapour information and atmospheric temperature 
are inputs required to determine retrieval coefficients for both the algorithm selected from the Round 
Ronin (UOL and GSW algorithms) [RD-30]. Atmospheric profile data from reanalysis is also used in the 
UOL_3 cloud masking algorithm to derive clear sky probability information. Furthermore, atmospheric 
profiles are employed in deriving retrieval coefficients for the retrieval algorithm to create a Calibration 
Database for determining retrieval coefficients. 

In Cycle 1 ERA-Interim has been used instead. In all sequent Cycles this will be superseded by ERA5 [RD-
5]. ERA5 is a re-analysis dataset which provides hourly estimates of a significant number of land and 
atmospheric variables over the full globe (See LST-CCI-ADP-11). It is the successor to ERA-Interim. ERA5 
currently has a temporal coverage similar to other reanalyses (from 1979 to present), but more years are 
due to be added to extend this dataset back to 1950. The improved temporal and spatial resolution of 
ERA5 are expected to result in improvements to the retrieved LST. 

3.2.1.6. Climate Data Records 

3.2.1.6.1 ATSR-SLSTR CDR 

The finest temporal resolution of the final product will be daily (day / night). The diurnal dimension 
determined from the solar zenith angle. The spatial resolution is to be 0.05°. This spatial-temporal 
combination is intended to meet the corresponding GCOS requirements [RD-19]. 
 
To fill the gap between the end of the Envisat mission and the end of the Phase E1 commissioning of the 
Sentinel-3A mission requires an instrument of equivalent spatial resolution with a LECT close in time to 
AATSR and SLSTR and of sufficient high quality. The choice made here is Terra-MODIS. Not only does it 
meet these minimum requirements, but it also spans all three of ATSR-2, AATSR and SLSTR, and moreover 
has a common LECT (10:30 and 22:30) with ATSR-2 so knowledge of the temporal correction between 
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ATSR-2 and AATSR is also applicable for Terra-MODIS and AATSR. Note, AATSR and SLSTR have the same 
LECTs (10:00 and 22:00). 
 
There are several steps to generating a CDR from ATSR-2 through to SLSTR: 
 

❖ Stage 1: gap bridging 

 A first step for bridging the gap between the end of Envisat and the start of routine data 
availability from Sentinel-3 is to intercalibrate the radiances between AATSR and SLSTR. This 
necessarily also includes intercalibration of the other sensors in the CDR: ATSR-2 and Terra-
MODIS. 

 Two approaches are to be used for intercalibrating the radiances between AATSR, Terra-
MODIS and SLSTR:  

 Utilising matched observations from in situ Fiducial Reference Measurements (FRMs):  

 Generating simultaneous nadir overpass (SNO) matchups between each of AATSR, 
Terra-MODIS and SLSTR, and a reference sensor: 

 A motivation for utilising both approaches is firstly that it permits more than one 
independent assessment of the radiances, and secondly that a wider scope of the dynamic 
range of the instruments can be assessed. Due to the strict 5-minute temporal threshold for 
SNO matchups as recommended by GSICS [RD-20], matchups between IASI and AATSR / 
Terra-MODIS / SLSTR will be principally in the mid-to-high latitudes and therefore confront 
the intercalibrations at the low to mid temperatures of the dynamic range. The use of FRMs 
from Gobabeb permit intercalibrations at the mid to high temperatures. 

 

❖ Stage 2: time difference correction 

 A key consideration in the derivation of a continuous CDR from ATSR-2 through to SLSTR is 
to harmonise the temporal differences between the instruments. This difference is more 
complex than for SST with the impact on surface temperature due to the temporal offset in 
observation times an order of magnitude greater than radiometric calibration and spectral 
filter response variations. The 30-minute difference in LECT between Envisat and Sentinel-3, 
and ERS-2 and Terra has significant implications for stability of the long-term LST CDR at the 
levels required by GCOS. 

 To correct ATSR-2 and Terra-MODIS to the common reference LECT of AATSR and SLSTR it is 
crucial to characterise the diurnal information for the different land covers encountered for 
a global mission. In extreme cases, such as in arid environments, a 30-minute difference 
between observations during local mid-morning can result in several kelvin in surface 
temperature [RD-21]. 

 In Cycle 1 we have been deriving a dataset of corrections to apply to one or more of the input 
datasets to alleviate the problem of combining time series that have a 30 minute difference 
in LECT: 

 This uses an overlap analysis between ATSR-2, AATSR and Terra-MODIS, and has been 
applied for a ATSR-2 to AATSR CDR. 

 SLSTR will be added to this overlap analysis in the next Cycle. 

 Diurnal information from the high temporal resolution geostationary satellites for each 
land cover class will also be incorporated. 

LST-CCI-ADP-12: In the processing of the ATSR-SLSTR CDR the overlap analysis for the next Cycle will 
include SLSTR. 
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LST-CCI-ADP-13: Diurnal information from the high temporal resolution geostationary satellites for each 
land cover class will be incorporated into the time difference assessment for the ATSR-SLSTR CDR. 

 

❖ Stage 3: apply consistent Level-2 algorithms 

 The UOL algorithm was shown to be the best performing algorithm for the ATSR and MODIS 
combination from the Round Robin exercise as documented in [RD-30]. In the next Cycle and 
all subsequent cycles this algorithm will be applied to the Level-1 data to ensure consistency 
from an algorithm perspective across the ATSR-SLSTR CDR. 

 The best performing cloud mask from WP2.4 developments and assessment will be applied 
to the Level-1 data for the individual sensors to ensure consistency. 

LST-CCI-ADP-14: The ATSR-SLSTR CDR will implement the best performing cloud mask from WP2.4 
developments. 

 
 

❖ Stage 4: restrict satellite viewing angle 

 To maintain consistency of the CDR from ATSR-2 through to SLSTR in terms of data coverage 
and to minimise anisotropic differences in the data record as we switch from one instrument 
to another the satellite zenith angle (SZA) will be restricted to the lowest common 
denominator. In the case, both ATSR-2 and AATSR have a maximum SZA of approximately 
22°. Thus, only MODIS and SLSTR pixels with SZAs less or equal to this threshold will be 
processed through the CDR chain. As part of this step an assessment of the impact of 
restricting / not restricting the angles will be carried out. 

 

❖ Stage 5: gap filling 

 The gap filling process consists of the production of the CDR using the appropriate data 
stream for a given day. The modularisation of the LEO processing chains, which has been 
mostly implemented in Cycle 1, allows for the ingestion of multiple satellite Lcvel-1 data 
through module plug-ins. 

 Since a key temporal interval is expected to be monthly data, the switch between sensors 
will occur at the monthly interchange. So the following sensors are to be the input over the 
full CDR time window: 

 ATSR-2: 08/1995 to 07/2002 

 AATSR: 08/2003 to 03/2012AATSR 

 Terra-MODIS: 04/2012 to 07/2016 

 SLSTR: 08/2016 to 12/2020 

 Note, we intend to implement the full period from ATSR-2 even though this means 
incompletely observed months. This includes a missing period of 6 months from January 1996 
to June 1996 inclusive due to a scan mirror failure, and a further period from January 2001 
to June 2001 inclusive due to a gyro failure. In the L1b data (Main Product Header) an 
indicator is set as to the application of a yaw-correction. Where this is not set data is 
segregated and this flagging will be taken into account in the processing. Further periods 
lasting up to a few days occur throughout the data record due to instrument 
decontaminations or anomalies. Months where these occur are excluded from the data 
record. 
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Figure 4: Schematic representation of the development and implementation of the ATSR-SLSTR CDR. 

