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Detailed Change Record 

Issue RID Description of discrepancy Sections Change 

1.1 FR-01 The ATBD should report a detailed 
description of the algorithms and 
methodologies (reported in the technical 
proposal) that should be used to achieve 
the objective of the project. 

We understand that RR#1 activities will 
provide better indications on which 
algorithm candidates on classification, but 
a more detailed description of the listed 
methods is needed. 

7,8,9 Sections are integrated with 
more detailed information 
and mathematical insights. 

1.1 FR-02 Why as Global Product to use as reference 
the unique map described is CORINE LC? 
CLC is not global. 

7.1.1 
(removed) 

Mention to CORINE LC 
product as global product 
has been removed. 

1.1 FR-03 Why training the S1 data using as 
reference the 300m CCI-LC maps? We are 
going to lose the HR of S1 data, or am I 
wrong? Please add some reference 
document using this technique 

7 Further clarification has 
been added. 

3.1 FR-01 From the documentation it seems that 
you will apply Sen2Cor to S2 L1C data, but 
this will not be the case because you will 
download S2 L2A, therefore the AC will be 

2,3,7 The atmospheric correction 
has been removed from the 
block scheme, and the input 
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applied only on Landsat data if you will 
download L1. (e.g. in Figure 2 AC box 
should be removed for S2 data). 

products to the processing 
chain have been specified. 
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1 Introduction 

1.1 Executive summary 

Algorithm development is specifically aimed at addressing the technical requirements as provided by the 

outcome of Task 1 of the project. Best performing algorithms have been selected among proposed candidates 

through an internal benchmarking-testing iteration by the Earth Observing Science (EOS) team, as documented 

in PVASR. The final processing chain as developed in the three years of project activity is presented in this version 

of the document. 

1.2 Purpose and scope 

The Algorithm Theoretical Basis Document (ATBD) details the algorithms included in the processing chain needed 

to produce the land cover products as presented in the PSD [AD3]. It is intended to provide information for the 

understanding of the processing chain as a whole. This ATBD version is mature, it encapsulates all the updates 

and modifications that were introduced to address the feedbacks coming from the validation and 

intercomparison activities during the first benchmarking and testing stages of the project. This version of the 

document integrates in the whole project workflow and it identifies as main blocks of computation the following 

ones: 

• Optical pre-processing. 

• SAR pre-processing. 

• Multi-sensor geolocation. 

• Optical data classification. 

• SAR data classification. 

• Decision fusion. 

• Multitemporal change detection and trend analysis. 

1.3 Applicable documents 

Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI HR Technical Proposal, v1.1, 16/03/2018 

[AD2] CCI Extension (CCI+) Phase 1 – New ECVs – Statement of Work, v1.3, 22/08/2017, ESA-CCI-PRGM-EOPS-

SW-17-0032. 

[AD3] CCI_HRLC_Ph1-D1.2_PSD, latest version 

[AD4] CCI_HRLC_Ph1-D1.1_URD, latest version 

[AD5] CCI_HRLC_Ph1-D2.1_PVASR, latest version 

1.4 Acronyms and abbreviations 

6S  Second Simulation of a Satellite Signal in the Solar Spectrum 

AC  Atmospheric correction 

AMI  Active Microwave Instrument 

AOT   Aerosol Optical Thickness 

ASAR  Advanced Synthetic Aperture Radar  

ATBD  Algorithm Theoretical Basis Document 

BEAST  A Bayesian Estimator of Abrupt change, Seasonal change, and Trend 

BFAST  Breaks For Additive Seasonal and Trend 

BOA  Bottom of Atmosphere  

BoW  Bag of visual Words 
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CCI  Climate Change Initiative 

CD  Change Detection 

CFMask   C Version of Function Of Mask 

CMA  Climate Modeling Grid - Aerosol 

CMG  Climate Modeling Grid 

CNN  Deep Convolutional Neural Network 

CVA  Change Vector Analysis 

DARD  Data Access Requirement Document 

DDV  Dark Dense Vegetation 

DEM  Digital Elevation Model 

DM  Dissimilarity Measure 

DSM  Digital Surface Model 

DTW  Dynamic Time Warping 

ECV  Essential Climate Variables 

ERS  European Remote Sensing 

ETM  Enhanced Thematic Mapper 

ETM+  Enhanced Thematic Mapper Plus 

FC  Fully Connected 

FS  Feature Space 

GCOS  Global Climate Observing System 

GMM  Gaussian Mixture Model 

GSFC  Goddard Space Flight Center 

HLS  Harmonized Landsat/Sentinel-2 

HR  High Resolution 

IFK   Improved Fisher Kernel 

INT  Integer 

IRMAD  Iteratively-Reweighted Multivariate Alteration Detection 

L-5/7/8  Landsat-5/7/8 

LandTrendr Landsat-based detection of Trends in Disturbance and Recovery 

LaSRC  Landsat Surface Reflectance Code 

LC  Land Cover 

LCC  Land Cover Change 

LEDAPS  Landsat Ecosystem Disturbance Adaptive Processing System 

LLC   Locality-constrained linear coding 

LOP  Linear Opinion Pool 

LPF  Low Pass Filter 

LSTM  Long Short Term Memory 

LTS  Landsat Time Series 

LUT  Lookup Table 

MDDTW  Multi-Dimension DTW 

MEaSUREs Making Earth Science Data Records for Use in Research Environments 
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MF-DTW Multi-Feature DTW 

MGRS  Military Grid Reference System 

MLP-NN  Multi-Layer Perceptron Neural Network 

MMU  Minimum Mapping Unit 

MODIS  Moderate Resolution Imaging Spectroradiometer 

MR   Medium Resolution 

MSS  Multispectral Scanner 

NA  Not Applicable 

NASA  National Aeronautics and Space Administration 

NCEP  National Centers for Environmental Prediction 

NDI  Normalized Difference Index 

NDVI  Normalized Difference Vegetation Index 

NIR  Near infrared 

NSPI   Neighbourhood Similar Pixel Interpolator 

OA  Overall Accuracy 

OLI   Operational Land Imager 

OMI  Ozone Monitoring Instrument,  

PCA  Principal Component Analysis 

PSD  Product Specification Document 

QA  Quality Assessment 

RBF  Radial Basis Function 

RD  Range Doppler 

REFEREE  Learning a transferable change Rule From a recurrent neural network for change detection 

RF  Random Forest 

RNN  Recurrent Neural Network 

S-1/2  Sentinel-1/2 

S2AC  Sentinel-2 Atmospheric Correction 

SAR  Synthetic Aperture Radar 

SIFT  Scale Invariant Feature Transform 

SITS  Satellite Image Time Series 

SLC  Scan-line corrector 

SM  Similarity Measure 

SoW  Statement of Work 

SR  Surface Reflectance 

SRTM  Shuttle Radar Topography Mission 

SSFA  Supervised Slow Feature Analysis 

ST  Similarity Trend 

STWR  Spatially and temporally weighted regression 

SVM  Support Vector Machine 

SWIR  Short-wave infrared 

TIMESAT Time Series of Satellite data 



 

Ref CCI_HRLC_Ph1-ATBD 

 
Issue Date Page 

4.rev.0 31/10/2022 9 

 

 
 

TIRS  Thermal Infrared Sensor 

TM  Thematic Mapper 

TOA  Top of Atmosphere 

TOMS  Total Ozone Mapping Spectrometer  

TS  Time Series 

UEXT  Urban EXTraction 

UTM  Universal Transverse of Mercator 

VHR  Very High Resolution 

VLAD   Vector of locally aggregated descriptors 

WGS84  World Geodetic System 1984 

XML  Extensible Markup Language 
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2 Processing chain overview 

The CCI HRLC project will deliver to the climate community regional land cover (LC) and land cover change (LCC) 

products over three areas in Africa Sahel band, Amazon and Siberia URD [AD4]. LC maps will be provided at 10m 

resolution for year 2019 (the so-called Static Map) and at 30m resolution for the historical record of LC and LCC 

from 1990 on, every five years. The high-resolution classification legend as agreed by the Consortium is listed in 

URD [AD4]. The processing chain, outlined in Figure 1 and Figure 2, is novel and it does not rely on already existing 

land cover products.  

 

Figure 1. Block-based representation of the processing chain for the production of static HRLC maps. 

 

Figure 2. Block-based representation of the processing chain for the production of historical HRLC maps. 

 

The high-level workflow of the processing chain is presented in Figure 1 and Figure 2. Optical multispectral 

imagery is the main source of data as input for the classification. The optical processing chain is consistent with 

the possibility to work mainly with images at 10/30m resolution and generating an output at 10/30m, based on 

multitemporal multispectral data from S-2 and L-8 in the recent years and legacy Landsat-5/7/8 data in the past. 

The SAR processing chain will be implemented mainly for S-1 in the recent years, and ERS and ASAR data sets in 

the past (whenever and wherever HR mode data are available). Microwave data sets are useful for classes where 

SAR has proven to be accurate at medium resolution, such as water bodies and coastal lines, and the option to 

use SAR for urban areas is considered as well. The products obtained by the optical and the SAR processing chains 
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will be then integrated in the data fusion module in order to produce the final HRLC products. This design choice 

of fusion at the decision level makes it possible to develop advanced and ad hoc processing approaches for 

optical, SAR, and multisensor data, while keeping the system modular and scalable. The output products will be 

then analyzed in the multitemporal change detection and trend analysis block for identifying different change 

components to be used for the historical time series HRLC products every 5 years. 

Table 1. Final high resolution HR Land Cover classification legend defined during the HRLC project activity.  

 

3 Optical pre-processing 

Pre-processing operations are intended to correct for sensor- and platform-specific radiometric and geometric 

distortions of data and harmonization. Radiometric corrections may be necessary due to variations in scene 

illumination and viewing geometry, atmospheric conditions, and sensor noise and response. Each of these will 

vary depending on the specific sensor and platform used to acquire the data and the conditions during data 

acquisition. Cloud coverage is a systematic issue related to optical imagery and it requires specific processing 

aimed at precisely locating cloud and shadow pixels, with possible restoring steps to recover spectral information 

over occluded pixel locations. All the steps needed to prepare optical images for classification, see Figure 3, are 

detailed in the following sections.  
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Figure 3. Optical pre-processing chain. 

The input data to the processing chain are the atmospherically corrected Sentinel 2 data (i.e., L2A products) and 

atmospherically corrected Landsat 5-7-8 images (i.e., L2 products). Although the data used in the processing 

chain are already atmospherically corrected, in the following subsections we described the algorithms used to 

generate such products as well as the cloud and shadows masks. 

3.1 Cloud and cloud shadow detection 

3.1.1 Sentinel-2 – sen2cor 

The sen2cor processor allows calculation of Bottom of Atmosphere (BOA) reflectance from Top of Atmosphere 

(TOA) reflectance images available in Level-1C products. Sentinel-2 atmospheric correction (S2AC) is based on an 

algorithm proposed in [1]. The method performs atmospheric correction based on the LIBRADTRAN radiative 

transfer model presented in [2]. 

The model is run once to generate a large LUT of sensor-specific functions (required for the AC: path radiance, 

direct and diffuse transmittances, direct and diffuse solar fluxes, and spherical albedo) that accounts for a wide 

variety of atmospheric conditions, solar geometries and ground elevations. This database is generated with a 

high spectral resolution (0.6 nm) and then resampled to S-2 spectral responses. This LUT is used as a simplified 

model (running faster than the full model) to invert the radiative transfer equation and to calculate BOA 

reflectance. All gaseous and aerosol properties of the atmosphere are either derived by the algorithm itself or 

fixed to an a priori value. 

S2AC employs Lambert's reflectance law. Topographic effects can be corrected during the surface retrieval 

process using an accurate Digital Elevation Model (DEM). S2AC accounts for and assumes a constant viewing 

angle per tile (sub-scene). The solar zenith and azimuth angles can either be treated as constant per tile or can 

be specified for the tile corners with a subsequent bilinear interpolation across the scene. 

3.1.2 Landsat 5/7/8 – LEDAPS, LaSRC 

Landsat-4/5 TM and Landsat-7 ETM+ Surface Reflectance are generated using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) algorithm, a specialized software originally developed through 

a National Aeronautics and Space Administration (NASA) Making Earth System Data Records for Use in Research 

Environments (MEaSUREs) grant by NASA Goddard Space Flight Center (GSFC) and the University of Maryland 

[3]. The software applies Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction 

routines to Level-1 data products. Water vapor, ozone, geopotential height, aerosol optical thickness, and digital 

elevation are input with Landsat data to the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) 

radiative transfer models to generate TOA reflectance, surface reflectance, TOA brightness temperature, and 

masks for clouds, cloud shadows, adjacent clouds, land, and water. Landsat 8 OLI Surface Reflectance are 

generated using the Landsat Surface Reflectance Code (LaSRC) [4], which makes use of the coastal aerosol band 

to perform aerosol inversion tests, uses auxiliary climate data from MODIS, and a unique radiative transfer 
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model. LaSRC hardcodes the view zenith angle to “0”, and the solar zenith and view zenith angles are used for 

calculations as part of the atmospheric correction. 

While both the LEDAPS and LaSRC algorithms produce similar SR products, the inputs and methods to do so 

differ. The table below illustrates both of them. 

Table 2. Differences between Landsat-4/5/7 and Landsat-8 surface reflectance algorithms. 

Parameter Landsat-4/5/7 (LEDAPS) Landsat-8 (LaSRC) 

Global Coverage Yes Yes 

TOA Reflectance Visible (Bands 1–5,7) Visible (Bands 1–7, 9 OLI) 

TOA Brightness 

Temperature 

Thermal (Band 6) Thermal (Bands 10 & 11 TIRS) 

SR Visible (Bands 1-5, Band 7) Visible (Bandsat 1-7) (OLI only) 

Thermal bands used 

in Surface Reflectance 

processing  

Yes 

(Brightness temperature Band 6 is 

used in cloud estimation) 

No 

Radiative transfer model 6S Internal algorithm 

Thermal correction level TOA only TOA only 

Thermal band units Kelvin Kelvin 

Pressure NCEP Grid Surface pressure is calculated 

internally based on the elevation 

Water vapor NCEP Grid MODIS CMA 

Air temperature NCEP Grid MODIS CMA 

DEM GTOPO5  GTOPO5  

Ozone OMI/TOMS MODIS CMG Coarse resolution ozone 

AOT Correlation between chlorophyll 

absorption and bound water 

absorption of scene 

MODIS CMA 

Sun angle Scene center from input metadata Scene center from input metadata 

View zenith angle From input metadata Hard-coded to "0" 

Undesirable zenith angle 

correction 

SR not processed when solar zenith 

angle 

> 76 degrees 

SR not processed when solar zenith 

angle > 76 degrees 

Pan band processed No No 

XML metadata  Yes Yes 

Top of Atmosphere 

Brightness Temperature 

calculated 

Yes (Band 6 TM/ETM+) Yes (Band 10 & 11 TIRS) 

Cloud mask CFMask CFMask 
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Data format INT16 INT16 

Fill values -9999 -9999 

QA bands Cloud 

Adjacent cloud 

Cloud shadow 

DDV 

Fill 

Land water 

Snow 

Atmospheric opacity 

Cloud 

Adjacent cloud 

Cloud shadow 

Aerosols 

Cirrus 

Aerosol In 

Identification of clouds, cloud shadows in optical images is necessary. The well-known program named Fmask 

has been used to accomplish these tasks for use with images from Landsat-5/7/8 [5]. 

3.1.3 Sentinel-2 – sen2cor improvement 

Cloud and cloud shadow detection are based on cloud and shadow mask provided with the Sen2Cor (for Sentinel-

2) and Fmask (for Landsat). The OA of cloud and shadow masks provided by the Sen2Cor (84%) is on average 

lower than the one provided by Fmask (90%) [6]. Therefore, the Sen2cor masks should be further enhanced to 

achieve the required accuracy. To this end, we adopt two strategies, one for cloud detection and one for cloud 

shadow detection and removal.  

