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1. Introduction 
 
Above-ground biomass (AGB, units: Mg ha-1) is defined by the Global Carbon Observing System (GCOS) 
as one of 54 Essential Climate Variables (ECV). For climate science communities, AGB is a pivotal 
variable of the Earth System, as it impacts the surface energy budget, the land surface water balance, 
the atmospheric concentration of greenhouse gases (GHGs) and a range of ecosystem services. The 
GCOS requirement is for AGB to be provided wall-to-wall over the entire globe for all major woody 
biomes at 500 m to 1 km spatial resolution with a relative error of less than 20% where AGB exceeds 
50 Mg ha-1 and a fixed error of 10 Mg ha-1 where the AGB is below that limit.  
 
One of the objectives of the Climate Change Initiative (CCI) Biomass project is to generate global maps 
of AGB using a variety of Earth Observation (EO) datasets and state-of-the-art models for several 
epochs and assess AGB changes over 1-year differences and a 10-year difference. The maps should be 
thematically consistent with data layers similar to the AGB datasets that are produced in the 
framework of the CCI Programme (e.g., Fire, Land Cover, Snow etc.).  
 
Algorithms to estimate AGB from EO data are described in the Algorithm Theoretical Basis Document 
(ATBD) [RD-5] while the End-to-End ECV Uncertainty Budget (E3UB) document [RD-6] describes the 
precision associated with the estimates of AGB and AGB change. The ATBD and the E3UB documents 
are live documents, updated annually to provide a thorough description of the algorithms 
implemented to generate AGB and AGB change maps. The current version of the ATBD and the E3UB 
documents describe the CORE algorithm used to generate version 5 of the Climate Research Data 
Package. This consists of global datasets of AGB and related AGB change maps using data 
representative for the years 2010 and between 2015 and 2021.  
 

1.1. Background to this document 

The original CORE algorithm was based on the GlobBiomass global retrieval algorithm [RD-8] (see 
http://globbiomass.org/products/global-mapping/).  
 
For version 2, the CORE algorithm was enhanced by expanding on concepts presented in the first 
version of this document. Namely, (i) the retrieval models expressed the Synthetic Aperture Radar 
(SAR) backscatter as a function of forest height and canopy density, (ii) models between canopy 
density, forest height and AGB were implemented in the retrieval models (iii) the model training 
accounted for the effect of local topography on the relationship between SAR backscatter and biomass. 
These advances were possible thanks to an in-depth analysis of the Ice, Cloud and land Elevation 
Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) observations of canopy density and height 
(Kay et al., 2021), and the increasing number of publications that focus on the relationship between 
LiDAR height metrics and AGB. As a consequence, the CORE retrieval algorithm provided estimates of 
AGB instead of Growing Stock Volume (GSV) so that a Biomass Conversion and Expansion Factors 
(BCEF) layer becomes unnecessary.  
 
For version 3, the CORE algorithm was consolidated with the addition of recent LiDAR observations by 
the Global Ecosystem Dynamics Investigation (GEDI) and the ICESat-2 missions. Also, the CORE 
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algorithm implemented measures to avoid unnatural fluctuations of the AGB estimates. These 
measures, however, could not fully compensate for artefacts because of the different setting of the 
EO data available in 2010, 2017 and 2018. To quantify biases in each of the three maps, a model-based 
framework relying on the plot database available to CCI Biomass was implemented with the Plot2Map 
tool (Araza et al., 2022) and coarse resolution maps of AGB bias (0.1°) were generated. The bias layers 
are supposed to build confidence on the reliability of the map rather than to represent a correction 
factor to be applied straight to the AGB estimates, also because of the much poorer pixel spacing 
(10,000 ha vs. 1 ha). The AGB change maps derived from the Year 3 dataset were based on AGB 
differencing rather than signal differencing because of the multi-sensor approach pursued in this 
project. Given that AGB changes were assessed on maps of different quality and only for three epochs, 
the approach was preliminary.  
 
For version 4, the estimation of AGB relied on annual multi-temporal observations of L-band SAR 
backscatter, which replaced the annual mosaics (i.e., a single observation) and on more extensive 
datasets from spaceborne LiDAR missions. LiDAR data, together with a large database of AGB statistics 
published by National Forest Inventories (NFIs), allowed a more accurate characterisation of the model 
that expresses height as a function of AGB. With such a model, systematic retrieval errors, due for 
example to an incorrect characterisation of the maximum AGB in a region, could be alleviated. Indeed, 
we identified this parameter as causing significant biases and thus being a major issue in previous 
versions of the Climate Research Data Package (CRDP). The retrieval models based on the BIOMASAR 
approach evolved towards a more precise characterisation of the parameters in the Water Cloud 
Model (WCM) relating AGB to SAR backscatter. The retrieval was also relaxed in regions with sloping 
terrain because the SAR data had higher radiometric quality than in previous project years. In addition, 
the merging rules for BIOMASAR-C and -L AGB were revisited to better account for their mutual 
contribution. The availability of a time series of AGB estimates from each of the approaches allowed 
for more robust merging rules to be defined.  
 
The estimation of AGB change has not departed from its original formulation, i.e., a map differencing 
approach. The assessment of AGB change maps based on AGB differences with a time series of maps 
created with state-of-art retrieval techniques was the overall objective of algorithmic advances in the 
AGB change mapping for version 4. 
 
For the current version, the estimation of AGB has been consolidated. Multi-temporal SAR acquisitions 
are now available throughout the entire interval foreseen for AGB mapping. Also the spaceborne LiDAR 
dataset has been populated with more recent measurements to increase the spatial density. Validation 
of the CRDP v4 confirmed that the maximum AGB, i.e., the estimates of local maximum canopy height 
and the height-to-AGB model, have great impact on the level of the AGB estimates. For this version, 
the fit of this model has been revised. We also approached several aspects pointed at in the previous 
version of this document, namely, the retrieval errors due to banding, topography and stratification 
by vegetation type. While the first two cannot be corrected for because caused by artefacts in the 
original SAR datasets, a mangrove-specific model training was introduced for this version. AGB change 
still relies on the differencing method. In this version of the ADP, we illustrate several approaches that 
diagnose the reliability of the differencing method. 
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1.2. Content of this document 

Some ideas to be pursued in future activities are presented in this document. Such ideas involve both 
the estimation of AGB and the estimation of AGB over time to track changes, as it is believed that a 
multi-sensor approach to estimating AGB is superior to using a single set of observations. With the 
multi-sensorial approach, it is not possible to relate a change in AGB to a change in signals. 
 
This document builds on the ATBD and E3UB documents for v5 to identify major elements that require 
development in future years of the CCI Biomass project. In addition, we consider the review of the CCI 
BIOMASS data products of v4 reported in the Product Validation and Intercomparison Report (PVIR) 
[RD-8]. As for the ATBD and the E3UB documents, this Algorithm Development Plan relies on the most 
recent versions of the Users Requirements Document (URD) [RD-1] and the Product Specifications 
Document (PSD) [RD-2].  
 
Section 2 reviews the CCI Biomass CORE algorithm implemented in v5. Section 3 elaborates on the 
known major weaknesses of the CORE algorithm based on the initial assessment of AGB retrieval 
reported in the ATBD. Section 4 lists potential solutions to the issues identified in Section 3. Advancing 
the estimation of AGB change based on the experiences gathered with the AGB data products foreseen 
by the CRDP of the CCI Biomass project is the topic of Section 5. 
 
 

2. CCI Biomass CORE algorithm 
 

 
Figure 2-1: Functional dependencies of datasets and approaches forming the CCI Biomass CORE global 
biomass retrieval algorithm. The shaded part of the flowchart represents potential improvements 
following the implementation of additional retrieval techniques [RD-3]. 

 
Figure 2-1 shows the flowchart of the CORE biomass estimation procedure of the CCI Biomass project 
to generate annual, global datasets of AGB estimates [RD-5]. The shaded part of the flowchart 
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represents potential improvements following the implementation of additional retrieval techniques. 
[RD-5]. 
 
With the CORE algorithm, two independent estimates of AGB are obtained from the same BIOMASAR 
algorithms but with different modelling frameworks. The SAR backscatter is related to canopy density 
and height with a WCM, i.e., a parametric model that simplifies the scattering in the canopy and below 
the canopy with a few parameters and variables (canopy density and canopy height). A simple model, 
trained with LiDAR data, is used to relate these variables. A second model, linking height and AGB, is 
then used to express the SAR backscatter directly as a function of AGB. Linear weighting of AGB 
estimates obtained from the inversion of the WCM and single backscatter observations is applied to 
generate a final estimate of AGB.  
 
In v5, the SAR datasets consisted of the best possible setting of (freely available and global) images. 
The Sentinel-1 dataset has been consolidated in the form of monthly averages to speed up 
computation and reduce redundancies. The Advanced Land Observing Satellites (ALOS) -1 and -2 SAR 
datasets have been provided by the Japanese Aerospace Exploration Agency (JAXA) in the form of 
individual strips for the Fine Beam mode and per-cycle mosaics of 46 days for the ScanSAR mode. Each 
location is now characterised by multiple dual-polarised observations as opposed to a single dual-pol 
observation from the annual mosaics used until v3.  
 
Following the approach that was started in Year 3, the CORE algorithm makes even more explicit use 
of laser observations in the retrieval model and follows a promising line of research aiming at relating 
LiDAR-based canopy height metrics to AGB measurements rather than to AGB estimates from maps. 
Also, the retrieval still accounts for topography by using experimental relationships between incidence 
angle and the SAR backscatter rather than developing models that would have probably failed due to 
the subtle difference in backscatter as landscape and topography change. Finally, the estimation of the 
model parameters implements a robust model calibration approach consisting of a blend of self-
calibration and least squares regression with respect to a reference dataset of canopy density. Merging 
of AGB estimates from BIOMASAR-C and BIOMASAR-L now exploits the time series of AGB estimates 
from each approach to construct a set of merging rules of increased robustness with respect to the 
weights used in previous versions of the CRDP. Quantitative assessment of the results achieved with 
the CORE algorithm is presented in the PVIR. 
 