3.2.1.7. Uncertainty Model for Thermal Infrared Algorithms 

Following the agreed approach being undertaken in other projects such as ESA DUE GlobTemperature 
[RD-3] and H2020 EUSTACE [RD-4], whereby SST, LST and IST all conform to a standardised uncertainty 
model. For LST this has started to be implemented for AATSR, MODIS and SEVIRI data, but further 
improvements are to be implemented in line with the approach being documented in the End-to-End  ECV 
Uncertainty Budget Report (E3UB) [RD-31]. 

Generally, for each pixel, three components of uncertainty are provided, representing the uncertainty 
from effects whose errors have distinct correlation properties: 

❖ random (no correlation of error component between cells); 

❖ locally systematic (correlation of error component between “nearby” pixels); 

❖ [large-scale] systematic (correlation of error component between “distant” pixels). 

Locally correlated errors are modelled via spatio-temporal correlation length scales that determine how 
an observation influences the analysis in the vicinity of its time-space location. Systematic errors will be 
accounted for by allowing a bias to be determined within the analysis procedure between different 
sources of data, whose magnitude is conditioned by the uncertainty attributed to systematic effects. 

3.2.2. Version 3.00 

For Cycle 2, all input LEO and GEO data will be reprocessed with a SMW algorithm calibrated with the 
benchmark dataset constructed for the Round Robin, in order to provided harmonized data for the 
Merged Product. This is important since the impact of not bringing consistency would be potential 
discontinuities between the different data streams. 

LST-CCI-ADP-18: All LEO and GEO products will be reprocessed with a single-channel (SMW) algorithm 
calibrated with the benchmark dataset constructed for the Round Robin, in order to provide harmonized 
data for the Merged Product. 
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For the Merged IR Product consistency across each component of the data development and production 
is critical. In this respect our objective is to use the same calibration dataset to derive retrieval coefficients 
for each input sensor to the output product. Thus, the extended version of the Benchmark database will 
be used to determine the retrieval coefficients for the SMW algorithm for both Low Earth Orbit (LEO) and 
Geostationary Earth Orbit (GEO) IR sensors. 

3.2.2.1. Identification of Observations Valid for Land Surface Temperature Estimation from Thermal 
Infrared Sensors 

For V3.00 products additional improvements will be made. These include enhancements to the UOL_3 
algorithm, and the use of the best algorithm for the CDRs. For these two CDR developments (ATSR-MODIS-
SLSTR CDR and the Merged IR CDR) either the Bayesian or the UOL_3 algorithm will be applied depending 
on which is most appropriate. This activity is being carried out in WP2.4. 

3.2.2.1.1 UOL_3 Algorithm 

We will move to ERA5 data, which will minimise any non-linearity between adjacent time steps since the 
profiles are only 1-hour apart. The higher spatial resolution of ERA5 is also expected to improve the 
outputs of the bilinear interpolation onto each sensors tie-point grid. 

LST-CCI-ADP-6: All development will move to using ERA5 data, which will minimise any non-linearity 
between adjacent time steps since the profiles are only 1-hour apart. 

3.2.2.1.2 Bayesian Algorithm 

The Bayesian cloud mask, which was developed at the University of Reading, calculates the probability of 
clear-sky P(c|yo,xb) given the observation vector (yo) and prior knowledge of the background state (xb): 
 

𝑃(𝑐|𝒚𝑜, 𝒙𝑏) = [1 +
𝑃(𝑐̅)𝑃(𝒚𝑜|𝒙𝑏 , 𝑐̅)

𝑃(𝑐)𝑃(𝒚𝑜|𝒙𝑏 , 𝑐)
]

−1

 

 
Where 𝑐̅ and 𝑐 denote cloud and clear conditions respectively.  The prior probabilities of clear and cloudy 
conditions (𝑃(𝑐) and 𝑃(𝑐̅)) are currently defined using ECMWF ERA-Interim total cloud cover [RD-11]. For 
subsequent cycles ERA5 will be used as per all cloud masking developments. 

3.2.2.2. Auxiliary Datasets for Thermal Infrared Retrievals 

The following section gives a description of the planned auxiliary datasets to be used for the thermal 
infrared retrieval algorithms. 

3.2.2.2.1 Emissivity 

It is expected by the final processing Cycle that a new and improved emissivity dataset for MODIS shall be 
available through the LST_cci Work Package 2.9: Temperature and Emissivity Separation from MODIS 
multispectral TIR data (CCN to Baseline Project). Assuming a high quality, as per the validation effort in 
the CCN, this would replace CAMEL as an input for other sensors using equivalent TIR channels. 

3.2.2.2.2 Snow masking 

Snow masking is part of the biome information used in the UOL retrieval algorithm to determine the most 
appropriate coefficients to apply. It is also utilised in the UOL_3 cloud masking algorithm. In Cycle 1 snow 



 

ALGORITHM DEVELOPMENT PLAN 
 

WP2 – DEL-2.4 

Ref.:  LST-CCI-D2.4-ADP 

Version: 5.0 

Date:  12-Jun-2024 

Page:  29 

 

© 2024 Consortium CCI LST 

masking information has been provided by the Interactive Multi-sensor Snow and Ice Mapping System 
(IMS) Daily Northern Hemisphere snow and ice analysis. 

The IMS snow maps are daily maps of Northern Hemisphere land, sea, snow and ice on an equal area 
polar stereographic grid at 1 km, 4 km and 24 km resolution, depending on time period. It is available from 
1997 to present with higher resolution maps available for shorter time periods. For inclusion in LST_cci 
algorithms and products, Daily IMS maps of snow and ice presence in the northern hemisphere at a 
resolution of 0.01° are produced by nearest neighbour interpolation [RD-6]. 

The use of this data will continue in Cycle 1.5, but for the final Cycle 2 it is proposed to move towards 
using ESA Snow Cover CCI products for snow masking providing they become available. If these are not 
available in time for re-processing of the LST_cci products then the IMS remains the default. Ingestion of 
snow Cover CCI would better satisfy the consistency requirements of CCI, but an assessment of the 
applicability in comparison to IMS will be a prerequisite. 

LST-CCI-ADP-11: It is proposed to move towards using ESA Snow Cover CCI products for snow masking 
providing they become available for future Cycles. If these are not available in time for re-processing of 
the LST_cci products then the IMS remains the default. 

3.2.2.3. Climate Data Records 

3.2.2.3.1 Intercalibration 

All instruments contributing to the ATSR-MODIS-SLSTR CDR are to be cross-calibrated with IASI data. 
Brightness temperatures (BTs) will be produced from IASI spectra for each test instrument using the test 
instrument spectral response function (SRF). The IASI swath BTs will be matched with the test instrument 
CCI L3U gridded BTs. Analysis of the matched BTs will enable calibration coefficients to be calculated. Thus 
all instruments with missions overlapping IASI will be aligned with IASI. Inter-calibration of ATSR-2 BTs will 
rely on the inter-calibration of ATSR-2 and AATSR which is part of the 4th Reprocessing of ATSR data, since 
there is no overlap with IASI: 

❖ The IASI spectra are convolved with the SRF from the test instrument and BTs calculated for every 
IASI pixel. 

❖ The IASI quality indicators are used to filter the data – data are only used if all quality flags are 
good. 

❖ Each IASI observation target consists of a group of four pixels. IASI pixels have an elliptical FOV, 
which is circular at nadir but changes shape towards the swath edges: 

 The pixel ellipse major axis is assumed parallel to the across track direction. 