For cloud detection, we compute the cloudless background image for each season [7]: 

𝑥𝑗
𝐵 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒0.25{𝑥𝑗,𝐵𝑙𝑢𝑒

1 , 𝑥𝑗,𝐵𝑙𝑢𝑒
2 ,  … , 𝑥𝑗,𝐵𝑙𝑢𝑒

𝑆 } 
The difference between the blue bands of each image from the TS and the background image is computed. The 

pixels in the difference image are then clustered into 3 clusters. To understand which from the obtained clusters 

belong to cloud cover, the mean of each cluster is compared with the blue band mean of the cloudy pixels overall 

image. Finally, we merge of the obtained cloud mask with the original Sen2cor mask. Note that this strategy is 

performed only for tiles with a sufficiently large cloud cover, in order to properly model the clusters.  Figure 4 

shows the flowchart of the considered strategy.  

 

Figure 4. Flowchart of the sen2cor cloud mask improvement 

In order to detect and remove cloud shadows, the cloud shadow index (CSI) can be used, which is based on the 

physical reflective characteristic of cloud shadow [8]. The CSI index is computed by combining information 

provided by the NIR and SWIR bands: 

https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-reflectance-quality-assessment
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𝐶𝑆𝐼 =
1

2
∗ (𝐵𝑁𝐼𝑅 + 𝐵𝑆𝑊𝐼𝑅) 

To avoid confusion between shadows and water bodies, as they both have very similar spectral signatures 

associated with their low reflectance, an additional condition including shorter wavelengths, i.e., the blue band 

reflectance, should also be analyzed. Thus, the cloud shadow is identified in areas where the following conditions 

are fulfilled: 

𝐶𝑆𝐼 < min(𝐶𝑆𝐼) +  𝑡1 ∗ (mean(CSI) − min(CSI)) 

𝐵𝐵𝑙𝑢𝑒 < min(𝐵𝐵𝑙𝑢𝑒) +  𝑡2 ∗ (mean(𝐵𝐵𝑙𝑢𝑒) − min(CSI)) 

Coefficients were fine-tuned: t1 =1/2 and t2=1/4. Note that this approach is performed only for tiles where there 

is enough cloud cover and the cloud cover has on average a large reflectance. Figure 5 shows the flowchart of 

the considered strategy. 

 

Figure 5. Flowchart of the sen2cor cloud shadow mask improvement and removal 

3.2 Spectral Filtering 

The spectral filtering aims to detect and remove the outlier present in the optical images. To this end, in this step 

we discard the reflectance values higher than the 0.999 quantile and lower than the 0.001 quantile of each 

spectral band. All the images considered in the experiments have cloud coverage less than 40%. In order to 

mitigate any possible effect of clouds and shadow present on the image, they have been detected by using 

Sen2cor mask and discarded from the quantitative evaluation. 

3.3 Composite Generation 

When working at large scale, it is necessary to harmonize the times-series of images acquired over different tiles 

which are characterized by different lengths and are acquired at different times. This is mainly due to the 

irregular cloud coverage (which hampers the use of some images of the time-series) and the different orbit 

acquisitions (different temporal sampling). To solve this problem, in the pre-processing step we generate 

monthly, seasonal and annual composites. This condition allows us to mitigate cloud occlusions problem and 

minimize the processing resources. To this end, we consider a statistic-based approach that computes the 

median value for each pixel. This approach is able to generate consistent results at large scale in an automatic 

way by sharply reducing the spatial noise. Let {𝑋1, 𝑋2, … , 𝑋𝑄} be the considered time-series which includes the 

optical images acquired over a month, a season or the whole year (i.e., according to the sensor and the 
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considered study area). The multitemporal pattern associated to the 𝑗th pixel of {𝑋1, 𝑋2, … , 𝑋𝑄} can be defined 

as [𝐱𝑗
1, 𝐱𝑗

2, … , 𝐱𝑗
𝑄], where 𝐱𝑗

1 = [𝑥𝑗,1
1 , 𝑥𝑗,2

1 , … , 𝑥𝑗,𝐵
1 ] represents the 𝐵 spectral values of the 𝑗th pixel in the first 

image of the time-series. The 𝑗th pixel of the composite 𝑥𝑗
𝐶𝑜𝑚 is generated by computing the band-wise median 

of the cloud-free multispectral pixels of the images present in {𝑋1, 𝑋2, … , 𝑋𝑄} as follows: 

𝑥𝑗,1
𝐶𝑜𝑚 = 𝑀𝑒𝑑{𝑥𝑗,1

1 , 𝑥𝑗,1
2 , … , 𝑥𝑗,1

𝑄 } 

𝑥𝑗,2
𝐶𝑜𝑚 = 𝑀𝑒𝑑{𝑥𝑗,2

1 , 𝑥𝑗,2
2 , … , 𝑥𝑗,2

𝑄 } 

⋮ 

𝑥𝑗,𝐵
𝐶𝑜𝑚 = 𝑀𝑒𝑑{𝑥𝑗,𝐵

1 , 𝑥𝑗,𝐵
2 , … , 𝑥𝑗,𝐵

𝑄 } 

It is worth noting that cloud, shadow and snow mask pixels are ignored during median computation. Table 3 

summarizes the kind of composite generated per study area according to different optical sensor. Due to the 

increased revisit time of Sentinel 2 (5 days) with respect to Landsat (16 days), denser time-series are available 

for 2019 that can be used to generate monthly composites. In the case of Sentinel data over Amazonia and Africa, 

we computed 12 monthly composites. Due to dense cloud coverage over some regions, each monthly composite 

is computed using the considered and the following month (e.g., January and February are used for January 

composite generation, the only exception is December, where only December images are considered). This 

conservative choice allows us to sharply reduce the probability of having cloudy pixels in the time-series. For 

Sentinel data over Siberia, we generate yearly composite due to heavy cloud and the snow coverage problem 

which hampered the use of images acquired for most of the year. Hence, the Siberian yearly composite is 

computed as the median of data acquired in July and August. 

In the case of Landsat data, we similarly consider yearly composite for Siberia, which is computed as the median 

of data acquired between April and September. Finally, for Landsat data over Amazonia and Africa we compute 

four seasonal composites considering the optical data acquired in the following months: (i) January – March, (ii) 

April – June, (iii) July- September, and (iv) October – December.  

Table 3. Composites generated for the different study areas according to the availability of cloud free optical images. 

 

Area Sentinel 2 Landsat 5/7/8 

Siberia Yearly (July - August) Yearly (April – September) 

Amazonia 12 Monthly Composites 4 Seasonal Composites 

Africa 12 Monthly Composites 4 Seasonal Composites 

3.4 Cloud and cloud shadow restoration 

3.4.1 Landsat-7 SLC-off 

The scan-line corrector (SLC) of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor failed in 2003, 

resulting in about 22% of the pixels per scene not being scanned. The SLC failure has seriously limited the 

scientific applications of ETM+ data. In particular, this problem affects the considered composite strategy when 

the available acquisitions are scarce and come mainly or only from Landsat-7 (e.g., Africa 2005 and 2010). In 

order to avoid the considered composite strategy and the classifier to be affected by this problem (i.e., striping 

in the composites and in the land-cover maps), a gap-filling strategy based on interpolation has been used to fill 

in the values of the missing pixels. While accurate spatial information is not retrieved, the considered composite 

strategy is able to partially retrieve it by exploiting the multitemporal acquisitions. Even though the spatial detail 

might be reduced, this strategy results in improved spectral uniformity and consistency across pixels in the 

composite. This improved the performance of the classifier, which uses the spectral bands as primary features. 
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3.4.2 Cloud restoration 

Cloud restoration is an important step in the optical images pre-processing part. Although we are considering 

the composites instead of original time-series of images, missing information due to poor atmospheric conditions 

(e.g., thick clouds and related shadows) or defective sensors may be present in the composites. In the literature, 

a large effort has been devoted to solve this problem. However, to properly recover missing information, 

sophisticated and usually computationally intensive techniques should be used, increasing significantly the 

computational complexity of the pre-processing part. Instead of considering computationally demanding 

approaches, a simple and effective linear temporal gap filling was employed. In this method the missing 

information are restored as the average of the spectral values acquired in the previous and the following images 

in the time-series. If clouds are present in the first or last image in time-series, the second or the one before last 

image are considered, respectively. 

3.4.3 Topographical Shadow Reconstruction 

Another problem associated with low reflectance values is related to topographical shadow. Here, similarly to 

the shadow detection, we identified topographic shadow by using thresholding of the CSI index. Again, to avoid 

confusion between shadow and water bodies, we consider also the topographical slope information. To restore 

topographic shadow, we rely on the assumption that the signal registered in the shadow areas is weak but can 

be exploited for shadow reconstruction. The shadow region can be retrieved according to the following equation: 

𝑦𝑗 = 𝑆𝑓/𝑆𝑠(𝑥𝑗 − 𝑀𝑠) + 𝑀𝑓 

Where 𝑆𝑠 is the standard deviation of the shadow, 𝑀𝑠 is the mean value in the shadow, 𝑆𝑓  is the standard 

deviation in the shadow-free surrounding area, and 𝑀𝑓 is the mean values in the shadow-free surrounding area. 

To harmonize the obtained shadows restoration results and the surrounding spectral signatures of the original 

data, we used the inpainting technique based on the fast marching method presented in [9].  

4 SAR pre-processing 

For the production of Static Map at 10m resolution for 2019 Sentinel-1 data were adopted, while the mapping 

LC and LCC back to 1990 at 30m resolution requires the use of Sentinel-1, ERS 1/2 and ENVISAT ASAR acquisitions. 

We considered Sentinel-1 data acquired in Interferometric Wide swath (IW) mode and Ground Range Detected 

(GRD) type, which derive from an application of a proper multi-looking and ground range projection based on an 

Earth ellipsoid model. The datasets are in High resolution (HR) and provide images with a native range by azimuth 

resolution 20×22 meters and pixel spacing equals to 10x10 m. Over land surfaces, the orbital period of each 

satellite is about 12 days. Consequently, acquisitions have been available since 2015 for time-periods of 6 or 12 

days depending on the study region. About the other radar data used for LC and LCC products, we assumed the 

SAR Level 1 Precision Image Product (SAR_IMP_1P) of ERS 1/2 satellites and ASAR IM Precision L1 (ASA_IMP_1P) 

product given by ENVISAT platform. 

The SAR_IMP_1P product is a multi-look (speckle-reduced), ground range image acquired in Image Mode. This 

product type has already been submitted to early preprocessing operations so as to make it very suitable in many 

remote sensing applications [10]. ASA_IMP_1P is a multi-look, ground range, digital Precision Image generated 

from Level 0 data collected when the instrument was in Image Mode (7 possible swaths HH or VV polarisation). 

The product includes slant range to ground range correction. The processing uses up to date (at time of 

processing) auxiliary parameters corrected for antenna elevation gain, and range spreading loss. Engineering 

corrections and relative calibration are applied to compensate for well-understood sources of system variability. 

This product provides a continuation of the ERS-SAR product [11]. 

By an accurate analysis of data availability into the past, we noted that SAR data do not present a good spatial 

and temporal coverage in all the years of the period of interest, which goes from 2015 to 1990. The major issue 

is related to the tile coverage, since is not uniform, and may generate misclassification effects. For this reason, 

the adopted strategy is based on the use of just a single season per year to produce the historical land cover 
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maps every five years from 2015 backwards. By this way, it is possible to achieve results for a larger set of tiles 

and considering a much more homogeneous data set. 

The following table shows the final situation of SAR dataset distribution concerning the three areas, i.e., 

Amazonia, Africa, and Siberia, dedicated to the historical maps’ production. 

Table 4. SAR data availability for the historical production 

Area Year Date range Season SAR historical product # images 

Amazonia 2005 01.01 - 03.31 Winter ENVISAT_ASA.IMP.1P 466 

Amazonia 2000 01.01 - 03.31 Winter ERS_SAR.IMP.1P 396 

Amazonia 1995 04.01 - 06.30 Spring ERS_SAR.IMP.1P 421 

Africa 2010 01.01 - 03.31 Winter ENVISAT_ASA.IMP.1P 274 

Africa 2005 07.01 - 09.30 Summer ERS_SAR.IMP.1P 350 

Africa 2000 07.01 - 09.30 Summer ERS_SAR.IMP.1P 350 

Africa 1995 04.01 - 06.30 Spring ERS_SAR.IMP.1P 323 

Siberia 2010 07.01 - 09.30 Summer ERS_SAR.IMP.1P 895 

Siberia 2005 07.01 - 09.30 Summer ENVISAT_ASA.IMP.1P 315 

Siberia 1995 07.01 - 09.30 Summer ERS_SAR.IMP.1P 548 

 

Looking at Table 4, we see that the SAR data distribution does not cover all the years of the historical period. As 

mentioned before, it is due to the poor availability of datasets in the past, which leads to the lack of any 

contribution by SAR to the land cover maps for 2015, 2010 and 1990 in Amazonia, 2015 and 1990 in Africa, and 

2015, 2000 and 1990 in Siberia. 

 

For processing and analysing SAR data, several codes have been developed in Python programming language, 

which were then deployed by means of dockers, i.e., general automated applications that can be launched in 

every OS. 

 

Figure 6. Block scheme of SAR pre-processing chain. 
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Before applying any classification algorithm on radar images, a preliminary pre-processing phase is required, and 

it consists in the following basic steps: 

• Orbit File application 

• Thermal Noise removal (for Sentinel-1 only); 

• Border Noise removal (for Sentinel-1 only); 

• Radiometric calibration of data; 

• Geometric Terrain correction; 

• Despeckle filtering. 

 

4.1 Orbit File application 

The first processing step is to apply the orbit files in SAR products to provide accurate satellite position and 

velocity information. Usually, the satellite flying orbit track is being detected by many sensors, like mounted 

gyroscope, GPS, and also ground observations. To calculate out the precise orbit data takes time, so the precise 

orbit data are not included in many SAR satellite data bundles. SNAP is trying to get more precise orbit data to 

help to improve the geocoding and other SAR processing results. 

4.2 Thermal Noise removal 

In general, an SAR image product contains not only the wanted signal but also the unwanted noise that is 

superposed within the same pixel. Among the various noise components in SAR systems, the thermal noise is an 

additive noise, which is processed with the same processing gains applied to the true signal. 

In general, an SAR image product contains not only the wanted signal but also the unwanted noise that is 

superposed within the same pixel. Among the various noise components in SAR systems, the thermal noise is an 

additive noise, which is processed with the same processing gains applied to the true signal. 

Sentinel-1 image intensity is disturbed by additive thermal noise, particularly in the cross-polarization channel 

[12]. Thermal noise removal reduces noise effects in the inter-sub-swath texture, in particular, normalizing the 

backscatter signal within the entire Sentinel-1 scene and resulting in reduced discontinuities between sub-swaths 

for scenes in multi-swath acquisition modes. The thermal noise removal operator available in SNAP for Sentinel-

1 data can also re-introduce the noise signal that could have been removed during level-1 product generation, 

and update product annotations to allow for re-application of the correction. Sentinel-1 level-1 products provide 

a noise Look-Up Table (LUT), provided in linear power, for each measurement data set and used to derive 

calibrated noise profiles matching the calibrated GRD data [13]. 

4.3 Border Noise removal 
While generating level-1 products, it is necessary to correct the sampling start time in order to compensate for 

the change of the Earth’s curvature. At the same time, azimuth and range compression leads to radiometric 

artefacts at the image borders. The border noise removal algorithm [14],available as an operator in SNAP, was 

designed in order to remove low intensity noise and invalid data on scene edges. 

4.4 Radiometric calibration 

Radar images are firstly calibrated with respect to their intrinsic sensor and signal acquisition properties, for 

expressing the echoes of distributed target (e.g. grass, dirt, etc.) in terms of the radar backscattering coefficient. 