3. Caveats of the CORE algorithm 
 
The above brief summary of the CCI Biomass CORE algorithm highlights the major elements of the 
retrieval approach. This may not be the best possible algorithm but rather is a global approach 
constrained by the available EO data and ground observations. The CCI Biomass CORE algorithm relies 
on several assumptions that appear viable when comparing large-scale averages of estimated AGB 
with corresponding values based on inventory information [RD-5] and [RD-7]. Nevertheless, these 
assumptions, which were made to allow the CORE algorithm to perform globally, also introduce 
systematic errors into the retrieved AGB, which may become apparent when focusing on particular 
areas [RD-4], [RD-5] and [RD-7].  
 
Here, we provide a list of caveats and potential areas of improvement of the CORE algorithm. These 
are then expanded in Section 4 with a proposed development of the CORE algorithm. 
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● The retrieval of AGB implemented in v1 was found to be rather conservative because it missed 

the extreme values of AGB. One of the reasons was that the retrieval models were canopy-
centric and did not explicitly involve height information. In v2, we exploited height information 
in the form of models, with interesting preliminary results. The models were based on ICESat 
GLAS metrics, which did not provide a uniform sampling of all land masses on Earth and 
required us to be rather generic in the way the models could describe the relationship between 
canopy density, height and AGB. With the denser coverage of GEDI and ICESat-2, the models 
between AGB and tree height were further characterized in v3. The impact of the models on 
the AGB maps was substantial, reducing the overestimation in the low AGB range and 
underestimation in the high AGB range. Both GEDI and ICESat-2 data products were still under 
development, which led to moderate usage in v3. In v4, the interaction with the data 
production teams and progressive ingestion of new data releases improved the models and, 
thereof, the auxiliary datasets used by the retrieval algorithms (e.g., the maximum AGB). The 
data were further investigated in v5 to understand the impact of errors on the map products 
and additional filters were implemented to prevent that macroscopic errors would generate 
biases. These investigations need to be pursued in the future as well with newer versions of 
the LiDAR data products being released. 
 

● The AGB retrieval model uses two sets of models to link the SAR backscatter (predictor) to the 
response variable (AGB). These are under continual development as more data suitable for 
training the allometric models become available. 

o The model that expresses canopy density as a function of canopy height is based on 
LiDAR observations. As of v5, the CORE retrieval algorithm still implements the model 
trained on ICESat GLAS data. The GLAS dataset is strongly filtered to ensure a correct 
estimation of allometric parameters based on LiDAR data. The consequence is an 
uneven characterisation of these parameters because the density of the footprints 
was highly variable. GEDI data are the only alternative because both canopy density 
and canopy height are provided as part of the Level 2 datasets, whereas the ATL08 
product based on ICESat-2 data only contains canopy height. Investigation of the 
relationship between canopy height and canopy density observations by GEDI 
revealed inconsistencies in the observations of canopy cover, which requires further 
investigations. The major limitation of a model based on GEDI data is the impossibility 
to characterise it throughout the boreal zone because of the coverage of GEDI is 
limited to latitudes between +/- 52°. To overcome this issue, measures need to be 
sought that harmonise models from ICESat GLAS and GEDI. Even though the data from 
the two missions were acquired during two different decades, we assume that the 
model is time-invariant. 

o The model that expresses canopy height as a function of AGB was based on 
spaceborne LiDAR observations and estimates of AGB from a map until v3. Several 
measures were implemented to limit the impact of the uncertainties affecting the 
map-based values of AGB on the model. Still, if any systematic error in the form of a 
bias affected the AGB estimates, these propagated to the estimates of the coefficients 
of the allometric function. For v4 and v5, we used a more extensive set of LiDAR 
observations than in previous versions of the CORE retrieval algorithm and attempted 
a new pathway to characterise the model by relying on AGB observations rather than 
on AGB estimates. The AGB observations consisted of average values reported by NFIs 
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at the level of administrative or ecological units and were related to average values of 
canopy height from spaceborne LiDAR data for the same units. To characterise the 
model in space, the data were grouped into regions. This approach was found to be 
promising. While the refinement of the regions improved the overall characterization 
of the model globally, we still identify several caveats that need to be addressed in 
future versions of the CORE retrieval approach. The NFI statistics are not harmonised 
with respect to each other, and the definition of forest land underlying the average 
values reported by the NFIs and used here to select the LiDAR footprints is not 
harmonised. The strata used to group observations were based on some macro-
ecological patterns, which cancels out small scale variability of the relationship 
between height and AGB, for example due to spatial variability of wood density or 
growth factors. In addition, the use of average values instead of the original ones 
measured at plots and footprints might alter the shape of the model, leading to over- 
or under-estimates in the retrieved AGB. This aspect is difficult to approach because 
the NFI data used to generate the AGB statistics are not publicly available. 

 
● The retrieval of AGB is based on some simplifying assumptions that cause the retrieval models 

to be too general to capture the spatial variability of the relationship between the radar 
observations and vegetation properties. Vegetation structural information should provide the 
backbone for a more targeted estimation of model parameters. Unfortunately, most EO-based 
datasets that could complement a retrieval do not have a full error characterisation so that 
the impact of a direct implementation in our retrieval schemes may not be controllable.  

 
● Regarding alternative approaches to retrieving AGB from the set of observations currently 

available from spaceborne sensors, we have not identified any ground-breaking approaches 
that may improve our retrievals while at the same time fulfilling the requirements in terms of 
spatial resolution, temporal coverage and global representation of the CCI biomass maps. Non-
parametric approaches based on machine learning or artificial intelligence are not targeted 
because they would not be supported by a dense and large range of AGB observations. 

 
● A wide range of observations is, in our opinion, fundamental to avoid systematic biases caused 

by the fact that no remote sensing observation is a direct measure of biomass. One line of 
research that has been developing quickly in recent years is inversion of coarse-resolution 
observations from spaceborne microwave radiometers and scatterometers to AGB. Although 
such observations do not match the requirement on spatial resolution of the CCI Biomass 
maps, data from radiometer and scatterometer missions cover several decades and have been 
demonstrated to allow characterisation of biomass dynamics. As such, experiences gathered 
at coarse resolution may act as guidelines in the process of establishing rules to ensure that 
the dynamics of AGB obtained from less frequent high-resolution EO data are well captured.  

 
● Finally, regardless of the procedures here developed to estimate AGB, the accuracy of the 

retrieval depends strongly on the quality of the EO data used as predictors. We have identified 
a number of systematic issues in the SAR data that prevent us obtaining the highest possible 
quality AGB results. It is believed that having the possibility to pre-process the EO data would 
allow such quality to be attained. Hence continual interaction with data providers is needed. 
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4. Proposed development of CORE algorithm 

4.1. Consolidate the use of spaceborne LiDAR observations 

Observations that sense forest structure are of major benefit to the estimation of AGB. Unfortunately, 
the majority of EO data available globally is in the form of energy reflected to the sensor, so that AGB 
can only be inferred with parametric or non-parametric approaches (Santoro and Cartus, 2018). SAR 
interferometry and laser scanning instead generate observations that contain information on the 
vertical and horizontal distribution of vegetation, thus providing a more direct measure of parameters 
involved in the computation of biomass (canopy height, density of canopy).  
 
The TanDEM-X and SRTM missions were conceived to acquire interferometric datasets that would 
allow the generation of surface elevation models (Farr et al., 2007; Krieger et al., 2007). Over forested 
terrain, an estimate of vegetation height can be inferred from the surface elevation if the terrain 
elevation is known. To obtain the true vegetation height, an additional step that compensates the 
InSAR-based height of the vegetation for the penetration of microwaves into the canopy is required 
(Walker et al., 2007). Although high resolution, accurate surface elevation models based on 
interferometric data exist, there is no global dataset of terrain elevation, which hinders the use of 
interferometry for a “direct” measure of the vegetation vertical structure. It will not be until the 
BIOMASS mission is flying that estimates of ground elevation may be possible (Quegan et al., 2019), 
although the coverage will not be global (Carreiras et al., 2017) and will be at a coarser spatial 
resolution than the CCI Biomass products (Quegan et al., 2019). To the best of our knowledge, there is 
no spaceborne mission planned that can provide a global estimate of terrain elevation. 
 
Laser instruments also measure the elevation of the Earth surface and, in the case of vegetation, return 
a profile of reflection intensity along the vertical direction. The GLAS instrument on-board the ICESat 
satellite operated between 2003 and 2009 and recorded millions of waveforms along its orbital path. 
Unlike interferometric datasets, the signal recorded by a laser instrument contains also a ground 
return, so that an external dataset of terrain elevation is not required to estimate the height of 
vegetation. Waveform information in the GLA14 product was processed globally in the GlobBiomass 
project [RD-8] from which canopy density and several height percentiles were computed. A GLAS 
footprint has an approximately 70 m diameter and footprints were acquired sequentially along an 
orbit; however, the distance between orbits was around 60 km, leading to a sparse sampling of the 
Earth’s vegetation. For this reason, it is preferred to use the GLAS datasets of canopy height and canopy 
density to derive models in support of the retrieval model relating SAR backscatter and AGB rather 
than as surrogate reference data for model training.  
 
Since 2018, the GEDI and ICESat-2 laser systems have been providing observations with a much denser 
coverage of the Earth land masses than ICESat GLAS. We have therefore tested the contribution of 
data from these recent missions to the models. In spite of the much denser coverage, our retrieval 
approach does not foresee estimation of AGB based solely on the LiDAR observations as this is already 
taken care of, for example by the GEDI team. Our understanding is also that retrieval of AGB should 
combine multiple observations from spaceborne SAR, optical and laser observations and exploit the 
information content on AGB in each set of observations.  
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The data providers warn about the use of some of their measurements (Neuenschwander and Pitts, 
2019; Dubayah et al., 2020) in early data versions. With the advance of processing routines by the data 
providers, the accuracy of the laser measurements will improve. Another reason for following closely 
the development of data products by the GEDI and ICESat-2 teams is their interest in releasing global 
datasets of forest variables, including AGB. Recent estimates of AGB based on GEDI are available either 
at footprint level or as aggregated values in 1 x 1 km2 large grid cells. The Biomass Harmonization 
activity is currently assessing CCI Biomass and GEDI AGB products to create knowledge and allow for 
improvements of the individual data products.  