 The pre-processor estimates the angle between the semi-major axis (the across track 
direction) and the line of latitude through the centre of the pixel using the coordinates of 
each of the four pixels making up target observation. 

 The pre-processor calculates the length of the semi-major and semi-minor axes. 

 The subset of L3U grid cells falling within a circle centred on the pixel centre and with radius 
equal to the ellipse semi-major axis is then tested to see if the grid cell centre falls within the 
ellipse. 

 A rectangular latitude-longitude box which includes all the grid cells falling within the ellipse 
is constructed. 

 The indices on the L3U grid of the minimum and maximum, longitude and latitude of this box 
are output along with the IASI pixel centre latitude and longitude. 
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 The matchup processor takes the IASI BTs on the IASI swath and matches to grid cells on the 
L3U grid using the pre-processed output as auxiliary data. 

 The grid cells are then tested for valid data and matching in time. 

The analysis of matchups is performed for each year-month. Matchups are first filtered using the following 
thresholds: 

❖ fraction of cloud in L3U average ≤ 0 

❖ satellite zenith angle (either sensor) ≤ 10 degrees 

❖ matchup time difference:  ≤ 5 minutes 

 

As an example, for IASI v. Terra MODIS nearly all of the matchups occur at latitudes polewards of 60°. The 
statistics were found to be very noisy in the Northern Hemisphere. This is likely due to differences 
between the land-sea masks of the MODIS data and that used in the L3U binning. These differences are 
exacerbated by the very large number of small islands in the Arctic. Therefore, only the Antarctic 
matchups are used in the inter-calibration. Day and night matchups are used to ensure data are available 
for all seasons. BT differences due to solar heating over the matchup time difference are assumed to be 
negligible over ice in this region.  

The statistics are used to estimate a time dependent bias by fitting a straight line function to the monthly 
bin means for the latitude bin 90° S to 60° S. The line is fit using least absolute deviation. In the case of 
Terra MODIS there are very low numbers of matchups from the start of the IASI mission to late 2008. This 
is due to poor quality Terra MODIS data which will be rectified in later re-processing. Only data from 01 
January 2008 were used in the line fitting for Terra MODIS (Figure 5 and Figure 6). 

 

  

Figure 5: Monthly mean IASI minus Terra MODIS 11 micron (left) and 12 micron (right) BT difference (K) in the 

Antarctic. The red line is a straight line fit to data from January 2009 to December 2018. An exponential fit to the 

same data (black) and a 11 (blue) and 23 (yellow) month running means are also shown. 
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Figure 6: Monthly mean IASI minus Aqua MODIS 11 micron (left) and 12 micron (right) BT difference (K) in the 

Antarctic. The red line is a straight line fit to data from January 2009 to December 2018. An exponential fit to the 

same data (black) and a 11 (blue) and 23 (yellow) month running means are also shown. 

 

 

An output look-up table (LUT) will be applied to the Level-1 BTs prior to the Level-2 retrieval algorithm 

processing. 

LST-CCI-ADP-19: Apply intercalibrations to the Level-1 BTs for LEO data which is input to the ATSR-MODIS-
SLSTR CDR. 

3.2.2.3.2 Time correction 

In addition to intercalibration, instruments contributing to the ATSR-MODIS-SLSTR CDR need to 
harmonised to a common local overpass time. Differences in overpass time between sensors of a series 
result in step changes in LST. This occurs for example between ATSR-2, overpass time 10:30 and 22:30, 
and AATSR with overpass time of 10:00 and 22:00. Since there is a data gap between the end of AATSR 
mission and start of SLSTR mission, LST from Terra MODIS is being used to fill the gap but again there are 
differences in overpass time: 

❖ We estimate a correction to the LST due to the time difference using Terra MODIS as the 
reference. 

❖ Matchups are produced from gridded data (L3U) using a time window of 40 minutes. 

❖ Matchups were restricted to data where the difference in satellite zenith angle was less than 10 
degrees. 

❖ The matchup LST differences is binned to multi-dimensional histograms: day or night (on 
reference solar angle), observation time difference (1 minute bins), latitude (10 degree bins), and 
landcover class. 

❖ Multi-year histograms for each calendar month are then calculated. 

The LST correction is read from the LUT (given the time of day, location, landcover class, and observation 
time difference between the acquisition time and the nominal time for the CDR for the given pixel) then 
applied at the L3U level on the 0.05° grid to the sensor to be corrected. 

LST-CCI-ADP-20: For input to the ATSR-MODIS-SLSTR CDR apply time corrections to the Level-3U LST for 
AATSR and SLSTR to bring to same nominal local overpass time as ATSR-2 and Terra-MODIS using Terra-
MODIS as the reference sensor. 
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3.2.2.3.3 Merged IR CDR 

The Merged IR CDR will be produced on a global scale eight times daily (00h, 03h, 06h, 09h, 12h, 15h, 18h, 
21h, UTC times). The nominal spatial resolution will a 0.05° equal angle latitude-longitude grid. The 
individual stages are described in detail below: 

❖ Stage 1: apply consistent Level-2 algorithms 

 The single channel (SMW) algorithm used for both earlier GOES and MTSAT is the lowest 
common denominator in ensuring consistency across all instruments of the Merged Product. 
To avoid both step-changes between satellites of the same series and discontinuities across 
the globe from multiple sensors for the same time window, it is decided to use a common 
algorithm (even if that increases uncertainty for some sensors contributing to the product). 

 The UOL_3 cloud mask will be applied to the Level-1 data for the individual sensors to ensure 
consistency. 

LST-CCI-ADP-18: All LEO and GEO products will be reprocessed with a single-channel (SMW) algorithm 
calibrated with the benchmark dataset constructed for the Round Robin, in order to provide harmonized 
data for the Merged Product. 

 
 

❖ Stage 2: bias correction 

 Following the approach developed in GlobTemperature, bias corrections to a single reference 
sensor will be determined. This is, in essence, the removal of systematic differences between 
instruments: 

 The bias correction is carried out by computing linear regressions between LST from a 
reference sensor and those of the sensor to be bias-corrected. 

 The computation is done for satellite viewing angles within a limit range (± 5º for zenith and 
± 5º for azimuth angle) and, in a first approach, for night-time only. 

 The matching between LEO and GEO data will be performed for a select number of days for 
each month in a given year. 

 The reference sensor chosen is MSG-SEVIRI, which is the only sensor in the ensemble which 
has an operational maturity level in terms of Global Space-based Inter-Calibration System 
(GSICS) calibration to the standard reference source [RD-22; RD-23]: 

 The LEO sensors will thus be corrected to SEVIRI. 

 For the remaining GEOs we will use MODIS as the transfer sensor. 

 The associated uncertainty from these bias correction adjustments will be determined in 
accordance with the strategy developed in the E3UB. 

❖ Stage 3: angular correction 

 Satellite LST retrievals correspond to an integrated radiometric surface temperature within 
the sensor footprint and, therefore, remotely sensed LST is in general highly anisotropic. As 
such, a scene viewed by the same sensor from different viewing angles would lead to 
different LST retrievals. 

 Two methodologies are to be considered: 

 An approach based on the parametric model [RD-24]. 

 A modified version of the model developed by [RD-25]. 

 In both methodologies, the parametric models are calibrated using collocated LST products 
in space time, namely LST estimates from geostationary platforms (e.g., MSG, GOES) 
collocated with LST values retrieved from polar-orbiters (e.g. MODIS, SLSTR). 
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 The angular correction will be provided as an additional variable rather than amending the 
output LST. 