In other words, the VV and VH intensities are expressed in terms of sigma naught. Generally, this operation was 

performed during the generation of a SAR product, but for the land cover map generation is not recommended 

to use raw data because of the inconsistency of the uncalibrated signal. The radiometric calibration is therefore 

needed since the grey-value of SAR imagery must be adjusted respect the backscattering signals of the objects 

present into the scene. 
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4.5 Geometric terrain correction 

Due to the active nature of the system, every SAR image is acquired in slant looking geometry. If the ground is 

elevated because of hills and valleys, the time of the signal to travel to the Earth surface and back to the sensor 

is distorted, causing geometric shifts in the image (foreshortening, layover and shadow). These can only be 

corrected if a model representing the topography under the image is known. In particular, the Range Doppler 

(RD) Terrain Correction is applied, and it shifts all pixels to their correct locations according to ancillary data 

Shuttle Radar Topography Mission (SRTM) 3 arc sec (i.e. around 20 m of resolution) DEM as input. RD Terrain 

Correction increases the location accuracy of your image. The first two steps of pre-processing phase have been 

conducted using ESA Sentinel-1 toolbox implemented in the official Sentinel Application Platform software 

provided by ESA (for more detailed information, ones should refer to the proper Wiki for Developer 

Documentation to [13]. 

4.6 Despeckle filtering 

The SAR images are inherently affected by speckle that is a "noise like" signal due to the coherent nature of the 

electromagnetic scattering [15]. Even though speckle carries itself information about the illuminated area, it 

degrades the appearance of images and affects the performance of scene analysis tasks carried out by computer 

programs (e.g., segmentation and classification). To mitigate this problem several suitable filtering 

methodologies have been developed for reducing the disturbance significantly and preserve at the same time all 

the relevant scene features, such as radiometric and textural information. The speckle in SAR is a multiplicative 

effect, i.e. it is in direct proportion to the local grey level in any area. Speckle filtering is needed to suppress the 

noise in order to allow better interpretation and backscatter analysis. However, it is essential mentioning that 

the speckle filter not only suppress the noise, but also remove observations that are not affected by noise and 

contain valuable land surface information (i.e. soil moisture, biomass and flood extent). The process of removal 

of speckle in SAR image is very essential for the analyst to interpret. A filter should remove speckle without 

sacrificing image structures. 

There are various speckle removal methods. Speckle removal is necessary for quantitative, analysis but there 

exists a tradeoff between speckle removal and resolution. Speckle Suppression can be done using various 

techniques. The first technique is Lee filter, known for being one of the first approach designed for suppressing 

speckle effect [16]. Second technique is time series-based processing. Proper developed docker containers 

provide both classical Lee method and a better suitable and advanced de-speckle filter (called multitemporal de-

speckle filter) that exploits a SAR time series. Multitemporal denoising methods take advantage of the increasing 

availability of SAR image time-series to solve the spatial denoising problems, for the benefit of a better spatial 

resolution preservation. 

4.6.1 Lee filter 

The Lee filter is an adaptive filter, and reportedly to be the first model-based filter dedicated to speckle noise 

suppression [17]. It is also derived from the Minimum Mean-Square Error (MMSE) algorithm that converts the 

multiplicative model into an additive one, thereby reducing the problem of dealing with speckle to a known 

tractable case (more details are reported in [18]). In Lee filter, the statistical distribution of the values of the 

pixels within the moving kernel is utilized to estimate the value of the pixel of interest. This assumes that the 

mean and variance of the pixel of interest are equal to the local mean and local variance of all pixels within the 

user-selected moving kernel. The resulting grey level value 𝑌 for the smoothed pixel is: 

𝑌 = 𝐼𝑐𝑊 + 𝐼𝑚(1 − 𝑊), 

where: 

- 𝑊 = (1 −
𝐶𝑢

2

𝐶𝑖
2); 

- 𝐶𝑢 = √1 𝐸𝑁𝐿⁄ ; 
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- 𝐶𝑖 = 𝑆 𝐼𝑚⁄  

- 𝐼𝑐  is the central pixel of filter kernel; 

- 𝐼𝑚  value is the mean between all pixels falling within kernel; 

- 𝑆 is the standard deviation of all pixels falling within kernel; 

𝑊 is the weighting function that measures the estimated noise variation coefficient 𝐶𝑢 over the image variation 

coefficient 𝐶𝑖. The number of looks parameter ENL is the Equivalent Number of Looks of the radar image, which 

is used to estimate the noise variance and control the amount of smoothing applied to the image by the filter. 

The user may experimentally adjust the ENL value to control the effect of the filter. A small ENL value leads to 

more smoothing while a large ENL preserves more image features.  

Several works [19], [20] have proven, with quantitative assessments, that a good tradeoff between speckle 

suppression, details and textures preservation is achieved with 5x5 or 7x7 moving kernel size. Moreover, the Lee 

filter is reportedly superior in its ability to preserve prominent edges, linear features, point target, and texture 

information, by minimizing either the mean square error or the weighted least square estimation. 

4.6.2 Multi-look anti-speckle filter 

Multi-look processing is known to improve SAR image quality because it reduces the speckle noise that produces 

the “salt and pepper” appearance of image. Either in range or azimuth direction or in both the directions, 

subsequent lines are averaged to get a better image. Averaging the different looks offers a trade-off in terms of 

resolution, and an image with reduced resolution but less grainy appearance can be formed. 

 

Figure 7. Principle of multi-look processing (a), acquiring a point on the ground from separated integration intervals 
(synthetic antennae) (b) and corresponding single-look images with range axis oriented along different squint angles (c). 

 

(a) (b) (c) 
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Due to low directivity of the radar antenna, one given point on the ground can be illuminated by radar during a 

much longer time than integration time. For example, in Figure 7 (a) we have a point illuminated from the time 

it appears under the 1st squint (on the forward side of the antenna lobe) to the time it appears under the 2nd 

squint (on the rear side of the antenna lobe). SAR images can be computed for a same point with different 

integration intervals, as well as shown in Figure 7 (b) which depicts two image rows containing the target point 

for each integration interval. Clearly, due to different direction of observation, the “range axis” in the two images, 

also called “single-look”, do not match as displayed in Figure 7 (c). The accurate matching of the single-look 

images requires a good geometrical model, especially if the platform trajectory is far from linear [21]. As it is well 

known, multi-look averaging has the advantage of reducing the speckle of the diffuse reflections on rough 

surfaces. One of the speckle property is that grain locations are independent for single-look images calculated 

from disjoint integration time intervals, thus averaging several single-look images (after co-registration in the 

same coordinate system) will provide a smoother multi-look image. This result on “real” rough textures is 

empirical. In fact, it is related to the statistical characteristics of the texture. Theoretically, a texture with fractal 

surface (fortunately, unlike any real surface is) would remain grainy whatever the number of looks combined. 

The simplest approach to despeckling is to average the intensity over several pixels within a window centered 

on a specific pixel. This is tantamount to assuming that the information at each pixel carried by the Radar Cross 

Section (RCS) (or Backscattering Coefficient 𝜎) is constant over the filter window. If this assumption is incorrect, 

the method is fundamentally flawed. The joint probability that all 𝑁 pixels have this mean value is given by 

𝑃(𝜎|𝐼1, 𝐼2, … , 𝐼𝑁) ∝ ∏𝑃(𝐼𝑗|𝜎)

𝑁

𝑗=1

∝ ∏ (
𝐿

𝜎
)

𝐿 𝐼𝑗
𝐿−1

Γ(𝐿)
exp [−

𝐿𝐼𝑗

𝜎
]

𝑁

𝑗=1

 

where 𝐼𝑗  is the 𝑗th observed intensity.  𝑃(𝜎) is the likelihood function which describes the effect of speckle during 

imaging for 𝐿 -look SAR. Assuming 𝑁 independent pixels, the Maximum Likelihood Estimate (MLE) of 𝜎 is then 

given by 

𝜎𝑀𝐿 = 𝐼 

which is the average intensity over all the pixels in the window, corresponding to multi-looking. Note that if this 

is applied to a single pixel the MLE is equal to the intensity of that pixel. Only if features of interest within the 

scene occur on a large enough scale can multi-look images be effective. An adaptive approach that matches the 

size of a window to the scale of objects of interest would provide optimum despeckling at the required resolution. 

Where fluctuations were consistent with a constant RCS the window size can be increased to improve 

despeckling as far as possible [15]. Although multi-look causes a degradation in the image resolution, it greatly 

improves the interpretability of the SAR image. Also the effect of speckle tends to weaken for very high-

resolution systems, since the number of elemental scatters within a resolution cell decreases. 

4.6.3 Multitemporal despekling filter 

The proposed approach is a ratio-based multitemporal denoising framework based on the use of a ratio image 

composed of a noisy image and the temporal mean of the stack. This ratio image is easier to denoise than a single 

image thanks to its improved stationarity. Besides, temporally stable thin structures are well preserved thanks 

to the multi-temporal mean [22]. Because of the improved spatial stationarity of the ratio images, denoising 

these ratio images with a speckle-reduction method is more effective than denoising images from the original 

multi-temporal stack. The amount of data that is jointly processed is also reduced compared to other methods 

through the use of the ‘super-image’ that sums up the temporal stack in order to fully exploit the significant 

information of the multi-temporal stack. 

The method consists in three steps that are grouped into the following list and represented in Figure 8: 

1. Super image; 

2. Denoising of the ratio image; 
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3. Computation of the final image through the multiplication between denoised ratio and super image. 

 

Figure 8. Summary of multitemporal despeckling method applied on SAR time series. 

The temporal averaging (also called temporal multi-looking) of SAR time series generates an image with reduced 

speckle and a preserved spatial resolution, that has been identified as “super-image”. 

Given 𝑇 spatially registered and radiometrically calibrated intensity SAR images {𝜐1, 𝜐2, … , 𝜐𝑡 , … , 𝜐𝑇}, the super 

image is given by a simple average that offers good properties in terms of modelling the statistics [23]. Hence, 

the arithmetic mean is calculated at pixel 𝑝 by: 

�̂�𝑚(𝑝) =
1

𝑇
∑ 𝜐𝑡(𝑝)𝑇

𝑡=1  𝑡 ∈ [1, 𝑇]. 

After temporal averaging the second step consists in using the super-image to form the ratio image 𝜏𝑡 between 

the image 𝜐𝑡 at time t and the super image �̂�𝑚, at each spatial location 𝑝: 

𝜏𝑡(𝑝) =
𝜐𝑡(𝑝)

�̂�𝑚(𝑝)
 

It contains the residual speckle noise between the two images, and the radiometric shifts when changes occur. 

When the length of the time series increases and in the absence of change, the super image �̂�𝑚 converges to 𝑢𝑡, 

the reflectivity of the scene (the signal of interest). The ratio image 𝜏𝑡 then tends to pure speckle (i.e., a collection 

of independent identically distributed random variables with unitary mean and the same number of looks as the 

original image). In contrast, when changes occur in the time series, these changes impact the super image which 

then differs from the reflectivity 𝑢𝑡 of the image at time t.  Processing the ratio image 𝜏𝑡 is necessary to correctly 

recover the reflectivity 𝑢𝑡. Anyway, the ratio image still needs of speckle reduction methodologies since both the 

noisy image 𝜐𝑡 and the super-image �̂�𝑚 suffer from speckle (although speckle in the super-image is strongly 

reduced). The use of this additional spatial filtering step to form the ratio image seems beneficial in terms of 

restoration quality: the obtained image is smoother. 

Finally, in the latter step the filtered image is recovered by multiplying the denoised ratio image with the original 

super image �̂�𝑚. The estimated image �̂�𝑡  at location 𝑝 is given by: 

�̂�𝑡(𝑝) = �̂�𝑚(𝑝) ∙ �̂�𝑡(𝑝) 

Based on the processing of SAR stack corrupted by speckle noise, the approach has showed the potential to 

better preserve structures in multi-temporal SAR images while efficiently removing speckle. A classic application 

of this approach has been well reported in Figure 7. 
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4.7 Multiscale data merging 

In case we do not have enough IW S-1 data to cover the area of interest, it may become necessary to merge data 

at different spatial resolution. This is achieved by a multi-scale SAR merging following [24]. We selected the 

Discrete Wavelet Transform and Histogram Matching framework (DWT/HM) because among all other filters, the 

DWT is the most common way for dealing the multiscale signal representation at pixel-level in simply and 

effective manner, due its ease implementation and the low computational cost [25]. 

Firstly, let us model the vector 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑘] that represents a multiscale SAR dataset, with k satellite 

imagery that having different resolution levels. In particular, the elements are arranged in ascending order in 

terms of resolution level, where the data with subscript 1 has finest resolution while the k-th element denotes 

the product with coarsest resolution.  

4.7.1 Discrete Wavelet Transform and Histogram Matching framework (DWT/HM) 

Generally, the wavelet transform decomposes a signal into a set of basis so-called wavelets. The wavelet 

representation provides a way for analyzing signals in both time and frequency domains. This makes it ideal for 

representing non-stationary signals, to which most real-world signals belong. The DWT transforms a discrete 

time signal to a discrete wavelet representation [26]. This procedure carries out a lossy compression, since 

components of signal that are known to be redundant, are discarded. The classical DWT is implemented by 

considering two filters: low-pass (LPF) and high-pass (HPF) filters. The DWT method is implemented also in bi-

dimensional (2D) case. In fact, in image processing, the image 𝑿𝑚, with 𝑚 = 1,2, . . , 𝑘, is filtered by means a high-

pass and a low-pass filter combination. After the filtering, the outputs are all downscaled by a factor of two. In 

figure 2, a simple diagram that report the basic architecture of the DWT procedure is shown. 

 

Figure 9. Block scheme of 2D DWT algorithm: the 1-Level 2D analysis DWT image decomposition process. 

The original image is decomposed into four sub-band images, it deals with row and column directions separately. 

First, the HPF and the LPF are exploited for each row data, and then are down-sampled by two to get high- and 

low-frequency components of the row. Next, the high- and the low-pass filters are applied again for each high- 

and low-frequency components of the column, and down-sampled by two. By way of the above processing, the 

four sub-band images are generated: 𝑯𝑯(𝑚+1), 𝑯𝑳(𝑚+1), 𝑳𝑯(𝑚+1), and 𝑳𝑳(𝑚+1), with a resolution level equals 

to (𝑚 + 1) due to the down-sampling (note that we used the round brackets for emphasize that we were passed 

from m to (m+1) resolution by applying the DWT approach). Each sub-band image has its own feature, such as 

the low-frequency information is preserved in the 𝑳𝑳(𝑚+1)-band (named context image also) and the high-

frequency information is almost preserved in the 𝑯𝑯(𝑚+1)-, 𝑯𝑳(𝑚+1)-, and 𝑳𝑯(𝑚+1)-bands.  

The 𝑳𝑳(𝑚+1)-subband image can be further decomposed in the same way (in recursive manner) for the second 

level sub-band image. By using 2D DWT, an image can be decomposed into any level sub-band images, as shown 

in Figure 10. 
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Figure 10. Diagrams of DWT image decomposition: the 2-Level 2D analysis DWT subband. 

For carrying out the data fusion between two images having different resolution levels, 𝑿𝑖  and 𝑿𝑗, with 𝑖 < 𝑗, for 

example, we could be use the DWT in addition to the standard Histogram Matching (HM) method. The HM is a 

transformation used for generating an image that is harmonized from a statistical point of view, since its 

probability distribution function matches a specified histogram [27]. 

In fact, the DWT is recursively applied on the finer image 𝑿𝑖  until achieving the desired level 𝑗, and the 𝑳𝑳(𝑗) 

subimage is hence calculated. Then, the HM is applied on the coarser image 𝑿𝑗  in order to obtain the HM image 

version, 𝑿𝑗
𝐻𝑀(calculated respect the target image 𝑳𝑳(𝑗)) for resampling it on a common (much finer) grid. The 

next step provides to substitute  𝑳𝑳(𝑗) with the derived image given by the mean 𝑳𝑳(𝑗) and 𝑿𝑗
𝐻𝑀, i.e. 

(𝑳𝑳(𝑗) + 𝑿𝑗
𝐻𝑀) 2⁄ . Finally, we derive the data fusion result at 𝑖 − 𝑡ℎ resolution level by applying the inverse 

DWT, i.e. the reconstruction process, opposite to the decomposition one, is formed by synthesis filters and up-

samplers [28] going back until the finer scale.  