4.2. Characterizing the AGB - LiDAR height model 

In the CORE algorithm developed since Year 2, we have introduced models linking AGB with top-of-
canopy height in the WCM. The characterisation of this power-law function was based on the ICESat 
GLAS top-of-canopy height measurements (RH100) and the GlobBiomass AGB dataset. Although the 
trend between AGB and RH100 was, on average, similar to results based on measurements at local 
scale, there is substantial work needed to: (i) reduce uncertainties and (ii) improve the spatial 
characterisation of the model parameters. Studies at local sites allow determination of precise models, 
but these may not be generalisable to larger areas. Remote sensing maps, in contrast, allow us to 
obtain a region-wide perspective on how height and AGB are related but these relationships may be 
locally inaccurate. The availability of dense sets of LiDAR observations of RH100 (and in general, 
different height metrics) from GEDI and ICESat-2 allowed a more detailed characterisation of AGB-to-
height model, which however suffered from the early versioning of the data, implying that some height 
ranges may exhibit deficiencies. While the accuracy of the ICESat-2 and GEDI datasets will improve, 
there is a need to understand how well we can characterise the model spatially. Here, we identify local 
models, such as those developed in the context of CCI Biomass from airborne laser datasets and plot 
inventory data [RD-5], as a diagnostic tool for the map-based model. However, in regions poorly 
covered by LiDAR observations, it will still be impossible to quantify the reliability of the map-based 
model. 

4.3. Characterization of tree attenuation 

Having fixed the functional dependencies between height and AGB on one hand, and canopy density 
and height on the other, the WCM becomes invertible once the coefficients, σ0

gr and σ0
veg, and the 

two-way tree attenuation coefficient, α, have been estimated. A new approach for estimating the 
unknown WCM parameters is tested in which the three unknown parameters are estimated by fitting 
Equation 4-1 (see also [RD-5], Equation (4-1)) to observed relationships between backscatter and 
canopy density: 
 
𝜎!"#$ = (1 − 𝜂)𝜎%#$ + 𝜂𝜎%#$ 𝑒&'((*) + 𝜂𝜎,-%$ *1 − 𝑒&'((*)+     (4-1) 
 
where η is the area-fill or canopy density factor and the height term is expressed as a function of 𝜂 
(see [RD-5], Equation (3-6)) by: 
 
ℎ = − ."%	(0&*)

1
          (4-2) 
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Possible dependence of the parameters on the local incidence angle is dealt with by fitting separate 
models for different incidence angle intervals Figure 4-1. Figure 4-2 illustrates the range of values for 
the two-way tree attenuation coefficient α obtained by fitting Equation 4-1 to observed relationships 
between ALOS-2 L-HV backscatter (year 2018 mosaic) and Landsat canopy density. The spatial 
distribution of the derived estimates reveals distinct regional differences. Low values for α, mostly less 
than 0.5 dB/m, are obtained primarily in boreal forest regions. In temperate and sub-tropical forests, 
the estimated values for α tend to exceed 1 dB/m. While the range of values obtained seems 
reasonable, in particular in the boreal zone, it remains unclear if the observed regional differences 
reflect actual differences in attenuation or rather properties/errors of the Landsat canopy density 
product. A sensitivity analysis was carried out to evaluate the effect of the attenuation coefficient on 
the multi-temporal AGB retrieval in different forest regions. A comparison of L-band radar-derived AGB 
estimates against LiDAR maps of AGB suggested that a fixed value of 0.5 dB/m for the attenuation 
coefficient, which has so far been assumed universally in the CORE algorithm, represents a reasonable 
choice for most forest types. However, in the wet tropics and sub-tropics a fixed value of 0.5 dB/m is 
associated with underestimation of high AGB ranges and therefore in the Year 3 implementation of 
the CORE algorithm we opted to use instead a fixed value of 1 dB/m in the latitude ranges between 
23° S and 23° N. A direct use of the estimates for α obtained by fitting the model in Equation 4.1 to 
observations of L-band backscatter as a function of Landsat canopy density did not improve the AGB 
mapping despite spatially adapting to potential regional differences in attenuation. Further 
improvements of the CORE algorithm by better characterisation of differences in forest attenuation in 
the retrieval therefore requires further investigation based, for instance, on a dense set of estimates 
of canopy density and height derived from GEDI or ICESAT-2.  
 
 

 
Figure 4-1: Observed and modelled relationship of L-HV backscatter as a function of Landsat canopy 
density. The model in Eq. 4-1 was fitted with variable transmissivity for different incidence angle ranges 
(pink: 20-30°, green: 30-40°, blue: 40-50°, orange: 50-60°, purple: 60-70°). For each incidence angle 
range, the horizontal lines denote the level of the estimated ó0

gr and ó0
veg. 
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Figure 4-2: Estimates of the two-way forest attenuation coefficient  α [dB/m] obtained by fitting 
Equation 4-1 to observed relationships between L-HV backscatter and Landsat canopy density. 

4.4. Use of vegetation structural information 

One of the limitations of the currently implemented BIOMASAR algorithms is the coarse 
representation of vegetation structure. In Year 1, some of the model parameters were estimated after 
stratifying the world by the Food and Agriculture Organisation (FAO) ecological zones. In Year 2, we 
introduced a finer stratification based on subdivisions of 883 ecoregions to characterise the 
relationship between canopy density and RH100 but still used ecological domains to characterise the 
relationship between RH100 and AGB. Vegetation structural information developed in the DARD [RD-
3] should provide more targeted estimation of model parameters and models.  
 
In the same vein, knowledge gathered by investigating the relationship between EO observables and 
AGB in specific forest classes should be exploited. When evaluating the GlobBiomass and the CCI 
Biomass map (Year 1) in mangrove forests, the specific scattering mechanisms occurring at C- and L-
band were not correctly accounted for in the retrieval model. The AGB of mangroves was often 
underestimated because the absorption of microwaves in the canopy leads to low backscatter. The 
same reasoning applies to plantation forests. The reliability of the AGB map products is unknown 
because the validation activities have not covered such vegetation types due to the lack of suitable 
data available to the validation team. 

4.5. Use of coarse resolution EO data 

From the analyses reported in previous validation reports, estimation of AGB of high AGB forests still 
needs to be improved. Observations from coarse resolution sensors operating at C- and L-band, such 
as Advanced Scatterometer (ASCAT), Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active 
Passive (SMAP), have tremendous potential to improve AGB estimates. However, these datasets have 
a spatial resolution that ranges between 25 km and 50 km. It is unclear whether estimates at such 
coarse resolution can be transferred to 1 ha. In this respect, the experiences by the soil moisture 
community concerning the re-scaling of coarse resolution soil moisture fields to high resolution maps 
could inform a similar strategy when estimating AGB.  
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5. Advancing the estimation of AGB changes  

5.1. Introduction 

In v3 of the Algorithm Theoretical Basis Document (ATBD) of CCI Biomass, the approach adopted for 
assessing AGB change between two epochs was based on differencing AGB estimates between years 
(the stock-difference method), with consideration given to their uncertainty. This approach was 
adopted as global AGB products had only been generated for 2010 and 2017/2018. However, in v4, 
the maps of AGB for these years were updated and new layers were generated for 2019 and 2020, 
with these allowing investigation into the trends in AGB. Hence, new methods for ascertaining the 
directions and magnitudes of AGB changes and associated uncertainties could be explored over the 
period 2010 / 2017-2020. Those currently selected are presented herein. 
 
Changes in AGB can manifest themselves in diverse ways across the world through an often-complex 
combination of factors, including the timing of the change, the nature and intensity of the causal 
agents, the response of forests to the change, and interactions with the surrounding environment. 
Earth Observation data collected with space-based instruments are not always consistent and can be 
subject to errors that lead to uncertainties in classifications of landscapes or modelled estimates of 
biophysical variables. These limit our ability to ascertain the extent to which the change detected 
corresponds to what has happened on the ground. As the ESA CCI AGB estimates are affected by these 
uncertainties, which can be substantial, we propose to bring the currently selected methods (stock-
difference and trend analysis) within an existing evidence-based approach developed through the 
Living Earth project (Lucas et al., 2022). This framework describes change on the basis of impacts and 
driving pressures inferred from diverse Earth Observation data. The ESA CCI AGB estimates can be used 
in conjunction to support whether changes, detected through time series comparisons, agree with, 
and can be explained through the evidence accumulated from these Earth Observation data (e.g., 
relating to climate, land management or biogeography). 

5.2. Methods 

The two approaches currently identified and adopted for detecting and describing changes in AGB 
between epochs are the stock-difference method, which involves simple differencing with the 
standard deviation as a measure of uncertainty, and the Mann-Kendall (Kendall, 1938, Mann, 1945) 
Theil-Sen slope (Theil, 1950; Sen, 1968) methods, which allow the detection of monotonic trends  and 
their slope. These methods are described in more detail in the following sections. 

5.2.1. Stock difference method 

As demonstrated for v3, a straightforward way of estimating AGB change between two epochs is to 
calculate the difference between two AGB maps, which can be time-separated by a year (e.g., 2017 
and 2018) or a decade (e.g., 2010 and 2020). The significance of the change can be accounted for by 
using the standard deviation around the estimated AGB means for the two dates or epochs being 
compared. If these error bars do not overlap (Figure 5-1), the AGB difference can be considered 
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statistically significant under the assumption of unbiased estimates or equal biases in both AGB stock 
maps. If they overlap partially or fully, a potential or improbable change is indicated.  
 

 
Figure 5-1: Overview of the stock-difference approach to AGB change detection. 
 
The standard deviation, reflecting the precision of the stock-difference estimate, is calculated as the 
square root of the sum of the variances of the two individual maps, which assumes the errors in the 
two estimates are independent. This standard deviation can then be used to generate a quality flag for 
the difference estimates (i.e., reliable, potential or improbable change), which assists with the 
interpretation of the significance of the difference detected for an area. Both the standard deviations 
of the change and the quality flags are currently provided by the ESA CCI BIOMASS CRDP alongside the 
AGB and standard deviation for each year.  
 