❖ Stage 4: GEO + LEO Merging 

 The basis of the Merged Product will be the GEOs with the LEOs infilling the gaps at higher 
latitudes and over Central Asia. 

 For the GEOs the principle area of overlap is over South America. In this case all data will be 
taken from only one instrument to minimise possible discontinuities (in this case GOES). 

 The viewing geometry of the GEOS will be restricted to between 50 and 60 degrees (an 
assessment will be carried out to understand the impact on data coverage). 

 For LEO vs. GEO superposition: 

 LEOs will not be used to infill inside the coverage of the GEO disks 

 LEOs can however be used as an additional filter on the cloud masking of the GEOs inside the 
coverage of the disks 

❖ Stage 5: time difference characterisation 

 Each GEO has a different scanning time of its full disk, and each has a different delay relative 
to the nominal time given in the respective file: 

 We select SEVIRI/MSG to be merged with GOES and MTSAT corresponding to the same 
nominal time-slot (i.e., 03:00). 

 In this manner, we aim to minimize the time differences between the GEO’s actual 
observation times. 

 The same assessment of the time differences will be made for LEOs. On a global scale, each 
UTC time step is only sparsely filled with LEO data. Nevertheless, the LEO data in many cases 
fills in areas of the globe unobserved by the GEO satellites: 

 LEO data will be added to the 3-hourly UTC product where that data falls within a certain  
threshold of the UTC time. For the GEOs this is governed by their scans (-28 minutes for 
MTSAT, through to +12 minutes for MSG). To simplify we will use a ± 30 minutes inclusion 
threshold for the LEO data. 

 To investigate correction to a common UTC we will apply the LUT from Section 3.2.2.3.2. 
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Figure 7: Schematic representation of the development and implementation of the Merged IR CDR. 

 

3.2.2.4. Uncertainty Model for Thermal Infrared Algorithms 

A key gap in the first version of the End-to-End  ECV Uncertainty Budget Report (E3UB) [RD-31] and thus 
the first products was an uncertainty due to total column water vapour (TCWV) on the “application of the 
coefficients”. A corresponding uncertainty for the TCWV on the “derivation of the coefficients” was 
already implemented. 

All the selected infrared retrieval algorithms in Section 3.1 are dependent on the specification of the total 
column water vapour. The TCWV estimate at a given instant and location is obtained from Numerical 
Weather Prediction (NWP) models. A commonly used measure of uncertainty in NWP models is the 
ensemble spread that is generally available together with the variable best estimate. The ensemble 
systems consist in a set of model runs with perturbed initial conditions; some systems also include 
perturbations to the model physics, more than one model within the ensemble or different physical 
parametrization schemes. Processing of ensemble data can be quite demanding and, therefore, we will 
approximate the instantaneous TCWV spread to a climatology of this spread that depends on actual 
TCWV, latitude and month. 

LST-CCI-ADP-21: Implement the uncertainty component due to TCWV on the application of the coefficients 
for all LEO and GEO infrared products. 

3.2.3. Version 4.aa 

For Cycle 3 and all subsequent cycles LST single instrument ECV Products should not be constrained by 
the lowest common denominator when a more optimal algorithm could be applied should the instrument 
have a different channel configuration. In each case a consistent algorithm will be applied across all 
sensors where no degradation in performance is encountered: 

❖ for single channel sensors then a consistent algorithm will be applied 
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❖ for split-window sensors then a consistent algorithm will be applied that maximises the 
information in the two channels rather than loss of information through use of a single channel 
algorithm. 

LST-CCI-ADP-23: All LEO and GEO products will be reprocessed with the best algorithm to maximise the 
capabilities of each instrument rather than degrade to common algorithms. 

3.2.3.1. Auxiliary Datasets for Thermal Infrared Retrievals 

The following section gives a description of the planned updates to auxiliary datasets to be used for the 
thermal infrared retrieval algorithms. 

3.2.3.1.1 Emissivity 

It is anticipated that a new and improved emissivity dataset for MODIS shall be available through the 
LST_cci Work Package 2.9: Temperature and Emissivity Separation from MODIS multispectral TIR data 
(CCN to Baseline Project). For all other datasets CAMEL V2 will be retained as an input. For sea-ice, CAMEL 
is not available, therefore we will use ice emissivity information from the ECOSTRESS Spectral Library, as 
an estimate of sea ice emissivity, which are in agreement with values quoted in the literature [RD-38, RD-
39]. 

3.2.3.1.2 Sea-ice masking 

One of the biggest challenges in producing a CDR including sea-ice is identifying sea-ice observations not 
contaminated by cloud. We start here with classification of the surface itself using knowledge of the global 
sea-ice cover. Considering the relatively high spatial resolution of the IST data the Operational Sea Surface 
Temperature and Sea Ice Analysis (OSTIA) daily sea-ice analysis [RD-40] will be used to identify snow / ice 
pixels over the sea. The OSTIA system is a daily global gap-free dataset which includes sea-ice area fraction 
produced on a 0.05º equal angle grid. The sea-ice concentration, defined as the local area fraction of a 
given grid point that is covered by ice, is derived from passive microwave satellite measurements. The 
required sea-ice concentration at 1/120° is produced by interpolating the input OSTIA data onto the LCCS 
biome grid. Pixels with sea-ice concentrations greater than 50% are designated as sea-ice, using a new 
biome class of “230” in the LCCS classification system. 

3.2.3.2. Climate Data Records 

3.2.3.2.1 Orbital drift correction 

For the development of the AVHRR/3 products from the NOAA satellites it is necessary to address the 
issue of orbital drift (Figure 8). This results in an artificial gradient over time in retrieved LST. To maximise 
knowledge within LST_cci the method of [RD-41] will be implemented since this offers a suitable approach 
for bulk processing across the AVHRR archive. 
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Figure 8: AVHRR Equator Crossing Times. 

This method of [RD-41] involves adjusting retrieved LST time series on the basis of statistical information 
extracted from the time series themselves. It is simple and straightforward, in order to be implemented 
easily for large datasets. The correction is applied on a per-pixel basis, and relies on a second order 
polynomial fit of solar zenith angle (SZA) anomalies against time per satellite. If the pixel time series is 
identified as contaminated by the orbital drift for any of the different satellite active periods, LST 
anomalies are fitted linearly against both time and the second order polynomial fit of SZA anomalies. This 
double fit allows for the removal of orbital drift influence without removing climate trends in the data. 
When applied to LST time series, the approach normalizes the distribution of LST values at the beginning 
and end of each satellite activity period, and visual inspection of the time series does not show any 
residual orbital drift in the corrected LST time series.  

LST-CCI-ADP-24: Implement an orbital drift correction method for NOAA-AVHRR LST products and other 
TIR satellites which may experience orbital drift during part of their lifetimes. 

3.2.3.3. Prototype Products 

3.2.3.3.1 High resolution retrievals 

Processing Cycle 3 will include the first retrievals made for Landsat data. This will include Landsat-7 and -
8, although neither of these Landsat satellites whilst possessing thermal instrumentation have the 
capabilities for split-window resulting in a high reliance on ancillary data for atmospheric and surface 
knowledge. Landsat-8 does have two thermal bands but has suffered from significant stray light problems 
in the second thermal channel [RD-42], and therefore this channel will not be used here. A single channel 
Landsat OE retrieval will be ill-posed due to the single trusted observation TIR channel, therefore retrieval 
of both LST and LSE is not possible. To provide high resolution and accurate surface estimates for the 
emissivity in this retrieval the Visible-Near IR (VNIR) channels of Landsat are exploited. 
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The OE methodology allows the retrieval to use both the a priori information (from surface estimates) 
and the observation without being overly tied to one in particular. Radiometric issues in Landsat can be 
adapted to, and errors in surface state knowledge can be minimised in the iterative process. The 
methodology also allows uncertainty estimates in the final estimate from mixed sources without requiring 
detailed knowledge on the individual components a priori. The retrieval will simply ingest the best prior 
uncertainty knowledge we have and propagate it according to which parameters impact on the OE 
retrieval. 