The method can be implemented for the whole multiscale dataset 𝑿, starting from two images with coarsest 

resolution. The DWT procedure is hence iteratively repeated by using the fused result and the image with the 

finest resolution (among all those still unused for the fusion) as input. The output is a unique final fused image.  

As a backup, in the procedure has been implemented a second method for multi-scale SAR merging, the 

Multiscale Kalman Filter (MKF) can be considered. MKF is a pyramidal approach where the spatial resolution is 

assumed as an independent variable as the time. As described in [29], the MKF algorithm can be applied following 

two different modes respect the DWT one, since the fusion data with different scales might be carrying out 

starting both from finer resolution data to coarser resolution (upward step). 

5 Multi-sensor geolocation 

Given the outputs of the optical and SAR pre-processing chains, a further pre-processing stage, prior to their joint 

use for land cover mapping, is generally necessary to make them spatially aligned. In general terms, the process 

of aligning different sets of image data and of referencing them into a common coordinate system (Figure 11) is 

named image registration. Input data for registration may be multiple photographs, data from different sensors, 

times, or viewpoints [30]. One image is taken as the “reference image”, and all other images are registered to 

the reference image and are called “sensed (or input) images”. Besides remote sensing, it is used in computer 

vision, medical imaging, military automatic target recognition, etc. Registration is necessary in order to be able 

to compare or integrate the data corresponding to the same scene but obtained from different measurements. 

Here, the focus is put on multi-sensor geolocation, which corresponds to the case where image registration is 

applied to data gathered by different sensors, namely optical and SAR sensors in the CCI+ HRLC pipeline. 
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Figure 11: Image registration example with aerial photos. 

By definition, multi-sensor geolocation enables the integration of complementary information from different 

sensors. A registration method is broadly  composed of different elements, i.e.: (i) the geometric transformation 

used to warp the input image; (ii) the similarity measure used to compare the reference and input images during 

the registration process; and (iii) the optimization strategy used to minimize or maximize the similarity measure, 

depending on the semantic of the metric. 

 

Figure 12: Building blocks of multi-sensor geolocation. 

The following subsections cover each one of such aspects, focusing on the choices related to the processing steps 

of the multi-sensor geolocation block in the CCI+ HRLC pipeline. Hence, Section 5.1 describes all the geometric 

transformations utilized within multi-sensor geolocation. Section 5.2 details the similarity measures, while 

Section 5.3 deals with the minimization strategies. Finally, Section 5.4 introduces the possibilities of using deep 

learning methods for geolocation purposes. 

5.1 Geometric Transformations 
Image registration assumes a consistent geometric transformation between the sensed and reference images. 

Suppose that the sensed (or input) image 𝐼𝑛(𝑥, 𝑦) is defined over an (𝑥, 𝑦) coordinate system, while the 

reference image 𝑅𝑒𝑓(𝑋, 𝑌) is defined over an (𝑋, 𝑌) coordinate system. The goal of image registration is to find 

the transformation 𝑇: (𝑋, 𝑌) ↦ (𝑥, 𝑦) that modifies the input image so as to be referenced in the same 

coordinate system as the reference image: 

𝑅𝑒𝑓(𝑋, 𝑌) ≃ 𝐼𝑛{𝑇(𝑋, 𝑌)} 

Within the CCI+ HRLC pipeline, the focus is put on global transformations, i.e., transformations operating on the 

entire image or on an image patch of non-negligible size. A rather general case is represented by the affine 

transformation. Affine transformations are identified by a vector of six parameters, i.e. translation over the x axis 

𝑇𝑥, translation over the y axis 𝑇𝑦, rotation angle 𝜃, scale factor on the x axis 𝑠𝑥, scale factor on the y axis 𝑠𝑦 , and 

shear angle 𝜙𝑠ℎ. Particular cases of affine transformations are represented by rotation-scale-translation (RST) 

transformations (similarity transformations), where the shear angle is zero (𝜙𝑠ℎ = 0) and the scale factor is equal 

in the two dimensions (𝑠𝑥 = 𝑠𝑦 = 𝑠); rigid transformations, a particular case of similarity transformation where 

there is no impact on the scale (𝑠 = 1); and shift transformations, characterized by a simple translation of the 

image (𝜃 = 0) [31]. 
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In more details, the transformation 𝑇: (𝑋, 𝑌) ↦ (𝑥, 𝑦) can be formulated as in the following equations, for each 

of the aforementioned cases, starting from the simpler shift transformation and moving to the more complex 

affine transformation. It is worth noting that, with the following convention, all the rotations are intended to be 

counter-clockwise. 

• Shift transformations 

[
𝑋
𝑌
1
] = [

1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑥
𝑦
1
] 

• Rigid transformations 

[
𝑋
𝑌
1
] = [

1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥
𝑦
1
] 

• Similarity transformations (RST) 

[
𝑋
𝑌
1
] = [

1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑠 0 0
0 𝑠 0
0 0 1

] [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] [

𝑥
𝑦
1
] 

• Affine transformation 

[
𝑋
𝑌
1
] = [

1 0 −𝑇𝑥

0 1 −𝑇𝑦

0 0 1

] [
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

] [
cos 𝜃 −sin(𝜃 + 𝜙𝑠ℎ) 0

sin 𝜃 cos(𝜃 + 𝜙𝑠ℎ) 0
0 0 1

] [
𝑥
𝑦
1
] 

Together with a given geometric transformation, to complete the mapping between the reference and the input 

image 𝑅𝑒𝑓(𝑋, 𝑌) ≃ 𝐼𝑛{𝑇(𝑋, 𝑌)}, it is also necessary to define a resampling strategy [31]. In the case of the CCI+ 

HRLC processing chain, the chosen resampling strategy is the nearest neighbour (NN) interpolation. More in 

detail, considering again the transformation 𝑇: (𝑋, 𝑌) ↦ (𝑥, 𝑦), the value of the output pixel (𝑋, 𝑌) is chosen 

equal to that of the input pixel (𝑥′, 𝑦′) whose location is closest to the reverse sampled position (𝑥, 𝑦) (whose 

components are generally non-integer). The advantage of nearest neighbour resampling is that the output image 

only contains intensity values present in the original image. 

5.2 Similarity Measures 
Image registration is aimed at aligning two images, the input and the reference. The reference image is fixed, 

and the input image is transformed to match the reference image. The matching strategies may be feature-based 

(e.g., speeded-up robust features (SURF) [32], Harris corner detection [33], maximally stable extremal regions 

(MSER) [34], etc.), area-based (cross-correlation, information theoretic measures [35], etc.), or hybrid. Within 

the CCI+ HRLC pipeline we focus on area-based methods and in particular on mutual information [36], [37], [38] 

and possibly cross correlation. Additional details on such strategy are reported in Section 5.2.3. 

5.2.1 Area-based Methods 

Area-based strategies [39], [40] rely on similarity and information-theoretic measures. In general, area-based 

methods are computationally heavier than the feature-based strategies because of the necessity to compute the 

similarity measure taking into consideration the whole image or generally large image regions. Nevertheless, the 

accuracy achievable by such techniques is generally higher than that achieved by feature-based methods [39]. 

As anticipated above, within the HRLC pipeline, two similarity measures are taken into consideration. On one 

hand, mutual information, an information-theoretic measure based on comparing local intensity distributions 

rather than individual pixel values, is particularly suited for multi-sensor geolocation where the images to be 

registered have different statistics and acquisition geometries. The main drawback is that, even though it is more 

robust and less sensitive to noise than the correlation-based measures, statistical distributions are heavier to be 

estimated on large-scale imagery, which may contribute to the computation time of the overall HRLC pipeline in 
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a non-negligible way. On the other hand, similarity measures like the cross correlation are faster to compute but 

less suited for multi-sensor data, as they are based on the pixel-wise comparisons of intensity values. 

5.2.2 Feature-based Methods 

Feature-based methods are generally faster but less accurate than area-based methods, and the accuracy of the 

registration result depends on the accuracy of the feature extraction method that is being used. There exist 

different strategies for the extraction of informative features. In particular, feature-point registration algorithms 

[39] extract a set of distinctive and highly informative individual points from both images, and then find the 

geometric transformation that matches them. Feature points are named in different ways, including control 

points, tie-points, and landmarks.  

Well-known approaches in this area are those based on scale-invariant feature transforms (SIFT) [41], speeded-

up robust features (SURF) [32], maximally stable extremal regions (MSER) [34], and Harris point detectors [33]. 

Other features of interest may be curvilinear and could be extracted by using edge detection algorithms [39], 

generalized Hough transforms [42], or stochastic geometry (e.g., marked point processes) methods [43].  

5.2.3 The CCI+ HRLC strategy 

Within the CCI+ HRLC processing chain, where the reference and the input images are the optical and the SAR 

images, respectively, the choice is the use of area-based methods based on the estimation of the mutual 

information between the two images. 

Another common possibility is the use of cross-correlation as the similarity measure; however, such option is 

particularly critical in the multi-sensor case of the CCI+ HRLC chain. The computation of the cross-correlation, 

especially using the strategy based on the fast Fourier transform (FFT) [44], is usually faster and hence more 

convenient in an iterative process like image registration. However, the sharply different statistics of the optical 

and SAR images, together with the different acquisition geometries, prevent the use of cross-correlation within 

the CCI+ HRLC pipeline. Nevertheless, the use of cross-correlation and the fast computation through FFT will be 

dealt with in Section 5.4, where the focus will be put on the possibility of using generative adversarial networks 

(GANs) to perform domain adaptation as a pre-processing step of registration. 

With respect to mutual information MI(𝑅𝑒𝑓, 𝐼𝑛) between the reference and the input images, let 𝐼𝑛(⋅) and 

𝑅𝑒𝑓(⋅) indicate the input and reference images (which are both assumed composed of 𝑀 × 𝑁 pixels), 

respectively. Let also 𝑝𝑅𝑒𝑓,𝐼𝑛 be their joint distribution, and 𝑝𝑅𝑒𝑓  and 𝑝𝐼𝑛 be their marginal distributions. The 

mutual information is thus computed according to: 

MI(𝑅𝑒𝑓, 𝐼𝑛) = ∑ ∑𝑝𝑅𝑒𝑓,𝐼𝑛(𝑟, 𝑖) log
𝑝𝑅𝑒𝑓,𝐼𝑛(𝑟, 𝑖)

𝑝𝑅𝑒𝑓(𝑟) 𝑝𝐼𝑛(𝑖)
𝑖𝑟

 

There are different methods to compute such quantity. Within the CCI+ HRLC the mutual information is 

estimated by approximating the probability distributions through the normalized histograms. Another option, 

which is computationally heavier, is to estimate such distributions using kernel-based methods like Parzen 

window density estimation [45]. Due to the large scale of the project and the iterative optimization process, 

using heavy estimators is not recommended because of the registration process requiring multiple sequential 

estimations. 

5.3 Optimization Strategies 

As anticipated in the introduction to this chapter, the registration task is viewed as the combination of the 

following sub-processes [46]: 

1. Selecting a transformation model and a resampling strategy. 

2. Selecting a similarity metric to decide if a transformed input image closely matches the reference image. 

3. Selecting a search strategy, which is used to match the images based on maximizing or minimizing the 

similarity metric. 



 

Ref CCI_HRLC_Ph1-ATBD 

 
Issue Date Page 

4.rev.0 31/10/2022 29 

 

 
 

We already discussed points 1 and 2 in the Sections above; here the focus is put on the optimization strategy 

that has been chosen for the CCI+ HRLC multi-sensor geolocation step. The optimization strategies that are 

considered in the pipeline are the unconstrained Powell’s algorithm and constrained optimization by linear 

approximation (COBYLA) method. On one hand, the unconstrained Powell’s algorithm uses Powell's formulation 

of an approximate conjugate direction method. The objective function does not need to be differentiable, and 

no derivatives are required (differently from the standard conjugate gradient algorithm). The method minimizes 

the function using a line search along a set of search vectors [47]. Moreover, the line search is done by the 

Golden-section and Brent's methods [48]. 

On the other hand, COBYLA addresses constrained optimization by a linear approximation. It works by iteratively 

approximating the actual constrained optimization problem with linear programming problems. At each 

iteration, the resulting linear programming problem is solved to obtain a candidate for the optimal solution. The 

candidate solution is evaluated using the original objective and constraint functions, yielding a new data point in 

the optimization space. This information is used to improve the approximating linear programming problem used 

for the next iteration of the algorithm. When no improvement is possible, the step size is reduced, refining the 

search. When the step size becomes sufficiently small, the algorithm stops [49]. COBYLA allows the user to 

choose a starting search radius. The tuning of such parameter allows the registration process to explore regions 

of the search space that are far away from the initial point. 

Indeed, the standard Powell’s algorithm is unconstrained and, therefore, may perform its search on a large 

portion of the parameter space. On one hand, this is a benefit because it allows the method to perform a broad 

exploration of the parameter space in search of an appropriate transformation to match the input optical and 

SAR images. On the other hand, it is also one of the biggest downsides of the method from the viewpoint of 

reaching convergence in a limited timeframe. Indeed, the input optical and SAR images are natively cropped on 

the same pixel grid based on their georeferencing information. Given this model assumption, it is not hard to 

determine bounded intervals on the transformation parameters. Limiting the search to the multidimensional box 

determined by these ranges is not restrictive from the viewpoint of registration accuracy and makes for a 

significant reduction in computational burden. A modification to the standard Powell’s minimization method 

integrates a set of barrier functions to cope with the unconstrained nature of the original optimization algorithm 

and combine it with the aforementioned box constraint. This way it is possible to restrict the search space to a 

subspace of feasible transformations (i.e., based on the size and spatial resolution of the input images). This 

constrained formulation of Powell’s algorithm with barrier functions is integrated in the HRLC pipeline of the first 

production. 

5.4 Multi-sensor Geolocation using Deep Learning Architectures 

Another approach that is taken into consideration within the CCI+ HRLC processing chain is the use of deep 

learning architectures [47] for multi-sensor geolocation. Deep learning solutions for the registration of multi-

sensor data is becoming of great interest for the remote sensing community.  

In the context of the CCI+ HRLC processing chain, a deep learning solution is being investigated. Such strategy 

uses auto encoders [47] and adversarial networks [48] with the goal of developing a domain adaptation [49] 

method and transform optical images into SAR-like data or vice versa. With such a domain adaptation, the 

application of the aforementioned area-based techniques is further favoured because the optical and SAR data 

are brought together in a common homogeneous domain in which they are more directly comparable [50]. The 

adversarial network considered here is based on the interconnection of convolutional neural networks (CNNs), 

which have been proven highly effective in the application to the semantic segmentation of remote sensing 

images for land cover mapping purposes [50]. 

In particular, as anticipated before, the cross-correlation similarity measure, together with the fast computation 

through FFT, may take the place of the heavier-to-estimate mutual information. Therefore, in the following 

section, the details of such computation through the fast Fourier transform are presented. 
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5.4.1 Cross-correlation via Fast Fourier Transform 

Let again 𝐼𝑛(⋅) and 𝑅𝑒𝑓(⋅) indicate the input and reference images (which are both assumed composed of 𝑀 × 𝑁 

pixels). Their cross correlation can be computed according to: 

CC(𝑥, 𝑦) = ∑ ∑ 𝐼𝑛(𝑚, 𝑛) 𝑅𝑒𝑓(𝑚 − 𝑥, 𝑛 − 𝑦)

𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

There exists a formulation of such quantity computed using the fast Fourier transform [44]. Such process takes 

advantage of the relation between the convolution operation in the spatial or time domain and the product 

operation in the frequency domain. Let ℱ(⋅) denote the Fourier transform operator and let 𝑓 and 𝑔 be two 

signals defined in the spatial or time domain. It is straightforward to write the cross-correlation in terms of a 

convolution operator, which allows taking benefit of the computational efficiency of the FFT [44] and derive the 

cross-correlation by combining transformation, products, and inverse transformations (up to introducing the 

appropriate zero padding): 

ℱ(𝑓 ∗ 𝑔) =  ℱ(𝑓) ∙ ℱ(𝑔)   →     𝑓 ∗ 𝑔 = ℱ−1(ℱ(𝑓) ∙ ℱ(𝑔)) 

In more details, to compute the cross-correlation between two images it is necessary to: (i) compute the FFT of 

each image (up to zero padding) to pass from the spatial domain to the frequency domain; (ii) compute the 

complex conjugate of one of the two resulting signals in the frequency domain because of the mirroring 

operation performed during convolution and not during correlation; (iii) multiply the images in the frequency 

domain; and (iv) compute the inverse FFT transform of the product to obtain the cross-correlation of the two 

images in the spatial domain. The flowchart of such computation is provided in Figure 13. 