There are a number of drawbacks to the stock-difference approach, which include: 
 

a) The change that can be detected depends on the standard deviations of the individual AGB 
estimates. The larger their values, the wider the spread about the mean and thus the more 
likely the standard deviation intervals will overlap.  

b) Biases in the individual AGB estimates will propagate to the AGB difference estimate, and the 
variance of the estimated difference will be larger than that of each individual estimate. Both 
bias and precision issues were identified and discussed in the ATBD and PVIR, and both affect 
the quality of the AGB difference estimated from the CCI BIOMASS AGB data products. 

c) CCI BIOMASS generates maps of AGB by combining data from different sensors, namely 
ENVISAT ASAR and ALOS PALSAR for 2010 and the Sentinel-1 and ALOS-2 PALSAR-2 for 2015 
onwards, and this introduces errors that may be difficult to identify and quantify. 

d) Depending on the frequency, polarisation and other factors (e.g., incidence angle, moisture 
content of vegetation and soils), the radar signal saturates and sensitivity to differences in AGB 
decreases near the saturation level. Similarly, the capacity to detect changes in AGB between 
dates or epochs may be compromised as measurements may also be affected by 
environmental conditions at the time of observations.  

e) Only net changes in AGB over large temporal intervals between observations (e.g. decadal) are 
detected, with fluctuations at finer temporal intervals often not identified.  
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In CCI BIOMASS, global, repeated observations from multiple spaceborne missions are found to have 
substantially higher predictive power and hence, as more AGB estimates become available, the 
opportunities for trend analyses are increased. 

5.2.2. Trend analysis 

Where more than two estimates are available, trends in AGB can be used to identify whether there is 
an increase, decrease or no change between the periods of retrieval, noting that over long time series, 
these trends may not be monotonic. Methods for establishing whether trends over time series 
observations are significant include repeated applications of the stock difference method (as described 
above) or the non-parametric Mann-Kendall test and Theil-Sen slope. 

a) Multiple comparisons of stock-difference estimates: 

Between successive years (e.g., 2017 to 2018, 2018 to 2019 and 2019 and 2020), the significance of 
the difference in AGB is assessed and collated for each year to establish whether there is no change or 
there are successive gains or losses or combinations of these (Figure 5-2). These are summarised for 
the final year of interest (here 2020) to highlight whether there has been a net gain or loss in AGB 
overall based on the significance of difference, with interruptions to the sequence identified. This could 
also result in the generation of successive quality flag assessments and standard deviations of 
differences between years. The large time-interval between 2010 and 2017 onwards may compromise 
this approach because of natural events/processes or human activities that might have occurred from 
which forests may (or otherwise) have recovered sufficient AGB for these not to be detected. 

 
Figure 5-2: Repeated comparisons of stock-difference estimates and associated uncertainty metrics 
over time series of AGB maps can be used to determine relative magnitudes and directions of change. 
 

b) Mann-Kendall and Theil-Sen slope: 

The non-parametric, non-seasonal Mann-Kendall test can be used to detect if there is a decreasing or 
increasing monotonic trend in multi-temporal AGB estimates and evaluate the significance of this 
trend (Kendall, 1938; Mann, 1945). This method calculates the sign of the change between each pair 
of AGB estimates compared, giving 1 or -1 for a gain or loss respectively, or 0 if both values are equal, 
(Equation (5-1), Gilbert, 1987). The signs of all pairs are then summed for all the year intervals, with 
this indicating whether AGB is increasing or decreasing overall. This can be calculated as follows: 

 

 (5-1) 𝑆 = 	$ $ 𝑠𝑖𝑔𝑛	(𝑥𝑗 − 𝑥𝑘)	
𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1
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Here, n is the length of the time series and xj and xk are the measurements observed at years tj and tk.  
 
The Theil-Sen slope estimator (Theil, 1950; Sen, 1968) determines both the direction (increasing or 
decreasing) and magnitude of the change and is calculated as the median of all possible slopes among 
data pairs in the time series. 

 

 (5-2) 

where xj and xk are the measurements at years tj and tk.  
 
 
The variance of the Mann-Kendall statistic can be estimated as follows:  

 

 (5-3) 

where g represents the number of tie groups (i.e., repeated values observed) and Fk the number of 
times these values appear in the k-th tie group.  
 
The significance of the trends over the selected time series can be determined using the standard 
normal statistic, z, which is calculated by dividing the Mann-Kendall statistic by its standard deviation 
(based on a two-sided test).  
 

  

(5-4)  

 
The probability of observing an extreme value (i.e., the P-value of z) of the Mann-Kendall statistic is 
calculated as (Clinton, 2020): 
 

	
(5-5) 

 
For a two-sided test to establish whether a positive or negative trend exists at the 95% confidence 
level, the P-value is compared to the value of 0.975. Pixels indicating a significant trend can be 
highlighted by using a mask where the P-value is within a specified threshold (e.g., P-value lower than 
0.025, 0.05, or 0.001) and hiding the pixels outside this threshold (Clinton, 2020).  
 
 

VAR(𝑆) =
1
18
*𝑛(𝑛 − 1)(2𝑛 + 5) −0(𝐹𝑘(𝐹𝑘 − 1)(2𝐹𝑘 + 5)

𝑔

𝑘=1
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The CCI Biomass AGB estimates are generated from time series of C- and L-band SAR data and are 
aggregated on an annual basis. They are thus assumed minimally affected by seasonality, which is a 
requirement for using the non-seasonal Mann Kendall test. We also assume that the AGB estimations 
are not serially correlated over time. The combination of the Mann-Kendall and Theil-Sen slope is 
robust to outliers but a minimum of three time-separated estimates of AGB are required. Other 
drawbacks to using the Mann-Kendall and the Theil-Sen slope include: 
 

a) The approach is not applicable where the intervals between observations are not consistent 
over time (e.g., AGB data missing for years 2011-2016) 

b) It is sensitive to ties (repeated identical values) which may lead to small Sen’s slopes being 
rounded to 0 even if the trend is flagged as significant by Mann Kendall test. 

c) It is sensitive to autocorrelation and seasonality in the time series. 
d) It may miss true trends for shorter time series with an insufficient frequency of observations 

 
 
As with the stock-difference approach, an increase in AGB at decadal points only might indicate no 
change in AGB but forests may have been cleared or degraded then recovered subsequently during 
the intervening period so that no change is detected. The assumption of no change is likely to be most 
frequently observed for forests that are of low AGB (e.g., shrublands) or that rapidly accumulate AGB 
(as in the case of tropical regenerating forests) even though a substantive loss might have occurred 
during a change event. Similarly, where the radar backscatter is above a saturation level, any growth 
in the intervening period is unlikely to be captured. 

5.3. Integrating stock-difference and/or trend analyses in evidence-based 

change frameworks. 

Differences in AGB retrieved between two dates or epochs, or in observed trends contribute evidence 
of complete or partial losses or gains of forest carbon (or no change), with the estimates of dispersion 
giving confidence, or otherwise, of impacts on carbon budgets and cycles over varying time periods. 
Time becomes an important contributor to the evidence base, as changes may be fast (ranging from 
hours to weeks) or slow (weeks to decades). Time series comparison of maps and descriptions of land 
cover also provides evidence as to whether a forest has experienced conversion (i.e., a change in broad 
land cover extent) or modification (a change in vegetation type or amount) with both likely to affect 
changes in AGB. 
 
Complete losses of AGB are associated with the conversion of forests to a new land cover (e.g., 
cultivated, bare or urban), with deforestation, urban expansion and severe bushfires being common 
causes that often occur over a relatively short time period. It is important to be mindful of the 
difference between land cover and land use. For example, complete losses of AGB occur during 
clearcutting on ‘forest land remaining forest land’, where the land use remains the same, but the land 
cover changes during the timber harvesting. Uncertainty in the amount of AGB lost is related directly 
to the error in the retrieval of AGB prior to what is a natural event or human activity. By contrast, 
partial losses in AGB result from modifications of the forest (e.g., through selective logging, thinning 
or natural dieback). In this case, uncertainties in detection are based on those determined using the 
methods applied to generate comparisons, including stock-difference or trend analyses. These partial 
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losses are often rapid but may also occur over longer time periods, particularly in the case of forest 
degradation (e.g., through fuelwood gathering, insect infestations or disease). 
 
Gains of AGB are only rapid if there is direct planting of trees, but the remotely sensed signal from 
these generally only becomes evident after several years when at optical wavelengths or C-band but 
may require at least 5-10 years of growth to be visible at L-band. Growth rates vary, however, with 
climatic, edaphic, topographic and geological settings, the biogeographical distributions of species and 
possible human use and management of the land either prior to or following forest establishment. 
Direct planting of larger or a high density of trees will evoke a signal once completed but is uncommon.  
 
Whilst not affecting quantification of the losses and gains in AGB and not directly used to assess 
uncertainty, evidence gathered from a range of sources can be used to confirm or better establish 
whether the magnitude and directions of AGB change agree with that observed in other biophysical 
attributes (e.g., canopy cover or height) or surrogates of these (e.g., vegetation indices or fractional 
covers). Furthermore, knowledge of the causes of change, whether from natural events or processes 
and/or human activities in different geographical areas, can assist in the understanding and 
interpretation of change. The uncertainty in the estimation of all contributory elements to the 
evidence base can also be used to give greater confidence in any assessments of AGB change. The 
framework developed through Living Earth provides an opportunity to undertake this assessment. 
 

5.3.1. A proposed framework for evidence-based change. 

Living Earth has been developed as a concept and framework for mapping and describing land covers 
and detecting change based on evidence, primarily from Earth observation data. This established but 
evolving approach has been applied to Australia (Owers et al., 2020), Papua New Guinea and Wales, 
and the United Kingdom (Planque et al., 2020).  
 