3.2.3.3.2 Downscaling 

Processing Cycle 3 will exploit the LST_cci SLSTR LST Product in a new way. A downscaled LST product will 
be derived by taking the SLSTR LST product at 1 km resolution and using Sentinel-2 derived LSE data to 
iteratively update the LST in an OE scheme. In this methodology the OE scheme will assimilate the medium 
resolution SLSTR LST and the Sentinel-2 LSE and attempt to minimise the difference between the SLSTR 
calculated Bottom-Of-Atmosphere (BOA) brightness temperatures (BTs) and simulated BOA BTs 
generated from the SLSTR LST and the Sentinel-2 LSE. This would be an operation performed at the 
resolution of the Sentinel-2 data. 

The processing first obtains the normalised difference vegetation index (NDVI) from the Sentinel-2 data 
and maps the SLSTR LST data onto the Sentinel-2 NDVI pixel grid. The NDVI data is used with the NDVI 
threshold method of [RD-43] to estimate the LSE. 

The re-gridded SLSTR LST combined with the original coarse resolution LSE associated with the pixel in the 
Split-Window processing (whether this be explicit or through biome estimation) is used with Planck’s Law 
to estimate the BOA BT values. In order to transfer the traceable uncertainties from the Split-Window 
algorithm, the random component of the total uncertainty from the SLSTR LST algorithm is applied as a 
noise on these BOA BT values using a Gaussian random distribution. 

The SLSTR LST is then used with the Planck function again, but this time with the LSE derived from the 
Sentinel-2 NDVI threshold method. Two sets of BOA BTs are evaluated and the differences used to 
iteratively update the estimate for LSE used in the retrieval until an empirically determined threshold is 
reached from where there is no longer any significant improvement to be made by further iteration. 

This methodology produces a full uncertainty breakdown including both the input total uncertainty of the 
SLSTR LST retrieval as well as the uncertainties due to  the downscaling. The use of the SLSTR LST means 
that any additional uncertainties are a result of the retrieval process and the surface parameters, as the 
atmospheric uncertainty should have been fully captured in the SLSTR LST retrieval. 

LST-CCI-ADP-25: Utilise Sentinel-2 data and the Optimal Estimation approach to downscale LST from 
moderate resolution instruments. 

3.2.4. Version 4.00 

3.2.4.1. UOL_3 Algorithm 

For all LEO single-sensor products and LEO inputs to the Merged IR CDR we will use the best profile data 
for simulating the cloud state of each pixel. Thus we will use ERA5 data, which will minimise any non-
linearity between adjacent time steps since the profiles are only 1-hour apart. The higher spatial 
resolution of ERA5 is also expected to improve the outputs of the bilinear interpolation onto each sensors 
tie-point grid. ERA5 is chosen rather than ERA5-Land since we need to maintain consistency across all land 
surfaces and sea-ice. 
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LST-CCI-ADP-28: Implement the 1-hourly ERA5 profile data for cloud masking all LEO data. 

3.2.4.2. Climate Data Records 

3.2.4.2.1 Intercalibration 

Intercalibration differences between sensors mean that different brightness temperatures (BTs) would be 
derived even in the hypothetical situation where they were observing the same field of view, within a 
similar spectral band, at the same time and from the same view angle. 

Harmonisation of Level-1 data across all sensors for the LST_cci CDRs entails adjustment of the BTs to a 
reference sensor. The Global Space-based Inter-Calibration System (GSICS) have used the Infrared 
Atmospheric Sounding Interferometer (IASI) as the reference sensor in a calibration of SEVIRI radiances. 
IASI is a Fourier transform spectrometer and provides infrared spectra with high resolution (0.5 cm-1 after 
apodisation, L1C spectra) between 645 cm-1  and 2760 cm-1 (3.6 μm to 15.5 μm).  

Previously, we followed the approach of GSICS to determine intercalibration coefficients for MODIS for 
example. In the matchup process for MODIS nearly all of the matchups occur at latitudes polewards of 
60°. In the next version we will develop and refine the approach across the full CDRs. Taking the ATSR-S3 
CDR as an example, all contributing instruments are to be cross-calibrated with IASI data. BTs will be 
produced from IASI spectra for each test instrument using the test instrument SRF. The IASI swath BTs will 
be matched with the test instrument LST_cci Level-3 Uncollated (L3U) gridded BTs. Analysis of the 
matched BTs will enable calibration coefficients to be calculated. Thus all instruments with missions 
overlapping IASI will be aligned with IASI. Inter-calibration of ATSR-2 BTs will rely on the inter-calibration 
of ATSR-2 and AATSR [RD-48] which is being implemented as part of the 4th Reprocessing of ATSR data, 
since there is no overlap with IASI. To extend the dynamic range ocean pixels will also be included in the 
matchups. The following steps are taken: 

❖ The IASI spectra are convolved with the SRF from the test instrument and BTs calculated for every 
IASI pixel. 

❖ The IASI quality indicators are used to filter the data – data are only used if all quality flags are good. 

❖ Each IASI observation target consists of a group of four pixels. IASI pixels have an elliptical FOV, 
which is circular at nadir but changes shape towards the swath edges: 

 The pixel ellipse major axis is assumed parallel to the across track direction. 

 The pre-processor estimates the angle between the semi-major axis (the across track 
direction) and the line of latitude through the centre of the pixel using the coordinates of 
each of the four pixels making up target observation. 

 The pre-processor calculates the length of the semi-major and semi-minor axes. 

 The subset of L3U grid cells falling within a circle centred on the pixel centre and with radius 
equal to the ellipse semi-major axis is then tested to see if the grid cell centre falls within the 
ellipse. 

 A rectangular latitude-longitude box which includes all the grid cells falling within the ellipse 
is constructed. 

 The indices on the L3U grid of the minimum and maximum, longitude and latitude of this box 
are output along with the IASI pixel centre latitude and longitude. 

 The matchup processor takes the IASI BTs on the IASI swath and matches to grid cells on the 
L3U grid using the pre-processed output as auxiliary data. 

 The grid cells are then tested for valid data and matching in time. 
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❖ The analysis of matchups is performed for each year-month. Matchups are first filtered using the 
following thresholds: 

 fraction of cloud in L3U average ≤ 0 

 satellite zenith angle (either sensor) ≤ 10 degrees 

 matchup time difference:  ≤ 5 minutes 

❖ An output look-up table (LUT) is applied to the Level-1 BTs prior to the Level-2 retrieval algorithm 
processing. 

LST-CCI-ADP-29: Update the intercalibration using ocean matchups to extend the dynamic range. 

 

3.2.4.2.2 Orbital drift correction 

Different methods have been, and are being, evaluated in LST_cci for implementing the Orbital Drift 
Correction (ODC) for the NOAA satellite series. The first method of [RD-41] involves adjusting retrieved 
LST time series on the basis of statistical information extracted from the time series themselves. A 
correction is applied on a per-pixel basis, and relies on a second order polynomial fit of solar zenith angle 
(SZA) anomalies against time per satellite. Unfortunately, the fit removes both the orbital drift influence 
and any climate trends in the data and so is not deemed suitable for use in LST_cci. 