 

Figure 13: Computation of the cross-correlation via FFT. 

 

5.5 Automatic tiling for large-scale registration 

The HRLC pipeline operates geometrically on the pixel grid of the Sentinel-2 granules. Accordingly, the 

multisensor geolocation module also works with respect to this lattice. Given the size of the Sentinel-2 granules, 

taken as reference images in the multisensor geolocation module, a single global transformation may not be 

sufficient to carefully address local distortions. In fact, the images acquired by the two satellites may present 

distortions which significantly differ locally. This is especially true in the cases in which a single S2 granule lays 

over a border among different S1 images. Furthermore, the application of the aforementioned area-based 

approach to the entire granule area may be computationally heavy.  

In order to address these problems, a dedicated automatic tiling algorithm has been developed in the project: 

both the reference (output of the optical pre-processing chain) and input (output of the SAR pre-processing 

chain) images are divided into patches. Each of this patches is registered separately using a global transformation 

and the final image is reconstructed starting from the patches. On one hand, considering one patch at a time 

reduces the computational complexity of the registration. Furthermore, the resulting overall transformation is 

non-global across the whole granule and allows to better account for misaligned details. On the other hand, the 
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developed algorithm also takes into account the need for favouring consistency across the patches and to 

prevent border artefacts. While for the first patch the algorithm is initialized with the identity transformation 𝑇0 

consisting of: (i) no translation along neither one of the two axis; (ii) no rotation; and (iii) unitary scaling (𝑖. 𝑒. 𝑇0 =

[𝑇𝑥 = 0, 𝑇𝑦 = 0, 𝜃 = 0, 𝑠 = 1]), the result �̂�1 of the geolocation for this first patch is passed to the next one.  That 

way, the next patch is initialized with 𝑇1 = �̂�1. The same is done for each subsequent patch and transformation 

value is propagated so as to initialize the next iteration of the algorithm.  

 

 

 

This allows for faster convergence, giving the algorithm a reliable initialization for each patch after the first one. 

Moreover, it generally leads to more precise results, considering that local distortions among adjacent patches 

can be assumed to be minor and the initialization allows the minimization algorithm to start from a good solution 

and quickly exploring the closer ones in the search space [51]. Dedicated procedures are also integrated in the 

algorithm to detect anomalies in this iterative process and prevent them for affecting the registration output. 

6 Optical imagery classification 

From analysis of the recent literature related to large-scale land cover mapping problems the following crucial 

aspects must be considered in order to achieve efficient and robust classification of optical high-resolution 

images [52]: 

• automation for efficiency and timeliness; 

• spatial continuity of the maps; 

• temporal coherence between updates of the product; 

• reproducibility of the results; 

• support of changes of nomenclature without changing the system. 

The CCI HRLC project addresses each of these points. To maximize the outcome, the following strategies must 

be implemented and assessed in an operational context of land cover map production at the large-scale: 

• all available images having cloud cover lower than 40 % acquired during the reference period are used; 

• the procedure is fully automatic without a need for manual operations; 

• the processing chain is implemented using a massively parallel work-flow which achieves a reduced 

computation time allowing timely map production and data reprocessing for ensuring continuity across 

reference years in the case of updating the product specification. 

Project activity for optical imagery classification is oriented in two directions: on the one side, internal 

benchmarking activities were entirely devoted to the selection of the best performing classification algorithms; 

on the other side, a selection of reference/ancillary data to empower and enrich the feature extraction and 

training processes. 
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Figure 14. Optical data processing chain for the prototype production of both the static and the historical HR LC maps 
obtained by classifying the time series of high resolution optical data. 

Figure 14 depicts the optical data processing chain for the production of both the static and the historical HR LC 

maps obtained by classifying the time series of Sentinel 2 and Landsat data. The images are first pre-processed 

in order to perform the atmospheric correction and detect the clouds. Then, the composites are generated and 

the possible missing data (caused by cloud and shadow coverage) are restored. Due to the missed availability of 

training data, a lot of effort has been devoted to the preparation of photo-interpretation activity carried out to 

define the training sets. In order to generate a representative and informative training set, a stratified random 

sampling strategy was defined to define to the prior probabilities of the land cover classes, computed according 

to the 2015 Copernicus Global Land Cover map. Details are given in the following.  

 

6.1 Classification 

To generate the high-resolution LC maps, the SVM classifier is trained on the time-series of optical composites 

generated in the pre-processing step. To accurately represent the spatial information together with the temporal 

one, an optical feature extraction step is performed to extract textural features from the first composite. 

Moreover, the altitude of the land cover is added as a feature, such that to better characterize the land cover 

typical of specific altitude levels. Hence, while temporal and spectral features are good in representing the 

seasonality of the classes, the aim of the textural and altitude features extraction is to provide to the classifier 

information about spatial context of the samples which can provide better classes discrimination.  

In order to perform the supervised training of the classifier, a lot of effort has been devoted generating a training 

set by photo-interpretation. The labelled samples associated with time-series of composites are extracted from 

the training database. The training is performed once for each year in each considered area independently 

(Amazonia, Sahel and Siberia).   

6.1.1 Support Vector Machine 

As a classifier, the Support Vector Machine (SVM) is one of the most effective methods in pattern and texture 

classification to the land cover mapping [53]. Its fundamental idea is that the feature of input space is mapped 

into a high-dimensional feature space through nonlinear transformation. The nonlinear transformation is 

implemented by defining proper kernel function. SVM has two important features. Firstly, the upper bound on 

the generalization error does not depend on the dimension of the space. Secondly, the error bound is minimized 

by maximizing the margin, that is, the minimal distance between the hyperplane and the closest data points [54], 

[55]. SVMs are particularly appealing in remote sensing field due to their ability to successfully handle small 

training datasets, often producing higher classification accuracy than traditional methods, as well as to be the 

best algorithm when classes are separable [55]. In contrast, for larger dataset, it requires a large amount of time 

to process.  
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SVM implements a classification strategy that exploits a margin-based “geometrical” criterion rather than a 

purely “statistical” criterion. In other words, SVM does not require an estimation of the statistical distributions 

of classes to carry out the classification task. Instead, the classification model exploits the concept of margin 

maximization. The main properties that make SVM particularly attractive in the considered application are the 

following: 

• their intrinsic effectiveness with respect to traditional classifiers thanks to the structural risk minimization 

principle, which results in high classification accuracies and very good generalization capabilities; 

• the possibility to exploit the kernel trick to solve non-linear separable classification problems by projecting 

the data into a high dimensional feature space and separating the data with a simple linear function; 

• the convexity of the objective function used in the learning of the classifier, which results in the possibility 

to solve the learning process according to linearly constrained quadratic programming (QP) characterized 

from a unique solution (i.e., the system cannot fall into sub-optimal solutions associated with local minima); 

• the possibility of representing the convex optimization problem in a dual formulation, where only non-zero 

Lagrange multipliers are necessary for defining the separation hyperplane (which is a very important 

advantage in the case of large datasets). This is related to property of sparseness of the solution. 

 

Let us assume that a training set is given 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , where 𝑥𝑖 = (𝑥𝑖

1, … , 𝑥𝑖
𝑗
) is the 𝑖-th primitive feature 

and 1{ }N
i iy ==Y  is the corresponding set of labels. Accordingly, let us assume that { 1; 1}iy  + − is the binary label 

of the sample 𝑥𝑖. The goal of the binary SVM is to divide the d-dimensional feature space in two subspaces, one 

for each class, through a separating hyperplane 𝐻: 𝑦 = 〈𝑤 ⋅ 𝑥〉 + 𝑏 = 0. The final decision rule used to find the 

membership of a test sample is based on the sign of the discrimination function 𝑓(𝑥) = 〈𝑤 ⋅ 𝑥〉 + 𝑏 associated 

to the hyperplane. Therefore, a generic sample 𝑥 will be labelled according to the following rule: 𝑦 = 𝑠𝑔𝑛 𝑓(𝑥). 

 

The training of an SVM consists in finding the position of the hyperplane 𝐻, estimating the values of the vector 

𝑤 and the scalar b, according to the solution of an optimization problem. From a geometrical point of view, 𝑤 is 

a vector perpendicular to the hyperplane H and thus defines its orientation. The distance of the 𝐻 to the origin 

is b w , while the distance of a sample 𝑥 to the hyperplane is ( )f x w . Let us define the functional margin 

 min ( )i iF y f= x , 1,...,i N= and the geometric margin G F= w . The geometric margin represents the 

minimum Euclidean distance between the available training samples and the hyperplane. 

In the case of a linearly separable problems, the learning of an SVM can be performed with the maximal margin 

algorithm, which consists in finding the hyperplane 𝐻 that maximizes the geometric margin 𝐺. However, the 

maximum margin-training algorithm cannot be used in case the available training samples are not linearly 

separable because of noisy samples and outliers. In these cases, the soft margin algorithm is used in order to 

handle nonlinear separable data. This is done by defining the so-called slack variables as: 

 

𝜉 [(𝑥𝑖, 𝑦𝑖), (𝑤, 𝑏)] = 𝜉𝑖 = max [0,1 − 𝑦𝑖(〈𝑤 ⋅ 𝑥𝑖〉 + 𝑏)] 

 

Slack variables allow one to control the penalty associated with misclassified samples. In this way the learning 

algorithm is robust to both noise and outliers present in the training set, thus resulting in high generalization 

capability. The optimization problem can be formulated as follows: 
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where 0C  is the regularization parameter that allows one to control the penalty associated to errors (if C=  

we come back to the maximal margin algorithm), and thus to control the trade-off between the number of 

allowed mislabelled training samples and the width of the margin. If the value of C is too small, many errors are 

permitted and the resulting discriminant function will poorly fit with the data; on the opposite, if C is too large, 

the classifier may overfit the data instances, thus resulting in low generalization ability. A precise definition of 

the value of the C parameter is crucial for the accuracy that can be obtained in the classification step and should 

be derived through an accurate model selection phase. Similarly to the case of the maximal margin algorithm, 

the optimization problem can be rewritten in an equivalent dual form: 
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Because of the constraint introduced by the multipliers  
1

N

i i


=  that for the soft margin algorithm are bounded 

by the parameter C, the problem is also known as box constrained problem. The Karush–Kuhn–Tucker (KKT) 

complementarity conditions provide useful information about the structure of the solution. They state that the 

optimal solution should satisfy: 
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Varying the values of the multipliers  
1

N

i i


=  three cases can be distinguished: 
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The support vectors with multiplier i C =  are called bound support vectors (BSV) and are associated to slack 

variables 0i  ; the ones with 0 i iC   are called non-bound support vectors (NBSV) and lie on the margin 

hyperplane 𝐻1 or 𝐻2 ( ( ) 1i iy f =x ). 
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Figure 15: Qualitative example of a separating hyperplane in the case of a non-linear separable classification problem. 

An important improvement to the above-described methods consists in considering nonlinear discriminant 

functions for separating the two information classes. This can be obtained by transforming the input data into a 

high dimension (Hilbert) feature space '( ) d x  ( 'd d ) where the transformed samples can be better 

separated by a hyperplane (Figure 16). The main problem is to explicitly choose and calculate the function 

'( ) d x  for each training samples. Given that the input points in dual formulation appear in the form of 

inner products, we can do this mapping in an implicit way by exploiting the so-called kernel trick. Kernel methods 

provide an elegant and effective way of dealing with this problem by replacing the inner product in the input 

space with a kernel function such that: 

( , ) ( ( ) ( ) , 1,...,i j i jK x x i j N =   =x x  (7) 

implicitly calculating the inner product in the transformed space. The soft margin algorithm for nonlinear 

function can be represented by the following optimization problem: 
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 (8) 

 

And the discrimination function becomes: 

*( ) ( )i i i

i SV

f y k b


=  +x x x  (9) 

The condition for a function to be a valid kernel is given by the Mercer’s theorem. The most widely used non-

linear kernel functions are the following:  

 

• homogeneous polynomial function: ( , ) ( ) ,p
i j i jk p=  x x x x   

• inhomogeneous polynomial function: ( , ) ( ( )) , , 0p
i j i jk c p c= +   x x x x  

• Gaussian function: 
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Figure 16: Transformation of the input samples by means of a kernel function into a high dimension feature 
space: a) Input feature space; b) kernel induced high dimensional feature space. 

From an operational perspective, a possible implementation would use the Gaussian kernel since linear and 

polynomial kernels are less time consuming but provide in general less accuracy. The Sigma 𝜎 parameter is a 

positive parameter whose behavior regulates the fitting property: if its value increases the model gets overfits, 

while decreasing the model underfits. In our implementation, the default value for gamma is initially set equals 

to 1 over the number of features [56], optimal choice can be made in proper training stage. 

 

6.1.2 Textural features extraction 

Texture allows the accurate characterization of the contextual information of a pixel in the image. In the 

literature, it can be found that the use of textural information can significantly improve the classification results. 

Hence, such features can be more distinctive than spectral features for some land cover classes. Instead of 

considering complex spatial features, such as shape and size, which required the unsupervised segmentation of 

the image, we considered other textural feature extractors. First, the Gray-Level Co-Occurrence Matrix (GLCM) 

is computed. Then the GLCM is used to extract the following statistical measures, used as features: 

• Dissimilarity; 

• Correlation; 

• Contrast; 

• Homogeneity; 

• Energy; 

• Angular Second Moment (ASM). 

6.1.3 Photo-interpreted training sets generation  

Operational land cover map production over large areas cannot rely on field campaigns because huge amounts 

of costly data have to be collected, most importantly jeopardising the timeliness of the land cover map. In order 

to generate the training set used to perform the supervised classification of the considered study areas, a lot of 

effort has been devoted to photo-interpretation activities. Hence, even though existing thematic products 

represent a valid source of information, ground reference data are needed to model complex classes which 

require reliable samples that cannot be extracted from the outdated coarse thematic products. Although 

extremely complex and time consuming the reference data allows the production of high quality training set 

which matches the definition of the legend and corresponds to the exact same time frame (see Figure 17 and 

Figure 18).  
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To properly generate the training set, which is representative of the considered area, the team first estimated 

the prior probabilities of the classes by considering the information provided by the 2015 Copernicus Global Land 

Cover (CGLC) map. Then, the samples to be labeled, where selected according to the stratified random sampling 

strategy. The label of each sample was defined by photo-interpretation of both Sentinel 2 data and SPOT images 

in the RR areas. For areas, where POT images were not available, we exploited the public very high-resolution 

Google and ESRI images (i.e., 50 cm). The labels assigned to samples are those of the HRLC classes (see Table 1)  

which have been defined by applying the schematic approach from LCCS system (see Figure 19) and adapting to 

what is actually observable with remote sensing data. In particular, the data were pixel-wise labeled, thus we 

avoided the strong positive correlation between samples units, which is the case for polygon-wise labeling. 

 

Figure 17. Training Set Production conducted via photo-interpretation. 

 

 

Figure 18. Example of number of tiles to be covered by photointerpretation in Amazonia. 

 

Although the photo-interpretation represents a valid solution for generating the training set, the legend scheme 

reported in Figure 19 presents some discrepancy with a set of classes which can be discriminated by the 

considered remote sensing data. Figure 20 reports an example of ambiguity between grassland (permanent 

herbaceous cover) and cropland (a herbaceous cover that is harvested). In the reported example it is not clear 
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which is the correct class considering the set of rules defined in the classification scheme. Hence, if bare soil is 

present during the year, it should be classified as cropland. However, by taking the context of cattle raising in 

this region, you might guess this is grassland. Another problem is reported in Figure 21, where the pixels 

belonging to the road are classified as bare soil since they are not asphalted. Finally, differently from the medium 

resolution no mixed classes are present in the legend (e.g., Mosaic herbaceous cover (>50%) / and shrub (<50%)). 