Living Earth constructs and further describes land cover classes from environmental descriptors 
retrieved or classified from Earth observation data processed into Analysis Ready Data (ARD) and 
according to the FAO Land Cover Classification System (LCCS Version 2.0; di Gregorio (2005)). A strict 
condition is that contributing environmental descriptors have defined units (e.g. m, %, Mg ha-1, time) 
or categories (e.g. species codes), which gives independence of space (scale) and time. Environmental 
descriptors are differentiated into those that are overarching, essential or additional.  
 

o Overarching environmental descriptors (OEDs) are used to define (and map) the broad land 
covers (agriculture, semi-natural vegetation and artificial and natural bare surfaces and water) 
of the FAO LCCS and include the fractional cover of photosynthetic or non-photosynthetic 
vegetation (%) and water hydroperiod (time) or classified urban extent (e.g. from radar).  

o Essential descriptors are required to generate, in part or fully, the FAO LCCS classes 
(approximately 12,000 in total, with each having biophysical meaning). These include lifeform 
(woody, herbaceous), leaf type (broadleaf/evergreen), vegetation phenology (deciduous, 
evergreen), and annual water hydroperiod.  

o Additional descriptors further describe the land cover, with examples being crop type (Planque 
et al., 2021), dominant tree species or forest community, and contextual information such as 
peat depth, geology and soil acidity (Punalekar et al., 2023).  
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AGB is regarded as an Additional Environmental Descriptor but can be ingested as it has the continuous 
unit of Mg ha-1. Hence, the AGB maps generated by CCI BIOMASS can be used to describe forested 
area mapped as such for 2010 and for each year from 2017 to 2020 and beyond. An example of their 
integration is given in Figure 5-3, which shows land cover for a section in Wales (United Kingdom) and 
the associated estimate of AGB. 
 

A) 

 

B) 

 

Figure 5-3: a) Land cover map of Wales (UK) generated at 10 m spatial resolution from Sentinel-1 
and Sentinel-2 data, highlighting the FAO LCCS Level 3 (Overarching Environmental Descriptors) and 
the forest leaf type/phenology and b) the CCI Biomass AGB maps at 100 m. Both maps were 
generated for 2020. 

 
To describe change, Living Earth partners (informed by CCI BIOMASS) developed a globally applicable 
Evidence Based Change Framework and Global Change Taxonomy, which was designed for global 
application and builds on the Driver-Pressure-State-Impacts-Response (DPSIR) framework (Oesterwind 
et al., 2016). The taxonomy (Figure 5-4) lists 77 impact and 144 pressure classes that, when combined, 
give 248 ‘impact (pressure)’ classes, each of which can be evidenced by accumulating and comparing 
changes in states (i.e., the Environmental Descriptors used to construct and further attribute the land 
cover categories). Examples highlighted in Figure 5-5 include vegetation dieback (the impact) as a 
consequence of strong winds, pathogens, sea level fluctuation or low intensity bushfires. The Evidence-
Based Change Framework provides a basis for collating the evidence for both change impacts and 
pressures, with these obtained spatially and over time from Earth observation data but also a range of 
other spatial and, in some cases, non-spatial datasets. Time is included as a contributory descriptor 
relevant for differentiating short-term natural events or human activities (e.g., vegetation amount loss 
as a consequence of bushfires or deforestation) or longer-term natural process (e.g., vegetation gain 
through growth). Furthermore, the contributory evidence can be supported by estimates in the 
uncertainty of retrieval or classification of continuous or categorical environmental descriptors 
respectively. 

5.3.2. Regional demonstration (Wales and Australia). 

In Australia, time series of 30 m spatial resolution Landsat sensor data (Collection 3), processed to an 
ARD format have been accumulated within Geoscience Australia’s Digital Earth Australia (DEA) and the 
Open Data Cube (opendatacube.org). From these, environmental descriptors have been classified or 
retrieved for each year and used to construct summary classifications of land cover (for the Australian 
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continent and islands) annually from 1988 to 2022. These maps are available through DEA 
(https://maps.dea.ga.gov.au/story/DEALandCover) and can be analysed within DEA’s Sandbox 
(https://app.sandbox.dea.ga.gov.au/). For Wales, the same software and approach has been 
developed within the new Welsh Data Cube (WDC) to generate land cover maps with the same legend, 
annually from 2018 to 2022 (https://earthtrack.aber.ac.uk/livingwales/maps.html).  
 

 
Figure 5-4: The Global Change Taxonomy and Evidence Based Change Framework (Lucas et al., 2022) 
that builds on the Driver-Pressure-State-Impacts-Response (DPSIR) framework. 
 
 

ESA CCI Biomass AGB maps for 2010 and annually from 2017 to 2020 have been ingested into the user 
workspace of DEA (with the latter also integrated within the WDC) and compared alongside the land 
cover maps and environmental descriptors for each year, with the latter providing supportive evidence 
for changes in forest AGB. These changes in broad land cover classes in terms of both extent (off-
diagonal) and amount or type (on-diagonal) can be represented and distinguished by a transition 
matrix (Figure 5-6).  
 
Type includes the lifeform classes of woody (trees and shrubs) and herbaceous (grasses, forbs, lichens 
and mosses) and of note is that inclusion of these allows translation to the Intergovernmental Panel 
on Climate Change (IPCC) Agriculture, Forestry and Other Land Use (AFOLU) categories. Furthermore, 
the eight OEDs in addition to the two lifeform classes of woody and herbaceous can be mapped from 
Earth observation data.  
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Figure 5-5: Land cover maps generated for Mt Ney, Western Australia, for 2010 to 2020 (top left to 
bottom right), with these generated from environmental descriptors retrieved or classified from 
Landsat sensor data and according to the FAO LCCS. 
 
 

a) 

 
 

 
 
 
 
 
 
 
b) 
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Figure 5-6: a) The transition matrix between FAO LCCS Level 3 classes indicating both off-diagonal 
(extent) and on-diagonal (type or amount) changes and b) changes in overarching lifeform types 

(woody and herbaceous). 
 
Comparisons of the OEDs (broad land covers) through the transition matrix allow differentiation of: 
 

a) Areas associated with a gain (Figure 5-7a) or loss (Figure 5-7b) in the extent of land covers over 
the period of comparison, with these typically linked to complete removal of AGB or an increase 
in AGB on areas previously not supporting forest. However, the detection of changes in AGB 
depends on whether there is sufficient time for the same or a new land cover to recover AGB (if 
at all) including to pre-loss levels.  

b) Areas where the land cover has remained the same (Figure 5-7c; e.g., natural to semi-natural 
terrestrial or aquatic vegetation) but a change in type (Figure 5-7d; e.g., from woody to 
herbaceous lifeforms or vice versa) or amount (including AGB; e.g., Figure 5-7e) has occurred.  

 
 
In both cases, evidence can be accumulated by comparing the land cover maps and the environmental 
descriptors used in their construction and description (including in terms of AGB) over time. 
Uncertainties in the estimates of these descriptors and their changes can be included to give 
confidence in the nature, magnitude and direction of change, including those based on stock-
difference and trend analyses (Mann-Kendall and Theil-Sen slope). 
 
The Living Earth system allocates unique codes to each of the categorical OEDs, EDs and AEDs but also 
considers values for continuous variables, such as those associated with AGB (Mg ha-1), canopy cover 
(%) and vegetation height (m). These codes are gathered to build evidence for the change (i.e., impact). 
Whilst there are 77 impact categories listed in the Global Change Taxonomy, only 32 relate to forests.  
 
The unique codes for each ED, which can be represented as numbers in a single raster layer, are based 
on the FAO LCCS coding system (e.g., 1 for woody (B1) and 2 for herbaceous (B2) lifeforms). Changes 
in one or more of these descriptors can occur over different time-separated periods (e.g., sub-annually, 
annually or decadal), with these indicated by a change in the numeric value in one or more of the 
corresponding layers. Where all characteristics of a forest remain the same, the codes are unchanged 
between the first and second epochs, but if one or more descriptors change (e.g., the canopy cover 
reduces from > 60% (A12) to < 15% (A16)) for the second period, then the values will be different (i.e., 
changing from 12 to 16 in the case of the canopy cover layer). The continuous values of canopy cover 
(%; if available) can also be compared to give greater fidelity in the description of change. In generating 
evidence for an impact, individual ED layers of relevance, as suggested in the evidence base of the 
change framework (https://github.com/livingearth-system/Globalchangeframework), are compared 
between the different epochs, and the difference (if any) is represented as the concatenation of the 
codes from each time slot compared. The uncertainty in the classification of categorical or retrieval of 
continuous EDs can also be included in this evidence base, with these individually or in combination, 
giving confidence in the assessment of change. This assessment allows the impacts of change to be 
differentiated, described and quantified numerically.  
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 2010-2020 2017-2018 2018-2019 2019-2020 2017-2020 

a)  

     
b) 

     
c) 

     
d)  

     
e) 

     

 

Figure 5-7: a) Gains and b) losses and c) no changes in broad land cover classes (OEDS = Overarching 
Environmental Descriptors); changes in d) lifeform (woody and herbaceous) categories and e) AGB 
(losses=blue, gains=red).  Legends for a, b and d are in Figure 5-6. The full standardized legend for c) is 
provided in this figure, noting that bare surface and semi-natural vegetation are dominating. 
 
The changes observed In the OEDs that are represented in the transition matrix in Figure 5-6 can 
indicate a change (loss or gain) or otherwise in the extent of the Level 3 classes of the FAO LCCS. The 
extent changes can again be represented by concatenated numbers from the two times being 
compared. For example, cultivated terrestrial vegetation (CTV) and natural/semi-natural terrestrial 
vegetation (NTV) are assigned codes of 111 and 112 respectively (collated from individual codes 
representing vegetated (1), terrestrial (1) and cultivated (1) and natural/semi-natural (2) respectively 
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at Levels 1, 2 and 3). Hence, transitions from CTV to NTV can be represented as the integer value 
111112 whereas when there is no change, then the combined code is 111111 or 112112 respectively. 
However, in the latter case, an increase or decrease in amounts (e.g., AGB) or types of materials (e.g., 
lifeform, leaf type and/or phenology) may occur. For example, a change in lifeform from woody to 
herbaceous or vice versa can be represented by the codes 12 and 21 respectively and 11 and 22 if there 
is no change between the periods being compared. Similarly, estimates of other descriptors (including 
AGB, canopy cover) over time and the significance of change based on their uncertainties) can be 
included. Hence, there is capacity to build up sequences of numbers which can be used to collectively 
indicate the impact, of which there are 32 (as indicated above).  
 