Two feasible methods are therefore being evaluated for selection of the most appropriate approach. The 
selected approach will then be implemented. 

Adapting the LST_cci orbital drift correction from Microwave 

For the SSM/Is the orbit oscillates around 6am/6pm local time, with a maximum drift of approximately 50 
mins, but the correction for change in time works across the swath so could be up to 3 hours at the poles. 

The approach taken in LST_cci for the MW is to use another space craft which observes on the same day 
close to the reference time. We estimate the dLST/dt as LST1-LST/(t1-t2) then estimate delta LST as delta 
LST = dLST/dt x delta t where delta is the difference between corrected and observed. 

This relies on LST change being linear during the period covering the LSTs from the two spacecraft and the 
LST at the reference time. This is unlikely to be true for the whole time series as the 6am chosen reference 
time for the NOAA products is close to the dawn inflection point and the 6pm reference time is close to 
the time when the linear cooling during the afternoon begins to slow. 

For the MW this was addressed by binning the slopes into three bins (before 5am, 5-7am and after 7am) 
according to the observation time of instrument to be corrected. However, the timing of the change in 
slope of the LST change will be seasonally varying and also likely to vary with cloud cover; these factors 
are not accounted for. Also, it is necessary to ensure both spacecraft observations are on the same side 
of the inflexion point which may mean using more than one spacecraft, if available, to estimate the slopes 
and complicates the processing as it is necessary to know when the inflexion point occurs for a particular 
location and time of year. 

Utilising coincident profile data to model time corrections 

One drawback with adapting the MW approach to the IR is that the NOAA drift in time is considerably 
greater than MW DMP drift. This matters since the temperature change is non-linear. This is particularly 
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pertinent at the chosen reference local time for the NOAA data products (6am, 6pm) as the gradients 
around these points are highly variable. 

An alternative approach we are experimenting with uses a radiative transfer model and simulates hourly 
BTs for 24 hours around the actual observation time at each pixel. The inputs to radiative transfer model 
include ERA-5 profiles and skin temperature, and CAMEL emissivities. 

The concept is that we determine the BTsim difference between pixel observation time and reference time 
and use as the correction. If either the observation is cloudy or it is cloudy at the reference time then no 
BT is calculated and the pixel “lst_correction” is set as a fill value. We can use in situ data to validate the 
correction and to provide a measure of the uncertainty. 

Once the ODC has been determined per pixel it will be stored in a separate “lst_correction” field in the 
output product. This ensures the users have access to the uncorrected LST (ie the actual observation) 
and maintains consistency with the approach taken for the Microwave CDR. 

LST-CCI-ADP-30: Add the Orbital Drift Correction as an additional field to the product, keeping the original 
uncorrected LST as the default LST field. 

3.2.5. Version 5.00 

3.2.5.1. Emissivity inputs to moderate resolution products 

Currently all moderate resolution products use the Combined ASTER and MODIS Emissivity for Land 
(CAMEL) database as input emissivity in the LST retrieval. CAMEL V2 spans the years 2000 – 2016, with 
climatology used after 2016. A further release of CAMEL (V3) which goes to end-2021 is also now available. 
However, significant issues have been discovered with both versions of the CAMEL database (Figure 9). 
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Figure 9: Mean global monthly emissivity from CAMEL for V2 (top) and V3 (bottom) for the 10.8µm channel 

(blue) and 12.0µm channel (orange) 

For CAMEL V2, there is an unusual behaviour in the 12µm channel which displays as large jumps and falls 
from year to year, and is only stable during the climatological period post-2016. For CAMEL V3, the jumps 
and falls are not as sharp but a gradual decrease in the 12µm emissivity. Neither of these scenarios are 
considered geo-physically plausible. In both cases these lead to instability in the LST ECV products thus 
impacting their potential to meet climate stability requirements. 

The decision has been taken to replace the monthly varying emissivity from CAMEL with a monthly 
climatology to maintain stability in the input dataset. Here we have chosen to use a climatology derived 
from CAMEL V3 since the temporal trajectory is less erratic. All moderate resolution products which use 
CAMEL emissivity as an input will be re-processed to use this climatology. A longer-term plan is being 
formulated which could include the simultaneous retrieval of LST and emissivity from for the example the 
3-channel MODIS using the Optimal Estimation algorithm. 

LST-CCI-ADP-31: Increase the stability of the moderate resolution products by switching to a climatology 
of CAMEL emissivity. 

3.2.5.2. Emissivity inputs to high resolution products 

Emissivity for high resolution products (in this case Landsat) is not considered scientifically feasible using 
moderate resolution data such as from CAMEL. Instead, more appropriate 100m emissivity derivations 
are required. For this the type of surface and its thermal properties need to be determined. We have 
developed a new high resolution thermal classification approach to confront the challenge. This is 
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different from a standard land cover classification as land use is not considered important, only the 
thermal properties of the surface. 

The classification of thermal environments is done by setting a series of statistical thresholds to the VIS & 
SWIR indices of Landsat. 

 

Figure 10: Shows the steps completed to classify pixels into thermal environments 

Seven thermal environment classifications are determined. These are low, medium, and high density 
category for both vegetation and urban fabrics as well as a coastal class. Each step is detailed below. 

3.2.5.2.1 Anomalous pixels / water removal 

 

 

Figure 11: Shows how water and anomalous pixels are removed from the data 

As all the indices used within this work are considered over the range -1 to 1, initially any pixels within the 
scenes where any index contained a value outside this region are considered to be anomalous and 
therefore removed from the data. Following this, all water pixels are filtered out by using a standard 
methodology of applying a limit of < 0 for the Modified Normalised Difference Water Index (MNDWI). 
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3.2.5.2.2 Vegetation & Urban Extremes 

 

Figure 12: Shows how Dense Vegetation and Dense Urban classifications were determined 

The Normalised Difference Vegetation Index (NDVI) and Normalised Burn Area Index (NBAI) thresholds 
used to classify the most dense vegetation or urban locations are empirically derived such that the largest 
amount of pixels are selected without contamination from other sources. Since the urban signals are more 
complex, a more conservative threshold is applied, see Figure 12. 

3.2.5.2.3 Burn Ratio Regression 

 

Figure 13: Shows how Medium Density Vegetation classification are determined (left); and shows scatter and 

contour plots for remaining NBAI and NBR data overlaid with the fitted line y = −0.4x− 0.11 (right) 

As seen in Figure 13 the remaining pixels form a double distribution when considering the relationship 
between NBAI and Normalised Burn Ration (NBR). This is because the NBR observes a difference between 
green vegetation and dry vegetation. A line is fitted to the data by calculating a linear least-squares 
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regression. This results in a line following the equation y = −0.4x − 0.11. Medium density vegetation is 
then extracted from the data by selecting all pixels that fall below this line. 

3.2.5.2.4 Impervious, non-built filter 

 

Figure 14: Shows how Coastal classification was determined 

The impervious, non-built filter first requires an impervious index to be created. Here this is done by 
inverting the NDVI. By then comparing this to the NBAI index, coastal or areas containing similar materials 
such as sand, are able to be extracted. 

3.2.5.2.5 Urban Index stacking 

 

Figure 15: Shows how Medium & Low Density Urban, and Low Density vegetation classifications were 

determined 

Finally, to separate the lowest density vegetation from the lower density urban (commonly called 
suburban) regions, two urban indices are considered. By first normalising the NBAI and NDBI separately 
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over the remaining pixels, and then multiplying, a new parameter is created. This parameter allows for a 
greater confidence in selecting urban areas by taking those with the higher values. 