Although we are working at 10 m spatial resolution, the detection of shrubs in the Sentinel 2 images is challenging 

(see Figure 22 ). The identification of deciduous and evergreen shrubland is even more challenging. 

 

 

Figure 19. The classification scheme of the training-set production. 

 

 

  

 

 

 

 NDVI trend 
NDVI trend 
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Figure 20. Example of ambiguity between the classes: (i) grassland (permanent herbaceous cover), and (ii) cropland (a 
herbaceous cover that is harvested). If bare soil is present during the year, it should be classified as cropland. By taking 

the context of cattle raising in this region, you might guess this is grassland. 

  

Figure 21. In Amazonia, the roads far away the city are not asphalted, and they are very similar to bare areas (ambiguous 
definition from the RS view point). 

 

  

Figure 22. Differently from the medium resolution no mixed classes are present in the legend (e.g., Mosaic herbaceous 
cover (>50%) / and shrub (<50%). Although we are working at 10 m spatial resolution, the detection of shrubs in the 
Sentinel 2 images is challenging. The identification of deciduous and evergreen shrubland is even more challenging. 

 

In the case of the historical training set photo-interpretation activity, and at the same time changing the 

resolution of the available images from 10 to 30 meters, the team has identified following challenges: 

• Less high resolution images are available; 

• Landsat 7 images are corrupted; 

• spatial resolution of 30m hampers extraction of training points as the spectral information is 

often mixed. Moreover, the NDVI and NDWI trends (crucial to differentiate some very similar 

classes e.g. grassland vs cropland) are unclear and difficult to interpret. 

Taking into account all of the above mentioned points, the team has decided to update the training set extracted 

in 2019. This means to confirm the label assigned to a sample in 2019 or otherwise to eliminate the sample from 

the training set. Thus, the training set produced in the past have smaller number of samples compared to the 
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one used to classify the static map. Figure 23 shows a qualitative example of the data used to perform the 

photointerpretation in the past. 

 

Figure 23. Many difficulties going back in the past for the photo-interpretation process: (i) less images are available; (ii) 
Landsat 7 Corrupted; (iii) NDVI and NDWI trend not clear; (iv)  the spatial resolution of 30m. 

6.1.4 Final static training sets generation 

While complex classes require reliable samples that cannot be extracted from the outdated coarse thematic 

products, existing thematic products represent a valid source of information for the other classes, allowing to 

significantly expand the training set and properly represent the whole areas to map. For this reason, only for the 

static map production, we integrated the training sets delivered through photointerpretation with samples 

extracted from the agreement of land cover products available. Oversampling of the complex classes was 

performed to keep the training set prior distribution of the land-cover classes constant. Moreover, the increased 

amount of training labels unlocked the possibility of exploiting the specific properties of the local land cover. This 

can be done by considering the global ecoregions, which are areas of water or land that contain characteristic 

assemblages of natural communities and species. By training a classifier for each ecoregion, we can exploit the 

fact that inside an ecoregion the probability of encountering different vegetation species (which may be mapped 

in the same class) and communities remains relatively constant. This feature is important in land-cover mapping 

with remote sensing images, as it allows to mitigate the intra-class variance, a well-known issue in remote 

sensing. 

Therefore, we combined the photo-interpreted training sets with samples extracted from the agreement of land 

cover products available, and then divided each area in smaller areas defined by taking into account the 

ecoregions. This was done at tile level and by aggregating ecoregions to avoid excessive fragmentation of training 

set. Figure 24 shows as examples the photo-interpreted training set and the final training set of Amazon static, 

respectively. Figure 25 shows the final division into ecoregions of the three mapped areas. Note that the 

ecoregion training sets are slightly larger and overlapping with each other to guarantee consistent predictions of 

the land cover on the ecoregion borders. 
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Figure 24. Amazon static: (a) photo-interpreted training set, (b) final training sets divided by ecoregions. 

 

Figure 25. Final division into ecoregion for the three mapped areas. 

7 SAR imagery classification 

7.1 Feature extraction 

To carry out the land cover classification using Sentinel-1 dual-Pol data sets based on the defined classes, 

reported in Table 1, the feature extraction will be based on the polarimetric information of data [57], [58]. 

To improve the ability of classifier to recognize and discriminate the different environment textures and 

morphological structures (e.g. urban areas, agricultural crops, forests, etc.), the amplitude of VH and VV channels 

and their combinations have been assumed. 
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Although the S1 data are not fully polarized, we can exploit the polarimetric information arising from the 

intensities of the VH and VV channels by means analysis on single channel (by choosing VH or VH) or on their 

combination (their mean or ratio, for instance). These features contain essential polarimetric information 

provided by the dual-Pol data since the polarimetry combination distinguishes specular scattering from diffuse 

scattering. 

7.1.1 Texture analysis on single polarization 

To analyze and exploring the spatial information contained in a single S1 image (VH or VV), a docker application 

has been developed in order to provide a set of filters that operate especially in spatial domain. The rationale for 

selecting these algorithms is the velocity of the execution. Although they might not be the most accurate ones, 

the possibility to apply them quickly to the SAR images in a large stack in a reasonable amount of time is an 

invaluable asset for wide area processing. The implemented techniques are summarized in the following list: 

• Mean filter is one of the most widely used low-pass filters (LPF). It substitutes the pixel value with 

the average of all the values in the local neighborhood (filter kernel). 

• Median filter, a non-adaptive filter and replaces each pixel value with the median of the pixel values 

in the local neighborhood. 

• Minimum (maximum) filter is a non-linear filter that is located the darkest (brightest) point in an 

image. It is based on median filter since it is defined as his 0th (100th) percentile, i.e. by considering 

the minimum (maximum) of all pixels within a local region of an image. 

• Max-Min filter, blurs the image by replacing each pixel with the difference of the highest pixel and 

the lowest pixel (with respect to intensity) within the specified window-size. 

7.1.1.1 Mean filter 

The Mean filter is a low-pass filter (LPF) and represents the simplest and easiest method of smoothing images, 

in addition to being very easy to implement. Mean filtering is usually thought of as a convolution filter. Like other 

convolutions it is based around a kernel, which represents the shape and size of the neighborhood to be sampled 

when calculating the mean. The idea of mean filtering is simply to replace each pixel value in an image with the 

mean (“average”) of values belonging to neighborhood, including itself. Then, the filter window will be moved 

pixel-by-pixel until to scanner the whole image.  

It does not remove the speckle from the image but averages it into one. In fact, the noise becomes less apparent, 

but the image looks “softened”. Theoretically, dark and bright speckle pixels within the filter window can cancel 

each other out. The probability of such situations increases with the size of the filter window, 7×7 or 9x9 for 

example. However, it produces image blur, loss of details and, eventually, loss of spatial resolution, giving an 

image with less noise but less high frequency detail. For this reasons, 3x3 or 5x5 size filter are recommended. 

Note that the mean filtering is not suitable in case of pulse and spike noise since the shot noise pixel values are 

often very different from the surrounding values, they tend to significantly distort the pixel average calculated 

by the mean filter. The median filter is successful at removing pulse and spike noise while retaining step and 

ramp functions [59]. 

7.1.1.2 Median filter 

The median filter is normally used to reduce noise in an image, somewhat like the mean filter. However, it often 

does a better job than the mean filter of preserving useful detail in the image. Like the mean filter, the median 

filter considers each pixel in the image in turn and looks at its nearby neighbors to decide whether it is 

representative of its surroundings or not. Instead of simply replacing the pixel value with the mean of neighboring 

pixel values, it replaces it with the median of those values. The median is calculated by first sorting all the pixel 

values from the surrounding neighborhood into numerical order and then replacing the pixel being considered 

with the middle pixel value.  
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By calculating the median value of a neighborhood rather than the mean filter, the median filter has two main 

advantages over the mean filter: 

- The median is a more robust average than the mean and so a single very unrepresentative pixel in 

a neighborhood will not affect the median value significantly. 

- Since the median value must be the value of one of the pixels in the neighborhood, the median 

filter does not create new unrealistic pixel values when the filter straddles an edge. For this reason, 

the median filter is much better at preserving sharp edges than the mean filter. 

Hence, the median filter is edge preserving [60] although it may lead to the removal (or suppression) of small 

(also linear) objects from the image, exactly in the same way as it removes (or suppresses) speckle noise. 

Applying a 3×3 median filter produces a noise reduction at the expense of a slight degradation in image quality. 

If we smooth the noisy image with a larger median filter, e.g. 7×7, all the noisy pixels disappear, but the image 

looks a bit "blotchy". 

A good solution is to use 3×3 or 5x5 median filter [61] and passing it over the image more times in order to 

remove all the noise with less loss of detail, alternatively. 

The mean and median filters meet with only limited success when applied to SAR data. One reason for this is the 

multiplicative nature of speckle noise, which relates the amount of noise to the signal intensity. The other reason 

is that they are not adaptive filters in the sense that they do not account for the speckle properties of the image. 

Adaptive filters, such as the Lee filter, assume that the mean and variance of the pixel of interest are equal to 

the local mean and variance of all pixels within the user-selected moving window. 

7.1.1.3 Minimum and maximum filters 

Minimum and maximum filters, also known as erosion and dilation filters, respectively, are morphological filters 

that work by considering a neighborhood (running window) around each pixel. The running window is an image 

area around a current pixel with a defined radius. For example, if we specify the radius = 1, the running window 

will be a 3x3 square around the target pixel, which is the smallest box size. The maximum and minimum filters 

are shift-invariant. Whereas the minimum filter replaces the central pixel with the darkest one in the running 

window, the maximum filter replaces it with the lightest one. In other words, the minimum filter extends object 

boundaries, whereas the maximum filter erodes shapes on the image. The odd size of the neighborhood 

considered for each pixel. Also in this case, the recommended size are 5x5 or 7x7 in order not to incur in issues 

have been addressed previously, see Section 7.1.1.1. 

The docker offers also the possibility for each user to choose the kernel filter size adapted to its needs, but the 

default dimension is 9x9 because the implemented filter has shown satisfactory results both in terms of 

computational complexity and the quality of output image, due its ability in details preservation, edges 

definition. 

7.1.1.4 Max-Min filter 

The output image is given by the difference between dilation and erosion filters (described in previous section 

7.1.1.3). 

Hiring 𝑋 as input image, the max-min filtered image is given taking into the account to the following simple 

expression: 

𝑌 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 

where 𝑌 is the resulting gray level image, whereas 𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛 are the maximum and minimum filtered 

version of input image 𝑋, respectively. The Max-Min filter blurs the image by replacing each pixel with the 

difference of the highest pixel and the lowest pixel (with respect to intensity) within a specified window-size (for 

example, the grayscale 3x3 or 5x5 pixel neighborhoods). To preserve much more spatial details and texture 

structures, we have set up window size to 9 by default, also according to the evaluations explained above.     
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7.1.2 Texture analysis on dual- polarization 

SAR polarimetry allows for the retrieve of shape, orientation, and dielectric property information of scatterers 

[62],[63]. Since there are multiple polarimetric channels, it provides more information than single-pol SAR data. 

However, the richness of polarimetry is achieved by sacrificing the spatial resolution. To balance the trade-off, 

instead of a fully polarized SAR, Sentinel-1 mission provides partially polarized SAR data, known as dual-Pol data, 

with the VV and VH channels. To extract the polarimetric information of Sentinel-1 data, we used the signal 

acquired from VH and VV channels, and several composite images given by: 

• Ratio, 𝑉𝑉 𝑉𝐻⁄  

• Sum, 𝑉𝐻 + 𝑉𝑉 

• Mean,  (𝑉𝐻 + 𝑉𝑉) 2⁄  

• Difference, 𝑉𝑉 − 𝑉𝐻 

These four features contain essential polarimetric information provided by the dual-Pol data. This polarimetry 

combination is able to distinguish specular scattering from diffuse scattering [64]. For the purpose of 

classification, these features are highly beneficial to differ classes with different surface roughnesses, such as 

water, plant, building, and soil. The aim is basically exploit the dual-polarization capability of S1 for providing as 

many ground surface information as possible [65]. 

7.1.3 Texture analysis by statistics  

To increase the feature space it is also possible to add texture features by applying the Grey Level Co-occurrence 

matrix (GLCM), in order to retrieve second order textures [66]–[68]. 

This operation is done before applying the speckle filtering, since the despeckling destroys most of the image 

texture. For example, the classification accuracy related to perennial agroforestry land cover can be improved 

by using less correlated GLCM texture measures: Contrast, Entropy, Correlation, and Variance. The GLCM texture 

can be measured using a 5×5 moving window, one-pixel displacement, for example. In [69] it is shown that the 

GLCM texture measures are appropriated to discriminate vegetation types, and less sensitive to no vegetation 

cover. Is shown that the more informative variables are the VH Variance and Correlation of SAR images acquired 

in a dry season and, and VV Contrast of images in a wet season. 

Instead, [70] highlights the importance of VH image that is the best band for differentiating agricultural land from 

other land cover types. The major differences in vegetation, their vertical structure, are captured in co-polarized 

(VV) band. 

Another way for land-cover classification is to use multi-temporal SAR data (i.e. SAR data time series) analysis 

and extract features by considering the temporal variation of backscattering coefficients and information from 

interferometric data processing. The work [71] exploits the combination of the average backscattering coefficient 

and temporal variability. The average backscattering coefficient permits to classify water and urban areas, since 

they present very low and high signatures, respectively. The temporal variability, which is a main feature in 

multitemporal analysis, can be used to distinguish cultivated areas and water from the forest and urban classes.  

The behavior of VH and VV backscatter signal is different over vegetated areas. Over vegetation land covers, 

there is much volume scattering of the radar signal. And volume scattering tends to cause a depolarization of the 

return signals, which then corresponds to a high backscatter in cross-polarization (VH or HV) bands. Thus, VH 

bands show a higher sensitivity to vegetation. 

For the purposes of classification, these features are highly beneficial to diversify classes with different surface 

roughness, such as water, plants, buildings, and soil. In this manner, the classification maps may achieve high 

classification accuracy values. Specifically, the feature extraction step is preliminary to the classification step in 

the sense that only specific features for peculiar classes may be extracted and used each time. In addition, 

according to the technical literature, we also identified several works describing most performing classification 

methods able to classify different classes (water, urban areas, snow, for example) with a proper combination of 

features set. A preliminary list is reported in the following Table 5. 
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Table 5. Preliminary list of SAR features for subsets of classes. 

Class Feature(s) Reference 

Urban Occurrence range, 
DEM slope 

[G. Lisini, A. Salentinig, P. Du, P. Gamba, “SAR-based urban extents 
extraction: from ENVISAT to Sentinel- ”, IEEE J. of Selected Topics in 
Applied Earth Observation and Remote Sensing, doi: 
10.1109/JSTARS.2017.2782180, vol. 11, no. 8, pp. 2683-2691, Aug. 
2018.] 

Water Average backscatter, 
the minimum 
backscatter of a time 
series and 
standard deviation of 
the backscatter 

[Santoro, Maurizio, and Urs Wegmüller. "Multi-temporal SAR 
metrics applied to map water bodies." 2012 IEEE International 
Geoscience and Remote Sensing Symposium. IEEE, 2012. 

Snow 𝜎0VV band; 
backscattering ratio 

[Tsai, Ya-Lun S., et al. "Wet and Dry Snow Detection Using Sentinel-
1 SAR Data for Mountainous Areas with a Machine Learning 
Technique." Remote Sensing 11.8 (2019): 895.] 

Crop Occurrence variance; 
co-occurrence 
contrast 

[Fontanelli, Giacomo, et al. "Agricultural crop mapping using optical 
and SAR multi-temporal seasonal data: A case study in Lombardy 
region, Italy." 2014 IEEE Geoscience and Remote Sensing 
Symposium. IEEE, 2014.] 

Deciduous 
vegetation 

Temporal signature [Rüetschi, Marius, Michael Schaepman, and David Small. "Using 
multitemporal Sentinel-1 C-band backscatter to monitor phenology 
and classify deciduous and coniferous forests in northern 
Switzerland." Remote Sensing 10.1 (2017): 55.] 