An example of this concept is given in Figure 5-8, which highlights how the values for contributory 
environmental descriptors have been collated to provide evidence of four change impacts near Mt Ney 
in Western Australia, namely vegetation amount (loss), vegetation extent (loss), vegetation amount 
(gain) and vegetation extent (gain). These are then combined to provide what is termed an ‘impact’ 
layer, which (in this example) has 4 values (44, 45, 46, and 47) but can be up to 32 or 77 respectively if 
just forests or all environments (e.g., agriculture, water, bare, artificial and non-woody herbaceous) 
are considered.  
 
Of the 144 pressures listed in the Global Change Taxonomy, 46 lead to one or more of the 77 impacts 
on forest extent or states. To associate these with impacts, these are similarly numbered (i.e., 1 to 144) 
and then concatenated onto the impact number to create a five-digit number that provides a 
consistent description of the 248 ‘impact (pressure)’ categories. These can be established from a range 
of sources (Lucas et al., 2022), including those generated by other ESA CCI products (e.g., land surface 
temperature, fire, snow cover, sea level). The impact and driving pressures can also take place 
simultaneously or sequentially. For example, vegetation dieback may be the consequence of both 
drought and pathogens whilst vegetation damage through strong winds might be followed by 
vegetation damage because of flooding. The timings and durations of a range of ‘impact (pressure)’ 
categories can therefore be considered. 
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Figure 5-8: Impact maps generated for Mt. Ney, Western Australia of vegetation amount and extent 
loss and gains and summaries of these for 2010-2020, 2017-2018, 2018-2019 and 2020. Whilst these 
consider 4 impacts classes (numbered 44, 45, 46 and 47), up to 32 classes relevant to forest change 
can be included. 
 
The use of global taxonomies (the FAO LCCS for land cover classification and the Global Change 
Taxonomy) and the Evidence-Based Change Framework for identifying change from accumulated 
evidence of impacts and pressures has relevance at local to global scales. Whilst national and 
continental mapping has been provided by Australia and Wales, there is a requirement for 
implementation at global level to support interpretation of the changes in AGB resulting from different 
impacts and the magnitudes and directions of AGB change in the CCI BIOMASS epochs. However, this 
currently requires reference to and comparison of existing land cover mapping for multiple years. Most 
of these products (e.g., ESA CCI land cover) are of relatively coarse spatial resolution (typically 300 m 
to 1 km) and have different legends that may be based on the FAO LCCS or other taxonomies. However, 
in most cases, these be deconstructed into environmental descriptors (OEDs and EEDs primarily) and 
then reconstructed to generate maps according to the FAO LCCS. Once achieved, evidence for impacts 
can be discerned, whilst pressures can be obtained by referencing a range of information obtained 
either from Earth observation data or other sources. More detailed application has already been 
obtained for Australia and Wales, and so these sites provide capacity to validate the interpretations of 
change at the global level. AGB data for multiple epochs can contribute to this evidence base, but the 
comparisons of land covers and the environmental descriptors used for their construction and 
description also allow better understanding of the nature of change; whether this is a slow or fast loss 
or gain that is complete or partial. The following sections provide more details on this proposed 
approach.  
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5.4. Global implementation of the evidence-based change framework. 

5.4.1. Deconstruction and reconstruction of global land covers for multiple years. 

CCI BIOMASS generates AGB datasets globally and for multiple epochs (2010 and annually from 2017 
to 2020). Comparisons of these datasets can be external to but reference evidence for change impacts 
and pressures obtained through time series comparison of other independent environmental 
descriptors and/or land cover maps generated from these. Such an approach is particularly useful for 
interpreting rapid losses of AGB indicated by the stock-difference approach or slower decreases or 
increases suggested through use of the Mann-Kendall and/or Theil-Sen slope trend analysis, with 
consideration given to their respective uncertainties. The use of the AGB dataset can also be internal 
to the evidence-based change framework, providing additional information that can support or 
question the nature of change. Regardless as to whether the AGB datasets are used external to or 
internally within the evidence-based change framework, relevant continuous and categorical 
environmental descriptors need to be available for all forested regions of the World and represent 
time-periods that align with the CCI AGB estimates.  
 
The Living Earth land cover and change maps, whilst developed within the globally applicable ODC 
have only been implemented for continental Australia (1985-2022) and nationally for Wales (2018-
2022) using, respectively, the entire time series of Landsat and Sentinel-1/2 ARD data. Whilst these 
regions have provided demonstration of the approach, global implementation of Living Earth would 
require the transfer and testing of all retrieval/classification algorithms within big data platforms that 
house or give access to the full archive of satellite sensor data (Landsat and/or Sentinel-1 or -2) but 
also others, including ENVISAT ASAR, ALOS PALSAR and ALOS-2 PALSAR-2). If this could be achieved, 
there is potential to construct the land cover and change maps globally using the existing Living Earth 
software, but this is unlikely in the short term.  
 
An alternative approach is to deconstruct existing global land cover maps into layers that each 
represent the OEDs and EEDs of the FAO LCCS and then reconstruct the maps according to this 
taxonomy. Initially, the maps can be deconstructed to form the FAO LCCS Level 3 categories, and then 
further descriptions provided using deconstructed categorical layers, with lifeform, leaf type and 
phenology being those relevant to vegetation AGB. However, categorical (e.g., Global Mangrove 
Watch mangrove extents) and continuous environmental descriptors external to these classifications 
can also be summarised and included, with notable examples being water hydroperiod (typically based 
on months of observed inundation), canopy cover (%) and canopy height (m). Where obtained, these 
can be used to increase the number of inputs and land cover classes generated. Once undertaken, 
Additional Environmental Descriptors, including AGB, can be integrated to further describe the land 
cover classes.  
 
This approach has been evaluated and demonstrated as viable using a) the ESA CCI Land Cover 300 m 
spatial resolution and b) the High-Resolution Copernicus land covers 10 m resolution land cover 
products, with implementation undertaken at a global scale using Google Earth Engine (GEE). The ESA 
CCI Land Cover data for 2010, 2017, 2018, 2019 and 2020 gives a greater number of categories and 
hence have been ingested to GEE and deconstructed into selected component classes of the FAO LCCS, 
commencing with the OEDs (i.e. Level 3 (Table 1) and then the EEDs of lifeform, leaf type, phenology 
and water state). 
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Table 5-1: Look up table for translating the ESA CCI Land Cover classes to the FAO LCCS classes. 
  FAO LCCS OED or EED1 

ESA 
Code 

ESA Label Level 
3 

Acr. Life 
form 

Leaf 
type 

Phen- 
ology 

0 No Data 0 ND    
10 Cropland, rainfed 111 CTV H   
11 Herbaceous cover 111 CTV H   
12 Tree or shrub cover 111 CTV W   
20 Cropland, irrigated or post-flooding 123 CAV H   

30 
Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous 
cover) (<50%) 

111 CTV W   

40 
Mosaic natural vegetation (tree, shrub, herbaceous cover)  
(>50%) / cropland (<50%)  

112 NTV H   

50 Tree cover, broadleaved, evergreen, closed to open (>15%) 112 NTV W B E 
60 Tree cover, broadleaved, deciduous, closed to open (>15%) 112 NTV W B D 
61 Tree cover, broadleaved, deciduous, closed (>40%) 112 NTV W B D 
62 Tree cover, broadleaved, deciduous, open (15-40%) 112 NTV W B D 
70 Tree cover, needleleaved, evergreen, closed to open (>15%) 112 NTV W N E 
71 Tree cover, needleleaved, evergreen, closed (>40%) 112 NTV W N E 
72 Tree cover, needleleaved, evergreen, open (15-40%) 112 NTV W N E 
80 Tree cover, needleleaved, deciduous, closed to open (>15%) 112 NTV W N D 
81 Tree cover, needleleaved, deciduous, closed (>40%) 112 NTV W N D 
82 Tree cover, needleleaved, deciduous, open (15-40%) 112 NTV W N D 
90 Tree cover, mixed leaf type (broadleaved and needleleaved) 112 NTV W   
100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 112 NTV W   
110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 112 NTV H   
120 Shrubland 112 NTV W   
121 Evergreen shrubland 112 NTV W  E 
122 Deciduous shrubland 112 NTV W  D 
130 Grassland 112 NTV H   
140 Lichens and mosses 112 NTV H   
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 112 NTV W   
151 Sparse tree (<15%) 112 NTV W   
152 Sparse shrub (<15%) 112 NTV W   
153 Sparse herbaceous cover (<15%) 112 NTV H   
160 Tree cover, flooded, fresh or brackish water 124 NAV W   
170 Tree cover, flooded, saline water 124 NAV W   
180 Shrub/herbaceous cover, flooded, fresh/saline/brackish water 124 NAV H   
190 Urban areas 215 AS    
200 Bare areas 216 BS    
201 Consolidated bare areas 216 BS    
202 Unconsolidated bare areas 216 BS    
210 Water bodies 220 WAT    
220 Permanent snow and ice 220 WAT    
1CTV=Cultivated/Managed Terrestrial Vegetation, NTV=Natural/Semi-natural Terrestrial Vegetation, 
CAV=Cultivated/Managed Aquatic Vegetation, NAV=Natural Aquatic Vegetation, AS=Artificial Surface, 
BS=Naturally Bare Surface, WAT=water (natural or artificial); W=Woody (Numerical code=1), H=Herbaceous(2); 
B=Broadleaved (1), N=Needleleaved (2); E=Evergreen (1), D=Deciduous (2). Water is given a value of 1 whilst 
permanent snow and ice a value of 2 or 3, with this determined through reference to external layers (e.g., ESA 
CCI snow cover) 
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Further EEDs were obtained from other global datasets including water hydroperiod (Pekel et al., 2016) 
and canopy cover. These environmental descriptors have been reconstructed to generate global 
classifications of land cover according to the FAO LCCS for all years (see Figure 5-9 for OEDs and 
lifeform respectively). Further descriptions have been provided by referencing globally available AEDs 
including ESA CCI Biomass AGB datasets for each year (see Figure 5-10). 

a) 

 

b) 

 

Figure 5-9: a) Global land cover map for 2010 with the FAO LCCS taxonomy, generated by 
deconstructing the ESA CCI 300 m resolution Land Cover product into seven classes defined in the third 
dichotomous phase (Level 3) of the taxonomy. b) More detailed global maps generated by integrating 
categorical environmental descriptors deconstructed and extracted from ESA CCI Land Cover (lifeform, 
leaf type, phenology, water type) and further described using actual or summaries of continuous 
environmental descriptors (e.g., canopy cover, water-hydroperiod). As existing global maps are 
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available for multiple years, multiple deconstructions and reconstructions into the FAO LCCS was 
undertaken, with this facilitating the detection of change impacts listed in the Global Change 
Taxonomy. 
 