 

 

Figure 16: Shows Birmingham and Cardiff histograms for the new NBAI × NDBI parameter 

The limits for each classification are determined empirically by looking at the histograms of the new index 
over each of the regions of interest, a sample of which is shown in Figure 16. 

3.2.5.2.6 Attributing spectral samples to each class 

The sampled surface materials used here come from three spectral libraries: 

❖ The ECOSTRESS spectral library contains samples from both natural and man- made origins, 
combined from work done at John Hopkins University (JHU), Jet Propulsion Laboratory (JPL), and 
USGS Reston. 

❖ The MODIS spectral library contains over 116 materials from both vegetation and man-made 
sources. 

❖ The Spectral Library of impervious Urban Materials (SLUM) contains over 70 materials that are 
broken down into 10 categories: Quartzite, Stone, Granite, Asphalt, Cement/Concrete, Brick, 
Roofing shingle, Roofing tile, Metal, and PVC. 
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Figure 17: Shows the spectral response of both bands recorded by the Landsat 8 TIRS instrument 

In order to attribute the samples from these libraries into the thermal environment classifications the 
samples are first put through a series of processes. Firstly, each material is limited such that the 
wavelengths considered are between 9 - 14µm. These values correspond to the spectral response values 
of the Landsat-8 TIRS instrument (Figure 17). The materials are then grouped into types, following the 
same structure as that of the ECOSTRESS library: vegetation, rocks, soils, and man-made materials. Then, 
the materials defined as vegetation are limited such that any material with an average emissivity less than 
0.965 is removed. The remaining vegetation samples are then split into further sub-types, namely trees, 
shrubs, and grasses. Each thermal environment is then attributed a composition ratio as follows: 

❖ Dense vegetation: 90% trees, 10% shrubs 

❖ Medium density vegetation: 50% shrubs, 50% grass 

❖ Low density vegetation: 75% vegetation from trees or grass, 25% man-made materials 

❖ Dense urban: 100% man-made materials 

❖ Medium density urban: 25% vegetation from trees or grass, 75% man-made materials 

❖ Low density urban: 50% vegetation from any source, 50% man-made materials 

❖ Coastal: all sand samples from those classified as soil 

Samples are selected randomly such that the greatest amount of samples are attributed to each thermal 
classification whilst maintaining the stated ratios. 

3.2.5.2.7 Calculating prior LSE for each thermal environment 

For every material within each of the thermal environments two emissivity values are calculated, one for 
Landsat Band 10 and the other for Band 11. This is done by first completing a one-dimensional linear 
interpolation of the wavelengths provided from the spectral library, and the wavelengths and response 
values of the considered band provided by the Landsat-8 TIRS spectral response function. Each value in 
the consequent list is then divided by 100 and the resulting values are combined with the list of 
emissivities provided by the spectral libraries as follows:  
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𝜖𝑏𝑎𝑛𝑑 =  
∑  (𝜖𝑙𝑖𝑏  ×  𝐴)

∑ 𝐴
 

Where: 

❖ ϵband is the single value for emissivity for each Landsat band 

❖ ϵlib is the list of emissivities given by the spectral libraries 

❖ A is the resulting list of values after completing the interpolation and division 

The overall value of emissivity, per Landsat band, for each of the thermal environments is then calculated 
by taking the mean value of the materials attributed to it. 

LST-CCI-ADP-32: Derive high resolution emissivity as input to the prototype high resolution LST products. 
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4. Algorithm Development Plan for Microwave LST Products 

4.1.  Current status of Microwave LST Products 

In the LST_cci open algorithm intercomparison round-robin, the performance of different LST retrieval 
algorithms to produce the Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave/ 
Imager and Sounder (SSMIS) LST ECV was assessed to identify the best algorithm for a future climate 
quality operational system. The algorithm chosen for LST_cci Cycle 1 MW product was the Neural- 
Network-Emissivity-All-channels (NNEA) algorithm. The algorithm is based on a non-linear regression 
implemented by a neural network having as inputs the brightness temperatures from all the sensor 
channels and a monthly-mean climatology of the emissivities at the corresponding observing frequencies.  
Full details about the algorithm and the calibration database can be found in the ATBD [RD-29]. 

 

Figure 18: Data flows for the SSM/I and SSMIS LST ECV prototype production system. 

Following the algorithm selection, the processing chain illustrated in Figure 18 was prototyped with a LST 
processor built around the NNEA algorithm. The L1/L2 Database used to calibrate the algorithm was 
extended to cover 4 years of real SSM/I and SSMIS observations to increase the sampling of different 
atmospheric and surface conditions. As source of L1 Data, the MW Imager FCDR [RD-13] was selected and 
the brightness temperatures of the SSM/I F13 and SSMIS F17 were downloaded from the EUMETSAT 
Climate SAF archive.  
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4.1.1. Version 2.00 

Given the particularities of the MW LST retrievals, a quality flag processor different from the IR 
counterpart was implemented targeting a different set of flags. The processor produces flags to signal: (1) 
snow-covered surfaces, by using a snow flag currently derived from the snow density and snow depth 
from the ERA-Interim reanalysis; (2) inundated surfaces, by using estimates from the Global Inundation 
Extension from Multi-Satellites (GIEMS-2) [RD-14]; (3) coastal areas, using a database of distance to the 
coastline; (4) surfaces with large microwave penetration depth where emission can be emanating from 
subsurface layers, by using a monthly climatology of radar backscattering from [RD-15], and; (6) surfaces 
where there can be convection activity at the overlying atmosphere, by using the cloud flag described in 
[RD-16]. A final flag informing about the confidence in the retrieved LST value has also been added by 
looking at the convergence of multiple retrievals of the same scene by the NNEA algorithm under slightly 
different inversion initial conditions, as detailed in [RD-29].   

Using the described processing prototype, MW LST from SSM/I and SSMIS was produced, covering the 
period 1998-2008 and 2009-2015, respectively, and uploaded to the esacci_lst workspace in the UK 
JASMIN environment in the netcdf format specified at the Product Specification Document (PSD) [AD4]. 
The expected period for the MW LST production for Cycle 1 was 1998-2016, so the Cycle 1 production was 
missing 2016 due to the MW Imager FCDR still not providing brightness temperatures for that year.  

For Cycle 1.5, the expected period to be covered was 1998-2018. Following the proposal to include the 
full period from ATSR-2 starting in 1995, we also proposed to process the SSM/I LST starting from 1995, 
and to add a further year from 2018 to complete a 1995-2019 data record. Concerning the forward 
extension of the MW LST data record, the years 2016 and 2017 were already available as a beta version 
and were kindly provided to Estellus for a first assessment of data quality. A problem with one of the 
channels in the F17 SSMIS sensor was confirmed, so a switch to the F18 satellite for the 2016-2019 years 
was required. These years were also available as beta versions, and together with the remaining years 
used to complete the 1995-2019 production for Cycle 1.5.   

4.1.2. Version 3.00 

For Cycle 2 no further years are expected to be processed, so a 1995-2019 data record will be produced. 
There may be a possibility that the year 2020 is available at the EUMETSAT Climate SAF archive before the 
project ends. In that case, a voluntary extension of the data record to cover the period 1995-2020 could 
be considered. 

Work on the uncertainty processor has started, and it is fully described in [RD-29].  It provides an 
estimation of theoretical uncertainty based on an analysis of the NNEA algorithm errors when inverting 
the brightness temperatures of the L1/L2 database. The standardised uncertainty model adopted for the 
retrievals of some of the IR sensors has not been fully adopted yet, and work in this direction is already 
planned for the next production cycle (Cycle 2). 