Evergreen 
vegetation 

VV and VH channels [Abdikan, Saygin, et al. "Land cover mapping using sentinel-1 SAR 
data." The International Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences 41 (2016): 757] 

Soil VV and VH channels [Hu, Jingliang, Pedram Ghamisi, and Xiao Zhu. "Feature Extraction 
and Selection of Sentinel-1 Dual-Pol Data for Global-Scale Local 
Climate Zone Classification." ISPRS International Journal of Geo-
Information 7.9 (2018): 379.] 

 

At this point, features are computed according to the following steps: 

a) Initially, the SAR time series is properly pre-processed by means of the methods and filters previously 

introduced in Section 4. 

b) Then, all the de-speckled images in one year are first divided according to the season and then merged 

into one image per season by means of a temporal average.  This step is performed as a thread-off 

between the need to keep multitemporal information and the one to reduce the computational load 

of the classification procedure. 

c) Finally, the features useful for the extraction of the classes reported in the table above are computed 

for the final multitemporal sequence. 

 

7.2 Classification 

The classification procedure implemented in this work is based on a hierarchical extraction of specific classes 

followed by a general classification applied to the rest of the scene. Specifically: 

• First, some of the classes that are recognizable using a specific subset of features are extracted from the 

data by means of unsupervised techniques. This is currently performed for the urban and water classes. 

• Then, supervised classifiers, namely Random Forest (RF) and Support Vector Machines with Radial Basis 

Function (RBF) kernel, are applied to the set of features. 

For the latter step, suitable training data are necessary, and two methodologies have been adopted to assess 

the performance of the classification chain. To avoid the unbearable cost of a manual extraction of high-
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resolution samples a procedure able to extract samples for many of the desired classes from existing maps has 

been identified. This procedure must be complemented for specific areas and classes by more performing 

sample extraction methods (manual selection, for example), but it helps to reduce the cost of that procedure 

to a level which is manageable in the context of a global mapping methodology. 

 

The following sections are dedicated to present the extractors developed for the urban and water classification, 

and to describe the ways followed to generate the training sets. 

7.2.1 Description of the Urban EXTraction (EXT) algorithm 

The main idea of The UEXT algorithm [24] is to use artificial structures, such as buildings, that show up as very 

bright points in multitemporally averaged and despeckled sets of SAR images (possibly reduced to single SAR 

images in case the temporal intervals of interest do not include more than one data set). The artificial structures 

corresponding to the largest values of the normalized backscattered power are selected as “seed pixels”, and a 

flooding algorithm is subsequently and iteratively applied to their neighbourhood, until a lower threshold value 

is reached. Eventually, a series of post-processing steps, also considering the Digital Elevation Model of the area 

to avoid false positives due to mountainous slopes, are applied. The approach in [24] includes several 

intermediate steps that have been simplified in the approach implemented into the project to reduce the 

computational cost. Specifically, instead of the above-mentioned iterative flooding procedure, a single 

watershed technique has been introduced. The seed pixels are used as “markers” of the watershed algorithms, 

while the saliency map of the same algorithm is obtained by applying an occurrence data range filter to the SAR 

data sets. The size of the data range windows has been selected to keep as much as possible the spatial resolution 

of the data, and it is just a 3x3 pixel window. 

 

Figure 26. Graphical representation of the workflows for the UEXT method. 

This method is visually described by the workflow in the Figure 26. The first step is the above-mentioned 

temporal average over the data sets in the temporal range of interest. This operation exploits the fact that urban 

areas respond coherently along the temporal axis, and thus a multitemporal average still results in bright 

backscattering pixels inside human settlements. This is not true for vegetated areas, whose backscattered values 

changes during seasons, hence their average will result in a lower value. The resulting image is then used twice: 

to identify seed pixel by hard thresholding the image, and to extract a saliency map by applying a data-range 

filter. This filter highlights urban areas, and thanks to the previous low-pass filter, the map results in 

homogeneous areas. The final step is the watershed algorithm, where the identified seeds would grow within 

the saliency map, thus producing the final urban extent map. 

7.2.2 Description of the water extraction algorithm 

The water extraction algorithm applied in this work has been recently presented in [72] and is summarized in the 

following figure. First, a multitemporal denoising step is performed on the SAR stack. Then, a set of statistical 

and temporal features are computed to train a k-Nearest Neighbor (k-NN) clustering algorithm. Finally, a few 
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post-processing steps (such as morphological operations and steep slope removing) are applied to the classified 

result to improve the final water surface mapping accuracy. 

 

 

Figure 27. Overview of the complete procedure designed to extract both temporary and permanent water bodies. 

 

To extract water bodies, a few features are computed: composites obtained by averaging in time all the available 

SAR images (if necessary, within more temporal windows) and their temporal mean, minimum, maximum, and 

variance. Then, starting from the 300 m map by the ESA CCI project, a mask representing water areas is extracted, 

resampled at 10 m spatial resolution, and dilated with a 3 x 3 kernel window. In each tile 10.000 pixels that fall 

either on water or non-water regions are randomly selected. These training points are clustered, and the 

extracted model is used to classify all points in the tile. The k-NN algorithm is performed with k=4, as inside the 

initial mask there may be water, vegetation, bare and impervious soil. Finally, once the clusters are extracted, 

the same number of points is randomly extracted from each cluster and compared with the water layer in the 

ESA-CCI map. The cluster with more points belonging to that layer is recognized as the “water cluster”. 

This result optionally undergoes a post-processing step using a Digital Surface Model (DSM) is performed. The 

slope on a per-pixel basis is used to filter out radar shadows in hilly and mountainous regions. Lastly, an “opening” 

morphological operation is applied to the slope-filtered result to remove foreground pixels. Contrary to a simple 

erosion, which may be too disrupting, the opening operation is defined by an erosion followed by a dilation, 

which ensures to remove only isolated false positives. 

7.2.3 Training set generation from medium resolution maps 

To automatically carry out a classification based on a training set extracted from the medium resolution products, 

we start from the assumption to classify in high resolution only pure classes that were recognized in medium 

resolution maps. 

Specifically, the medium resolution maps that were considered are:  

• ESA CCI-LC 2018 (300m): The annual ESA CCI LC maps cover a period of 24 years from 1992 to 2018 at a 

spatial resolution of  00m. These maps describe the Earth’s terrestrial surface in    original LC classes 

based on the United Nations Land Cover Classification System (UN-LCCS) [73]. The product that covers 

the 2015 year have been assumed as baseline. 

• GLCNMO (1km): The Global Land Cover by National Mapping Organizations (GLCNMO) is geospatial 

information in raster format which classifies the status of land cover of the whole globe into 20 classes 

at a spatial resolution of 1 km [74]–[76]. The classification is based on LCCS developed by Food and 

Agriculture Organization of the United Nations (FAO). 

The proposed strategy aims to exploit the information associated only to those MR classes that present a good 

correlation with the high-resolution legend, excluding for instance the MR mixed-classes of ESA CCI-LC product 

reported in Table 4.  

Table 6. Mixed classes list of the ESA CCI-LC 2015 (330m) product 

Values ESA CCI-LC 2015 (300m) labels 

30 Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) 
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40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%) 

100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%) 

110 Mosaic herbaceous cover (>50%) tree and shrub (<50%) 

180 Shrub and herbaceous cover, flooded, fresh/ saline/brakish water 

 

A comparison of the above-mentioned medium resolution map and the desired classes for HR mapping in this 

project has eventually brought to the results summarized in the following table: 

Table 7. List of several medium resolution classes dealing to a training set for a high resolution classes subset 

CCI-HR LC classes 
ESA CCI LC 2018 (300m) 
values 

GLCNMO (1km) values 

Tree cover evergreen broadleaf 50  

Tree cover evergreen needleleaf 70, 71, 72  

Tree cover deciduous broadleaf 60, 61, 62  

Tree cover deciduous needleleaf 80, 81, 82  

Shrub cover evergreen 121  

Shrub cover  deciduous 122  

Grassland 130  

Cropland  11,13 

Vegetation acquatic or regularly 
flood 

160,170,180  

Lichens and mosses 140  

Bare areas 200,201,202  

Sands  17 

Rocks  16 

Built-up areas 
Urban extraction 

methodology [22] 
 

Open water seasonal 
Open water permanent 

210  

Snow and/or ice 220  

 

In the second and third columns of Table 7, several values of ESA and GLCNMO legends, respectively, are selected 

in a way to provide a redundant yet meaningful set of training points for the corresponding high-resolution 

classes reported in the first column. For an easier reading of Table 7, the legends of ESA CCI-LC 2015 and GLCNMO 

maps have been shown in Figure 28 and Figure 29, respectively. 
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Figure 28. The CCI-LC MR maps referred to Amazonian tile 21KUQ (q) Amazonian tile 21KXT (b) classified according to the 
legend of the global CCI-LC maps (c). 

 

 

Figure 29. Legend associated to GLCNMO medium resolution map.  



 

Ref CCI_HRLC_Ph1-ATBD 

 
Issue Date Page 

4.rev.0 31/10/2022 50 

 

 
 

The final step for training point selection is performed using random sampling. This is performed by first selecting 

the points belonging (for each HR class) to the corresponding classes in the MR maps into binary maps. To avoid 

inaccuracies and collect more reliable samples, a morphological erosion step is applied to this binary map, and 

only its "internal" area is considered. Then, random sampling is applied. The procedure is repeated for each class, 

and a consistent set of training samples is extracted.  

This approach does not reduce the resolution of the final HR map, which is obtained considering the original 

resolution of S-1 data. Moreover, by selecting only classes that are not mixed, it allows to obtain reasonably good 

training samples at a very limited cost. Of course, these samples are as accurate as (in average) the maps from 

which they are taken, and this is the reason why robust classifiers, such as RF and SVM has been selected. 

7.2.4 Training set extraction from HR satellite images by visual interpretation 

Reference data for large-scale land cover map are commonly acquired by visual interpretation of multiple 

remotely sensed data. Visual interpretation of high-resolution imagery is a valid alternative to a ground truth 

collection that would supply such very high-quality data, but populating a global dataset with a sufficiently large 

sample of field measurements is extremely costly. The proposed method consists in adopting a stratified strategy 

that aims in interpreting the land cover classes well-defined into the CCI HRLC legend taking into the account 

their characterization. The hierarchical approach is a simple but powerful methodology and consists of a top-

down analysis organized as a clearly defined sequence of tasks grouped in levels, also called branches. 

 

Figure 24. Decision tree of hierarchical approach based on 1st Level of CCI HRLC Legend 

Each level solves a fundamental decision problem where systematic methods can be applied for the synthesis of 

further subsystems. All this can be depicted as a simple decision tree, as shown in Figure 24, where clear rules 

and exhaustive definition of land cover classes are needed to reach completeness of labelling training points via 

thresholds. With reference to Figure 24, a decision tree with four levels has been designed for identifying the 

Level 1 of CCI HRLC legend. Firstly it needs to distinguish in which percentage the area is covered or not by 

vegetation, in order to differentiate between vegetated and non-vegetated area. A similar reasoning is then 

replicated in each subsequent branch of decision tree, step-by-step, to verify relative dominance. 

All the rules are explained below: 

● 1st Level:  

o Vegetated area: presence of vegetation >= 50% and for >= 2 months a year; 

o Non-vegetated area: presence of vegetation < 50 % and for >= 10 months a year. 

● 2nd Level: 

o Terrestrial: water persistence < 4 months; 
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o Aquatic/regularly flooded: water persistence >= 4 months: 

▪ Seasonal: presence of water of water >= 4 months and < 9 months a year; 

▪ Permanent: presence of water of water >= 9 months a year. 

● 3rd Level: 

o (Semi-)natural: natural vegetated areas are defined as areas where the vegetative cover is in 

balance with the abiotic and biotic forces of its biotope. Semi-natural vegetation is defined as 

vegetation not planted by humans but influenced by human actions. 

o Artificial/managed: natural vegetation has been removed or modified and replaced by other 

types of vegetative cover of anthropogenic origin [93]. 

● 4th Level: 

o Tree: A tree is a woody, perennial plant with a simple and well-defined stem, bearing a more 

or less defined crown and a minimum height of 5 m; 

o Shrub: A shrub is a woody perennial plant with persistent woody stems and without any 

defined main stem, being less than 5 m tall. 

o Grassland: Herbaceous plants without persistent stem or shoots above ground and lacking 

definite firm structure 

o Croplands: Mainly herbaceous plants are sowed/planted and harvestable at least once within 

the 12 months after the sowing/planting date. Herbaceous plants are defined as plants without 

persistent stem or shoots above ground and lacking definite firm structure. Cropland includes 

rain fed crops, irrigated crops, aquatic crops and annual pastures. It is an adaptation of the 

Joint Experiment for Crop Assessment and Monitoring (JECAM) cropland definition. 

o Lichens and Mosses: Mosses are a group of photo-autotrophic land plants without true leaves, 

stems or roots. Lichens are composite organisms formed from the symbiotic association of 

fungi and algae. 

To cover the HRLC classes, it needs also to define the leaf seasonality, for distinguish between evergreen (never 

entirely without green foliage) and deciduous (leafless for a certain period during the year), and the leaf type 

(needled or broad). 

For instance, following the tree in Figure 24, a shrub cover deciduous class is a vegetated area where water 

persists for less than 4 months, that is (semi-)natural, where the shrub cover dominates other life forms and 

where the shrub cover has deciduous leaf seasonality. A vegetated area where the shrub cover is semi-natural 

and flooded for more than 4 months a year is a woody vegetation aquatic or regularly flooded. 

There are challenges associated with the visual extraction of points as an abstraction of the nature of the land 

surface at a given point in space and time, and suitable sampling models have to be properly designed. About 

the sampling plan, the training points are typically extracted from sample sites with size 10x10m, composed of 

smaller sized square elements, with approximate 3x3m size. According the stratified approach and the land cover 

types, the interpreter can be assign to training point the class which predominates into the sample site of 

interest. 



 

Ref CCI_HRLC_Ph1-ATBD 

 
Issue Date Page 

4.rev.0 31/10/2022 52 

 

 
 

 

Figure 25. Example of sample site (highlighted in red) with 10x10m size. Working in hierarchy and taking into the account 
the scenario surrounding the site, the sample can be labelled as grassland. 

Sample sites are extracted in random order, so to interpret different land cover types over the course of the 

samples labelling task. 

A useful tool used to localize and analysis HR training points in a set of samples site is Collect Earth. Collect Earth 

is a free and open source software for land monitoring developed by the Food and Agriculture Organization of 

the United Nations (FAO). Built on Google desktop and cloud computing technologies, Collect Earth facilitates 

access to multiple freely available archives of satellite imagery, including archives with very high spatial 

resolution imagery (Google Earth) and those with very high temporal resolution imagery (e.g., Google Earth 

Engine, Google Earth Engine Code Editor) [94]. Collect Earth offers accesso to geo-synchronized visualization and 

use of imagery of varying spatial and temporal resolutions, including Sentinel 2, Landsat and MODIS imagery 

within Google Earth and Google Earth Engine. These imagery provide near-daily multispectral imaging of the 

Earth’s land surface at resolutions ranging from  0 to   0m. Their frequent coverage provides a higher 

probability of observing the surface without interference from clouds, thus allowing the construction of global 

datasets in which nearly all points on the Earth’s land surface have been imaged. Once the point of interest to 

be labelled was properly identified on the basis of an accurate photointerpretation of site sample, collect Earth 

enables the point confirmation by the NDVI analysis in Google Earth Engine of its corresponding optical time 

series (Sentinel-2, MODIS or Landsat). 
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Figure 26. An example of Collect earth application. On the top, the visual interpretation of a point localised in a sample 
site belonging to the tree cover evergreen broadleaf HR land cover class. Its confirmation is realised according the 
corresponding NDVI analysis (on the bottom). 