 

Figure 5-10: Global ESA AGB map for year 2020. 

5.4.2. Implementation of the evidence-based change framework 

Following generation of the global land cover maps according to the FAO LCCS, the detection and 
mapping of change impacts from evidence can then be achieved by comparing these and the 
contributory environmental descriptors between time-separated periods, in this case 2010-2020 and 
annually from 2017 to 2020. This comparison can be augmented by including the global ESA CCI 
BIOMASS AGB estimates for these epochs and the assessment of change and associated uncertainty 
obtained using the stock difference and/or trend analysis methods.  
 
The stock-based approach is best used to provide evidence of change when comparing AGB estimates 
from two time-separate periods (e.g., years, including 2010-2020) whilst the trend analysis method 
can be used when time series of AGB data are available. Whilst this approach is best applied when 
comparing AGB estimates for 2017, 2018, 2019 and 2020, comparisons can also be made with 2010 
with two main caveats; first, these estimates may differ in part because of the use of different sensors 
in their generation and hence establishing trends may be compromised and, second, significant change 
might have occurred in the intervening period. Demonstration that both methods can be applied 
globally is provided in Figure 5-11 and Figure 5-12, which show respectively the generation of a stock-
difference map between 2017 and 2020 and a Theil-Sen slope estimator map giving the direction and 
magnitude of AGB change determined using annual AGB estimates for 2017 to 2020. These associated 
assessments of uncertainty can be integrated within the evidence-based change approach to establish 
where change has occurred and give confidence in the detection, but also interpretation of the causes 
and consequences of change (e.g., complete or partial loss or gain of AGB because of changes in land 
cover extent (conversions) or increases/decreases in AGB as a result of modification of the vegetated 
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landscape). The evidence-based change approach can support (quantitatively and qualitatively), the 
interpretation of the change as well as its direction and magnitude. This can be assisted by other 
continuous layers that align with AGB, such as canopy cover and density and height as well as indices 
(e.g., the Normalised Difference Vegetation Index (NDVI) or fractional covers (photosynthetic, non-
photosynthetic and/or bare)). In many cases, as demonstrated using the DEA which houses the entire 
archive of Landsat and also Sentinel-2 data, these metrics can be generated on a sub-annual (e.g., 
weekly to monthly basis). Other estimates of AGB that are available more frequently and for longer 
periods of time (e.g. those based on L-VOD or C-band scatterometers) can also be integrated.  
 

 
Figure 5-11: Net difference in ESA CCI AGB between 2017 and 2020, averaged to a 10 x 10 km grid cell, 
with no change pixels ignored. No forest mask applied. 
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a)  

 

b)  

 

c) 

 

 

Figure 5-12: a) Global annual change in ESA CCI BIOMASS AGB based on the Theil-Sen slope estimator 
between 2017-2020, averaged to a 10 x 10 km grid cell, with no change pixels ignored. No forest mask 
applied. b and c) Example of areas experiencing burning near Mt Ney in Western Australia: b) shows 
slope values of AGB change at 100 m spatial resolution, regardless of trend significance, while c) shows 
slope values associated with significant trends only (colour legend provided in a). 
 

Information on pressures driving change is obtained from a range of other sources that can identify 
the natural events or processes or human activities that alter the states and dynamics of forests. The 
sources of these data include many ESA CCI products, such as snow cover, fire, sea level and land 
surface temperature, and these are being explored.  
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5.5. Discussion 

5.5.1. Stock-difference  

The stock-difference approach (with associated quality flags) is a viable method for a) providing 
uncertainty in quantified differences in AGB between successive dates and b) giving a degree of 
confidence (i.e., reliable, potential, or improbable) that changes detected are associated with a loss or 
gain of AGB. The success in applying the stock-difference approach is dependent on a) the periods 
(epochs) being compared and b) the rates, magnitudes, directions, and persistence of change. In ESA 
CCI BIOMASS, AGB estimates are compared over one decade (2010 and 2020) and annually from 2017 
to 2020. Key considerations are: 
 

a) The stock-difference approach performs best where forest loss is complete, rapid and persistent 
(i.e., remains as non-forest over the year or decade). In these situations, the estimated AGB of 
the forest prior to removal gives an estimate of the magnitude of the loss, subject to the 
uncertainty in this estimate prior to the change event.  

b) Where partial removal of vegetation occurs, the reliability of detection depends on the AGB 
prior to the change, which varies with the setting (e.g., climate, slope, aspect, prior land 
management) within biomes, the proportional loss of AGB, and the uncertainty in AGB 
estimation prior to and following the AGB change.  

c) Detecting partial losses of AGB over time will further depend upon the amount accumulated by 
forests following the change (through growth) over the period of comparison (decades or years) 
and the associated uncertainty of the pre- and post-change AGB. Where forest loss is partial but 
has recovered, changes in AGB might be overlooked, particularly where estimates are a decade 
apart.  

d) Gains in AGB are generally most rapid during the early stages of growth (e.g., on land recently 
cleared of natural forests or fully/partially harvested for timber and then replanted) but are 
unlikely to be detected when AGB estimates are compared between consecutive years, 
particularly given the often-high levels of uncertainty in the estimates. The exception is where 
forests are rapidly growing, as is often the case for commercial plantations and natural 
regenerating forests in productive regions (e.g., the tropics).  

e) Gains and losses can take place over varying time series and may not be monotonic, particularly 
in highly dynamic environments (e.g., wooded savannas with a high frequency of fire events).  

5.5.2. Mann-Kendall and Theil-Sen Slope Trend Analysis 

The Mann-Kendall and Theil-Sen slope methods are best applied where AGB estimates are available 
for consecutive years, as is the case for 2017, 2018, 2019 and 2020. Whilst the CCI Biomass 2010 AGB 
data can be integrated, the use of different C- and L-band sensors in their generation can be 
misleading, partly as these differed between epochs (i.e., ALOS PALSAR and ENVISAR ASAR for 2010 
and ALOS-2 PALSAR-2 and Sentinel-1 SAR for 2017-2020). A time series of AGB estimates that are more 
frequently generated and obtained using the same sensor types and operating modes is preferred, but 
this is often difficult to achieve. Another option is to consider and benchmark AGB trends with those 
obtained from time series of AGB estimates from other sensors (e.g., L-VOD, C-band scatterometers) 
or extrapolated from in situ measurements (e.g., with the Plot2Map tool) under the assumption that 
such trends correspond to reality. However, in the latter case, obtaining sufficient data from spatial 
locations and time-steps that facilitate this approach has proved problematic. Reference to time series 
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of other metrics (e.g., Landsat-derived fractional cover of vegetation or spectral indices) can also 
indicate the nature of change (e.g., directions, magnitudes). 

5.5.3. Evidence-based change 

Whilst the stock-difference and trend analysis can be used stand-alone, there are considerable merits 
in including these within the evidence-based change framework developed through Living Earth that 
considers both change impacts and pressures and uses globally applicable land cover and change 
taxonomies. The accumulation of evidence from a diverse range of environmental descriptors and the 
land cover classes generated from these provides significant new potential to consistently describe the 
natural events and human activities leading to changes in AGB and whether these are complete (e.g., 
as established by an extent change of broad land covers, i.e., a conversion) or partial (a modification, 
indicated by a change in type, such as a predominantly woody to herbaceous lifeform or vice versa, or 
in amount – such as canopy cover or height). AGB estimates obtained from multiple epochs can also 
contribute evidence for change.  
 
The generation of land cover maps for multiple years and integration of the stock-difference and trend 
analyses in DEA and the WDC has been demonstrated, with this allowing local evaluation for any area 
in Australia and Wales. However, within Phase 2 - Year 2 of CCI Biomass, these approaches have been 
implemented within GEE and global application has been demonstrated. The capacity to undertake an 
evidence-based approach has been enabled at a global level by a) deconstructing the legends of global 
land cover maps into individual environmental descriptors and then reconstructing these into the FAO 
LCCS taxonomy and b) including other environmental descriptors, including canopy density and water 
hyperperiod that are often of higher spatial resolution.  
 
As existing land cover maps and environmental descriptors are available for multiple years, these can 
provide evidence for impacts and be used alongside spatial datasets representing the pressures driving 
change (e.g., bushfires, drought, storms, sea level fluctuation and flooding), including those that take 
place simultaneously or sequentially. There is also capacity to discern these pressures directly from 
the time series of land covers and environmental descriptors, with notable examples being the age of 
forests and frequency of burning and water inundation obtained from time series or the use of context, 
geographical location, or shape metrics (e.g., to differentiate fire scars from clear cuts or shifting 
agriculture).  
 
A limitation of the approach is that the current mapping of land covers globally is based on the 
deconstruction and reconstruction of the ESA CCI land cover maps at 300 m spatial resolution, even 
though this can be augmented by EEDs such as canopy cover and water hydroperiod and the classes 
can be further described using, for example, AGB. Several of the ESA CCI land cover classes are 
ambiguous (e.g., in differentiating between woody and herbaceous vegetation) and so further 
refinement is needed. However, there are considerable opportunities to achieve this refinement by 
including an increasing number of existing datasets, with examples being the Global Mangrove Watch 
mangrove extent layers and canopy height estimates based on the GEDI and ICESAT-2 lidar datasets.  
 