LST-CCI-ADP-16: The next production Cycle 2 will begin to implement concepts from the standardised 
uncertainty approach adopted for IT sensors to the microwave sensors. 

4.1.3.  Version 4.00 

For Cycle 3 AMSR-E and AMSR2 will be processed ready to be added to the merged microwave product.  
AMSR-E has channels at frequencies close to the SSM/I and SSMIS sensors, and observe at close angles. 
However, for a simultaneous inversion of SSM/-SSMIS-AMSR-E-AMSR2 observations, a consistent 
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database able to provide the required brightness temperatures and corresponding retrieved LST is not 
available, and it needs to first be created. To achieve this consistency two elements are critical: 

❖ a dataset of inter-calibrated radiances 

❖ a common setup to invert the radiances from all the instruments using a unique radiative transfer 
model and similar a priori information to initiate the retrieval. 

It is expected that such database will greatly mitigate possible biases in the microwave LST of the merged 
SSM/I-SSMIS-AMSR-E-AMSR2 product. 

Given these requirements two inversion algorithms are needed: 

❖ an algorithm based on the optimal estimation (OE) methodology to produce the calibration 
database [RD-36] 

❖ a neural network algorithm to be calibrated with a dataset based on the previous optimal 
estimation retrievals. 

The OE algorithm is described in Section 3.1.3.1, and needs to be developed for the microwave 
application, while the neural network algorithm will be identical to the inversion algorithm of previous 
versions, so no further developments are required apart from a recalibration with the new dataset. 

4.1.4.  Version 5.00 

For Cycle 4 the Optimal Estimation and neural network algorithms are in place, together with the new 
calibration database, and no new developments are needed in term of algorithms. The LST_cci MW data 
records will be extended till 2023 for SSMIS and AMSR2. 

4.2. Algorithm Development Plan for Microwave Sensors 

4.2.1. Version 2.00 

For Production Cycle 1.5 the following activities are planned: 

1. Revision of LST Processor if any findings of the validation activities show shortcomings that can 
be reasonably tackled by modifying the current algorithm. Given the reasonable performance of 
the NNEA algorithm presented in [RD-30] compared with the other algorithms, we do not foresee 
a change of algorithm for the next production cycles, but only minor improvements to the current 
NNEA algorithm if robust improvements in retrieval performance can be demonstrated.  

2. Work on the Uncertainty processor to implement the algorithms specified at the End to End 
Uncertainty ECV Budget Model. 

3. Revision of the Quality Flag Processor to improve the current flags. We foresee work carried out 
to improve: (a) the inundation flag, by using actual estimates of inundation from [RD-14] instead 
of the current estimates based on a monthly climatology derived from the same inundation 
product; (b) the snow flag, by using the ESA CCI snow product if it becomes available, and; (c) the 
convection flag, by revising the current cloud detection algorithm presented in [RD-16] for the 
surfaces where the detection is presently more challenging. 
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LST-CCI-ADP-17: The Quality flag Processor for microwave sensors will be improved for: (a) the inundation 
flag, by using actual estimates of inundation; (b) the snow flag, by using the ESA CCI snow product if it 
becomes available; and (c) the convection flag, by revising the current cloud detection algorithm. 

4.2.2. Version 3.00 

No major changes are foreseen in the algorithm chosen for the LST_cci Cycle 2 MW product. The NNEA 
algorithm works as expected and no further developments will be carried out. The revision of the quality 
flag processor was already implemented for Cycle 1.5, and the same processor will be used in the Cycle 2 
production. Only the Uncertainty Processor will be revised again to see if the MW LST uncertainty can be 
further characterized for the final Cycle 2 product, as discussed above. 

4.2.3. Version 4.00 

The following steps will be carried out to develop the microwave product: 

❖ Compilation of datasets required for the inversions. 

 The CM-SAF SSM/I and SSMIS L1 data used in previous versions will be replaced by the new 
version V4, with expected improvements regarding the intercalibration of both instruments. 
CM-SAF is not providing the AMSR-E and AMSR2 L1 data records, but they will be providing 
inter-calibration coefficients to remove biases between the SSM/I-SSMIS and the AMSR-
AMSR2 family of instruments. 

 The OE inversions require ancillary data to initiate the retrievals. The a priori LST and 
atmospheric conditions will be sourced from the ERA5 reanalysis to have a consistent 
description of the surface and atmosphere available for both clear and cloudy conditions [RD-
44]. An a priori surface emissivity value at the different frequencies and observation angles 
is also needed as a starting point of the retrieval, and it will be inferred from the frequency 
and angular parameterizations available at TELSEM [RD-45].     

❖ Implementation of the OE algorithm 

 The OE algorithm will be built based on previous developments [RD-46, RD-47], and will be 
coded to handle the different frequencies and observation angles of the four instruments.   

❖   Production of an initial inversion dataset 

 The OE algorithm will be initially run for 4 years, e.g., 2007 for SSM/I and AMSR-E, and 2015 
for SSMIS and AMSR2. The LST retrievals will be assessed in terms of errors, difference 
between instruments, and processing aspects.   

❖ Evaluation of inversion strategy 

 Based on the previous analyses, a decision will be taken regarding the full-time production, 
i.e., whether to expand the database a few more years and implement a fast neural network 
processor as in Phase-1, or to carry out the full data record production with the OE algorithm.  

 

LST-CCI-ADP-26: Implement the Optimal Estimation approach in developing the microwave product. 
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4.2.4. Version 5.00 

4.2.4.1. Main LST algorithm 

No major changes are foreseen in the algorithm chosen for the Cycle 4 LST_cci MW product at the original 
spatial resolution. 

4.2.4.2. Downscaling LST algorithm 

Processing Cycle 4 LST_cci MW standard product will be complemented by a product with enhanced 
spatial resolution derived by applying the methodology of [RD-49]. The method uses a statistical 
relationship between clear sky-predicting variables containing spatial clues and clear-sky temperatures to 
estimate temperature patterns that can be used in conjunction with coarse measurements to create high-
resolution products. It will be applied on the Cycle 4 2012-2022 SSMIS and AMSR2 MW LSTs, to produce 
a 10-year 2012-2022 data record at 5km spatial resolution. 
 
As predicting variables for clear-sky scenes, the minimal value and the amplitude of the clear-sky 
temperature diurnal cycle, along with a variable with information about the vegetation, and the solar 
elevation angle, will be used. For cloudy scenes, the same predictors and statistical function is used, but 
with a prior reduction of the amplitude of the diurnal cycle input to account for the cloudy conditions. 
 
For a better integration of the downscaled LST product with the current LST_cci developments, intentions 
are to use predicting variables consistent with those already used in the LST_cci project. Vegetation 
products are not directly used in the production of the project LST, and the LSA-SAF AVHRR derived FVC 
and LAI 10-day composite 1km products is selected, as they cover the intended 2012-2022 period. For the 
temperature information, the LST_cci CDR product is planned to be used to extract an estimation of 10-
day composites of the minimum surface temperature of the day and the amplitude of the diurnal cycle. 
Once all the ancillary parameters are obtained, the downscaling function will be trained using all these 
inputs, along with the LST-derived parameters from the LST_cci CDR, using the methodology of [RD-49]. 

LST-CCI-ADP-33: Utilise LST-derived parameters and other auxiliary products to downscale MW LST from 
SSMIS and AMSR2 using a statistically-trained downscaling function. 
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