6. Conclusions 
The development of the CORE retrieval algorithm of the CCI Biomass project has implemented several 
aspects presented in the previous versions of this document. The current CORE algorithm has reached 
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maturity, in the sense that it can be applied to generate AGB maps for any year provided that the set 
of radar backscatter measurements are available. However, this does not imply that the AGB estimates 
are free from errors, given that the retrieval relies on observations that only see a portion of the forest 
biomass (above ground) and the inversion models implement several assumptions that tend to 
generalize the response of the radar backscatter to AGB. 
 
We see two major developments that may further improve the accuracy of the retrieval, beyond the 
improvements already achieved in the first five years of the CCI Biomass project: 
 

● Consolidation of LiDAR observations in the CORE retrieval algorithm.  

● Integration of coarse resolution and high resolution EO datasets 

The former will provide a more solid baseline for the models implemented in the retrieval model. The 
latter will increase the reliability of the AGB estimates in time and improve the accuracy of the AGB 
estimates in forests with the highest AGB densities (> 300 Mg ha-1). 
 
Although not directly used in the retrieval algorithms, plot inventory measurements have a 
fundamental role in characterising spatial errors in AGB estimates by modelling biases. The modelling 
of biases was prototyped but needs further development. 
 
The two methods currently considered for identifying and qualifying changes in AGB in CCI BIOMASS 
are the stock-difference and trend-analysis approaches, with both applied at a global level through 
GEE.  
 
The stock-difference approach has already been demonstrated globally. ESA Biomass AGB per-pixel 
(100 m) estimates for 2010, 2017, 2018, 2019 and 2020 and associated standard deviations have been 
generated and the standard deviation of the stock-difference method has been provided in the ESA 
product for the 2017-2018, 2018-2019 and 2019-2020 differences.  Per-pixel quality flags have also 
been generated according to whether the histograms associated with the pixel at the two epochs are 
disjoint or fully or partially overlapping and can be used to interpret the reliability of the difference 
detected by pixel.  
 
The Mann-Kendall and Theil-Sen slope have been used to estimate trends, with the former 
determining the presence (or otherwise) of a trend and its significance over the selected time period 
and the Theil-Sen slope establishing the direction and magnitude of the trend. This approach is best 
applied to the annual time series of AGB estimates from 2017 to 2020 but can also be considered for 
use with all available estimates (i.e., 2010 to 2020).  In this latter case, we need to consider the effects 
of both differences in sensor types used in the AGB estimation and changes in AGB that might have 
occurred during periods of no observation by satellites.  
 
The integration of AGB estimates within an evidence-based change framework presents significant 
benefits in terms of understanding and confirming (or otherwise) changes in AGB as a result of 
conversions or modifications of land covers. The impacts of these are diverse and result from a range 
of natural events and processes (abiotic and biotic) and human activities with these driven by diverse 
pressures. Following regional/country level demonstration in Australia and Wales, the research 
undertaken in this year, CCI BIOMASS has attained capacity to implement the evidence-based change 
framework developed through Living Earth globally within GEE. This has been achieved by 
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deconstructing existing mapping (primarily the ESA CCI Biomass 300 m land cover) into its component 
EDs and then reconstructing the maps according to the FAO LCCS using these and other descriptors 
such as canopy density with further descriptions provided by including the ESA CCI AGB estimates. 
Associated estimates of uncertainty can also be integrated to inform the evidence for change and the 
reliability of the AGB estimates and change comparisons. From now on, these maps can be continually 
improved in content, spatial resolution and the temporal frequency of generation.  
 
Whilst the use of the stock-difference and trend analyses approaches within an evidence-based 
framework has been adopted as the best current approach for identifying and assessing the reliability 
of AGB change, other methods continue to be explored. The validation of maps of AGB change is also 
being undertaken with reference to in situ data and very-high resolution Earth observation data 
(including airborne LIDAR and Planetscope), as outlined in the Product Validation Plan.  
 

7. References 
 
Araza, A., de Bruin, S., Herold, M., Quegan, S., Labriere, N., Rodriguez-Veiga, P., Avitabile, V., Santoro, 
M., Mitchard, E.T.A., Ryan, C.M., Phillips, O.L., Willcock, S., Verbeeck, H., Carreiras, J., Hein, L., 
Schelhaas, M.-J., Pacheco-Pascagaza, A.M., da Conceição Bispo, P., Laurin, G.V., Vieilledent, G., Slik, F., 
Wijaya, A., Lewis, S.L., Morel, A., Liang, J., Sukhdeo, H., Schepaschenko, D., Cavlovic, J., Gilani, H., Lucas, 
R., 2022. A comprehensive framework for assessing the accuracy and uncertainty of global above-
ground biomass maps. Remote Sensing of Environment 272, 112917. 
https://doi.org/10.1016/j.rse.2022.112917 
Carreiras, J.M.B., Quegan, S., Le Toan, T., Ho Tong Minh, D., Saatchi, S.S., Carvalhais, N., Reichstein, M., 
Scipal, K., (2017). Coverage of high biomass forests by the ESA BIOMASS mission under defense 
restrictions. Remote Sensing of Environment 196, 154–162. https://doi.org/10.1016/j.rse.2017.05.003 

Clinton, N. (2020) Non-Parametric Trend Analysis. Google Earth Engine developer community tutorials. 
https://developers.google.com/earth-engine/tutorials/community/nonparametric-trends  

Di Gregorio, A. (2005). Land cover classification system: classification concepts and user manual: LCCS 
(Vol. 2). Food & Agriculture Organization. 

Dubayah, R., Blair, J.B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, 
J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P., Qi, 
W., Silva, C., (2020). The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the 
Earth’s forests and topography. Science of Remote Sensing 100002. 
https://doi.org/10.1016/j.srs.2020.100002 

Farr, T., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., 
Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. and Alsdorf, 
D. (2007). The Shuttle Radar Topography Mission. Review of Geophysics, 45 (RG2004), 1-33. 
Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring, Wiley, NY. 

Kay, H., Santoro, M., Cartus, O., Bunting, P., Lucas, R.,(2021). Exploring the relationship between 
Forest Canopy Height and Canopy Density from spaceborne LiDAR Observations. Remote Sensing 
13, 4961. https://doi.org/10.3390/rs13244961. 

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika 39: 89–93 
Kendall, M.G. (1975). Rank Correlation Methods, 4th edition, Charles Griffin, London. 



 

 

Ref CCI Biomass Algorithm Development Plan v5 

 

Issue Page Date 
5.0 42 12.12.2023 

 

© Aberystwyth University and GAMMA Remote Sensing, 2023 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M. and Zink, M. (2007). TanDEM-
X: a satellite formation for high-resolution SAR interferometry. IEEE Transactions on Geoscience and 
Remote Sensing, 45 (11), 3317-3341. 
Lucas, R. M., S. German, G. Metternicht, R. K. Schmidt, C. J. Owers, S. M. Prober, A. Richards, et al. 
2022. “A Globally Relevant Change Taxonomy and Evidence-Based Change Framework for Land 
Monitoring.” Global Change Biology, 1–25. doi:10.1111/gcb.16346. 

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica 13: 245–259. 

Mann, H. B., and D. R. Whitney. (1947). On a Test of Whether one of Two Random Variables is 
Stochastically Larger than the Other. The Annals of Mathematical Statistics 18: 50–60. 

Neuenschwander, A. and Pitts, K. (2019). The ATL08 land and vegetation product for the ICESat-2 
Mission. Remote Sensing of Environment, 221, 247-259. 
Oesterwind, D., Rau, A., & Zaiko, A. (2016). Drivers and pressures – Untangling the terms commonly 
used in marine science and policy. Journal of Environmental Management, 181, 8–15. 
https://doi.org/10.1016/j.jenvman.2016.05.058 

Planque, C., Punalekar, S., Lucas, R., Chognard, S., Owers, C. J., Clewley, D., Bunting, P., Sykes, H., & 
Horton, C. (2020). Living Wales: Automatic and routine environmental monitoring using multi-source 
earth observation data. In K. Schulz, U. Michel, & K. G. Nikolakopoulos (Eds.), Earth resources and 
environmental remote sensing/GIS applications XI, 115340C, Proceedings of SPIE - The International 
Society for Optical Engineering (Vol. 11534). SPIE, Earth Resources and Environmental Remote 
Sensing/GIS Applications XI 2020, Virtual, Online, United Kingdom of Great Britain and Northern 
Ireland, 21 Sep 2020. https://doi.org/10.1117/12.2573763 

Punalekar, S. M., C. Planque, R. M. Lucas, D. Evans, V. Correia, C. J. Owers, P. Poslajko, P. Bunting, and 
S. Chognard. 2021. “National Scale Mapping of Larch Plantations for Wales Using the Sentinel-2 Data 
Archive.” Forest Ecology and Management 501: 119679. doi:10.1016/j.foreco.2021.119679.Quegan, 
S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J.-F., Minh, D.H.T., Lomas, M., D’Alessandro, M.M., Paillou, 
P., Papathanassiou, K., Rocca, F., Saatchi, S., Scipal, K., Shugart, H., Smallman, T.L., Soja, M.J., Tebaldini, 
S., Ulander, L., Villard, L., Williams, M., (2019). The European Space Agency BIOMASS mission: 
Measuring forest above-ground biomass from space. Remote Sensing of Environment 227, 44–60. 
https://doi.org/10.1016/j.rse.2019.03.032 
Santoro, M. and Cartus, O. (2018). Research pathways of forest above-ground biomass estimation 
based on SAR backscatter and interferometric SAR observations. Remote Sensing, 10 (4), 608, 
doi:10.3390/rs10040608. 

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American 
Statistical Association. 63: 1379–1389. 
Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis I, II and III. In 
Proceedings of the Section of Sciences, Koninklijke Academie van Wetenschappen te, (Amsterdam), 
386–92. 

Walker, W. S., Kellndorfer, J. M., LaPoint, E., Hoppus, M. and Westfall, J. (2007). An empirical InSAR-
optical fusion approach to mapping vegetation canopy height. Remote Sensing of Environment, 109 
(4), 482-499. 