In Figure 26 an example of Collect Earth application for labelling a training point is shown. The considered sample 

site belongs to a tree cover broadleaf area, easily recognized by visual inspection within the image on the top 

because the crowns have a large round form. The point is also classified as evergreen by the NDVI seasonality 

analysis in Google Earth Engine (shown on the lower image), since its profile is constant over the year, indicating 

a low seasonality. 
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Figure 27. HR training points collected by visual interpretation and stratified approach. The area of interests is the 

benchmark tile 42WXS, belonging to Siberia area. 

 

8 Decision fusion 

Data fusion methodologies, and specifically the sub-class of decision fusion, allow making a common decision in 

case of multiple actors and opinions. Within the CCI+ HRLC pipeline, decision fusion combines the posterior 

probabilities associated with the outputs of the single classifiers that are applied to optical and SAR data 

separately. Therefore, multiple decisions are combined into a final result by taking into account the level of 

uncertainty associated with each source. This uncertainty is expressed precisely by the probabilistic 

characterization provided on a pixelwise basis by the aforementioned posteriors. 

The sets of classes that can be accurately discriminated by using optical and SAR data separately do not coincide 

in general. While optical data are generally expected to be useful to the discrimination of all considered land 

cover classes, SAR data are expected to well discriminate especially built-up classes and water bodies. 

Accordingly, SAR and optical classification algorithms generally work on different, although obviously non-

disjoint, sets of classes. Decision fusion methodologies are aimed at fusing posterior probabilities related to the 

classes in common across the two sets. Hence, a class-specific combination rule has been devised to take this 

into account and, correspondingly, integrate this fusion result on the common classes with the results obtained 

using only optical or SAR data for the remaining classes. 

Specifically, the whole class legend Ω is divided into three disjoint subsets of thematic classes: Ω𝑂, the set of 

classes that are distinguished only by using optical data (“optical-exclusive”); Ω𝑆, the set of classes that are 

distinguished only by using SAR data (“SAR-exclusive”); and Ω𝑐, the set of classes which are discriminated by the 

classifiers operating with both data modalities (common classes). Accordingly, Ω = Ω𝑂 ∪ Ω𝑆 ∪ Ω𝐶 . While the 

optical classifier works on the set of classes Ω𝑂 ∪ Ω𝐶 , the SAR classifier outputs posterior probabilities for the set 

of classes Ω𝑆 ∪ Ω𝐶 . 

As a trade-off between computational complexity and expected accuracy, in the context of the CCI+ HRLC 

processing chain the following families of decision fusion methods are developed: (i) weighted voting and 

consensus-theoretic methods, and (ii) fusion strategies based on Markovian modelling (i.e., Markov and 
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conditional random fields). Both families are combined with class-specific combination rules that take into 

account the aforementioned rationale. Details can be found in the following subsections. 

8.1 Consensus Theory and Class-Specific Combination Rule 
Consensus theory [78], [79] involves general procedures with the goal of combining multiple probability 

distributions to summarize their estimates. The problem can be formulated as the combination of different 

opinions. This is represented as the fusion of posterior probabilities coming from different classifiers, each 

associated with a particular data source.  

Under the assumption that all the classifiers can be made into generating Bayesian outputs and that, accordingly, 

their predictions are endowed with a probabilistic characterization, i.e., pixelwise posteriors are available, the 

goal is to produce a single probability distribution that summarizes their estimates. The study of such 

combination procedures is called consensus theory.  

A first well-known consensus rule is the linear opinion pool (LOP). Focusing on the specific case of optical and 

SAR classifiers as sources generating the posterior probabilities and keeping in mind that the two classifiers 

generally work on different sets of classes, let 𝑥 = [𝑂, 𝑆] be the input data vector on a generic pixel, resulting 

from the stacking of optical (𝑂) and SAR (𝑆) individual feature vectors, and let 𝜔𝑗  be the 𝑗th information class 

(𝜔𝑗 ∈ Ω). The LOP functional can be expressed as: 

𝒞(𝜔𝑗|𝑥, Ω𝐶) = 𝛼𝑗  𝑃(𝜔𝑗|𝑂, Ω𝐶) + 𝛽𝑗  𝑃(𝜔𝑗|𝑆, Ω𝐶), 

where 𝑃(𝜔𝑗|𝑂, Ω𝐶) is the optical posterior probability of 𝜔𝑗  conditioned to the common subset of classes Ω𝐶  

and 𝑃(𝜔𝑗|𝑆, Ω𝐶) is the SAR posterior probability conditioned to the same subset Ω𝐶 . 𝛼𝑗  and 𝛽𝑗  are optical and 

SAR source-specific weights, respectively, and control the relative influence of the two sources on the fusion 

output corresponding to class 𝜔𝑗. We note that the pixelwise outputs of the optical-based and SAR-based 

classification chains are 𝑃(𝜔𝑗|𝑂, Ω𝑂 ∪ Ω𝐶) and 𝑃(𝜔𝑗|𝑆, Ω𝑆 ∪ Ω𝐶), respectively, i.e., the pixelwise posteriors 

associated with the corresponding sets of classes. Deriving 𝑃(𝜔𝑗|𝑂, Ω𝐶) and 𝑃(𝜔𝑗|𝑆, Ω𝐶) (as well as 𝑃(𝜔𝑗|𝑂, Ω𝑂) 

and 𝑃(𝜔𝑗|𝑆, Ω𝑆)) is straightforward. 

LOP has several good properties: it is simple, it yields a probabilistic formulation, and the weights 𝛼𝑗  and 𝛽𝑗  can 

reflect the relative expertise of the optical and SAR classifiers, respectively. The opportunity to use different 

values for these weight parameters in relation to different classes also allows reflecting possible prior 

information on the expected capability of optical and SAR data to discriminate each class. This can be interpreted 

indirectly as a weighted voting scheme that incorporates class-specific rules. Moreover, if the data sources have 

absolutely continuous probability distributions, LOP may be related to an absolutely continuous distribution [79]. 

LOP also assumes that all the experts (classifiers) observe the input vector 𝑥. Therefore, LOP can be viewed as a 

weighted average of the probability distributions from the experts that results in a combined probability 

distribution. Yet, LOP is a simple method and, besides the aforementioned advantages, has also several 

weaknesses [80]. An example is a possible “dictatorship effect” when Bayes’ theorem is applied (i.e., a specific 

data source dominates in making a decision). Moreover, not deriving from the joint probabilities using Bayes’ 

rule, it is also not externally Bayesian (does not obey Bayes’ rule). 

Another well-known and usually effective consensus rule, the logarithmic opinion pool (LOGP), has been 

proposed to overcome some of the problems of LOP. In the optical-SAR case addressed here, the LOGP functional 

can be defined as: 

ℒ(𝜔𝑗|𝑥, Ω𝐶) = 𝛼𝑗 log 𝑃(𝜔𝑗|𝑂, Ω𝐶) + 𝛽𝑗 log 𝑃(𝜔𝑗|𝑆, Ω𝐶)  

LOGP differs from the linear version in that it is usually unimodal and less dispersed. Zeros are considered vetoes: 

if any of the two sources assigns a zero posterior (i.e. 𝑃(𝜔𝑗|𝑂, Ω𝐶) = 0 or 𝑃(𝜔𝑗|𝑆, Ω𝐶) = 0), then by definition 

ℒ(𝜔𝑗|𝑥, Ω𝐶) = 0. This dramatic behaviour is a drawback when the single-source predictions are very inaccurate 

and can be generated even by roundoff error. In order to prevent this, all posterior values are increased by the 

machine epsilon (the minimum number that can possibly be represented given a certain data type). 
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𝒞(⋅) and ℒ(⋅) provide probabilistic fusion results associated with the classes in common between the two single-

sensor outputs, although they generally do not take values in the interval [0, 1]. Either can be mapped to proper 

posteriors by suitably transforming to a probabilistic output, which represents a fused posterior probability 

𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶). In the case of LOP, 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶) is computed from 𝒞(𝜔𝑗|𝑥, Ω𝐶) by just re-normalizing so that the 

sum over all 𝜔𝑗 ∈ Ω𝐶  is unity. In the case of LOGP, the following softmax operator is appropriate to take into 

account the logarithmic relation between the ℒ(⋅) functional and the original probabilities: 

𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶) =
exp ℒ(𝜔𝑗|𝑥, Ω𝐶)

∑ exp ℒ(𝜔𝑘|𝑥, Ω𝐶)𝜔𝑘∈Ω𝑐

 

This probabilistic fusion output 𝑃ℱ(⋅) covers the subset of classes in common across the two single-sensor 

classifications. To extend it to the whole set of classes, the posterior probability (unconditional with respect to 

Ω𝐶) can be defined according to the total probability theorem: 

𝑃ℱ(𝜔𝑗|𝑥) = 𝑃(𝜔𝑗|𝑥, Ω𝐶)𝑃(Ω𝐶|𝑥) + 𝑃(𝜔𝑗|𝑥, Ω𝑂)𝑃(Ω𝑂|𝑥) + 𝑃(𝜔𝑗|𝑥, Ω𝑆)𝑃(Ω𝑆|𝑥) = 

= 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶)𝑃(Ω𝐶|𝑥) + 𝑃(𝜔𝑗|𝑂, Ω𝑂)𝑃(Ω𝑂|𝑥) + 𝑃(𝜔𝑗|𝑆, Ω𝑆)𝑃(Ω𝑆|𝑥), 

where the aforementioned probabilistic fusion result 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶) is used for the common classes, whereas the 

optical-based and SAR-based posteriors 𝑃(𝜔𝑗|𝑂, Ω𝑂) and 𝑃(𝜔𝑗|𝑆, Ω𝑆) are used for the two sets of exclusive 

classes. The aggregated posteriors of the three subsets of thematic classes Ω𝑂 , Ω𝑆 and Ω𝐶  are modelled as 

follows:  

𝑃(Ω𝑂|𝑥) = 𝜆𝑃(Ω𝑂|𝑂, Ω𝑂 ∪ Ω𝐶),           𝑃(Ω𝑆|𝑥) = (1 − 𝜆)𝑃(Ω𝑆|𝑆, Ω𝑆 ∪ Ω𝐶), 

𝑃(Ω𝐶|𝑥) = 𝜆 𝑃(Ω𝐶|𝑂, Ω𝑂 ∪ Ω𝐶) + (1 − 𝜆)𝑃(Ω𝐶|𝑆, Ω𝑆 ∪ Ω𝐶), 

where 0 ≤ 𝜆 ≤ 1. This choice makes sure that the resulting terms correctly sum to unity (for all 𝜆 ∈ [0,1]), 

combines the optical- and SAR-specific probabilistic outputs using a LOP-like formulation on the common classes, 

and expresses the items associated with the exclusive classes as functions of the output of one of the two single-

sensor processing chains. To determine an appropriate value for 𝜆, we note that, in the limit case Ω𝑆 = ∅ (i.e., if 

the set of classes discriminated using SAR is a subset of the set of classes discriminated using optical data), 𝜆 = 1 

is a desired choice. Vice versa, in the limit case Ω𝑂 = ∅, a desired value is 𝜆 = 0. A suitable weight that covers 

both limit cases is: 

𝜆 =
𝑃(Ω𝑂)

𝑃(Ω𝑂) + 𝑃(Ω𝑆)
 , 

where the prior probabilities 𝑃(Ω𝑂) and 𝑃(Ω𝑆) can be estimated on the training set. Therefore: 

𝑃ℱ(𝜔𝑗|𝑥) = 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶)[𝜆 𝑃(Ω𝐶|𝑂, Ω𝑂 ∪ Ω𝐶) + (1 − 𝜆)𝑃(Ω𝐶|𝑆, Ω𝑆 ∪ Ω𝐶)]

+ 𝑃(𝜔𝑗|𝑂, Ω𝑂)𝜆𝑃(Ω𝑂|𝑂, Ω𝑂 ∪ Ω𝐶) + 𝑃(𝜔𝑗|𝑆, Ω𝑆)(1 − 𝜆)𝑃(Ω𝑆|𝑆, Ω𝑆 ∪ Ω𝐶). 

This combination rule is applicable to all cases, independently on the set of classes with which the two classifiers 

works. It is worth noting that, in the fusion of optical and SAR data, a frequent scenario is that one of the two 

sources discriminates among a larger set of classes than the other source. In particular, SAR-based classifiers 

typically work on a set of classes which is a proper subset of the set of classes considered by optical classifiers. 

In this case, we have Ω𝑆 = ∅ and then Ω𝑆 ∪ Ω𝐶 = Ω𝐶 , Ω𝑂 ∪ Ω𝐶 = Ω, and 𝜆 = 1. Therefore the previous 

formulation simplifies as follows: 

𝑃ℱ(𝜔𝑗|𝑥) = 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶)𝑃(Ω𝐶|𝑂, Ω) + 𝑃(𝜔𝑗|𝑂, Ω𝑂)𝑃(Ω𝑂|𝑂, Ω), 

where it is possible to remove the conditioning on the whole set of classes: 

𝑃ℱ(𝜔𝑗|𝑥) = 𝑃ℱ(𝜔𝑗|𝑥, Ω𝐶)𝑃(Ω𝐶|𝑂) + 𝑃(𝜔𝑗|𝑂, Ω𝑂)𝑃(Ω𝑂|𝑂). 

Within the HRLC pipeline, special focus is given to the definition of the weights 𝛼 and 𝛽. Several approaches are 

being explored. The first is the use of uniform weights, which formalizes the case in which the decision maker 

has no knowledge on which source is more reliable. On one hand, this is straightforward; on the other hand, it 

does not benefit from the aforementioned properties of optical and SAR data in terms of the capability to 
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discriminate the various classes. More accurately, it is possible to assign the weights proportionally to a score 

that is set according to the “goodness” of each source, where a higher score indicates a better (i.e., more reliable) 

source. This scoring may be accomplished by assessing the accuracy of the land-cover predictions coming from 

the optical and the SAR sources. Another solution that is considered is to compute the weights through linear or 

nonlinear optimization [81] [78]. In particular, the method in [17] which is based on the expectation-

maximization (EM) algorithm, can be incorporated into the HRLC pipeline. It regards a LOGP-type model in the 

framework of unsupervised change detection and will be generalized here to the case of supervised land-cover 

classification. Finally, case-specific tuning can be performed according to possible intermediate feedbacks from 

the Validation Team and the Climate Group about the quality of the resulting HRLC map. In the formulation of 

the method integrated in the first production, this last option has been selected to align as much as possible the 

output product to the requirements of the climate community. 

 

8.2 Markov Random Fields 
Markov random fields (MRFs) are probabilistic graphical models able to include contextual information in the 

form of class interactions between neighbouring pixels. An MRF is determined by an energy function, whose 

minimization with respect to the labels is equivalent to the application of a maximum a-posteriori criterion [82]. 

Considering an MRF model in which only up to pairwise clique potentials are non-zero (comparing items one 

couple of nodes at a time), this energy is composed of two main terms: one characterizing class likelihood at the 

pixel level (depending on per-class scores obtained from any method able to estimate posterior or class-

conditional probability density functions), and another promoting label smoothness in a local neighbourhood  

[82]. This means that the model encourages two neighbouring pixels to be labelled with the same class. 

Let Ω be again the set of thematic classes. Define the regular pixel lattice as 𝐼, and let 𝑦
𝑖
 be the class label of the 

𝑖-th pixel (𝑦
𝑖
∈ Ω, 𝑖 ∈ 𝐼). The MRF considers 𝑦

𝑖
 as sample of the random field 𝑌 = {𝑦𝑖}𝑖∈𝐼 of class labels, which is 

discrete-valued. A neighbourhood system {𝜕𝑖}𝑖∈𝐼, which provides each 𝑖-th pixel with a set 𝜕𝑖 ⊂ 𝐼 of 

neighbouring pixels, is defined [83]. It is possible to choose different kinds of adjacency systems: the ones that 

have being used the most include the first- and second-order connectivity [83]. In the former, 𝜕𝑖 is made of the 

four pixels adjacent to the 𝑖-th pixel (four-connected) while in the latter the eight pixels surrounding it are 

considered.  

Considering the aforementioned frequently used family of the MRF models in which only up to pairwise clique 

potentials are non-zero, the energy can be written as: 

𝑈(𝑌|𝑋) = −∑  𝛼 log 𝑃(𝑦𝑖|𝑥𝑖)

𝑖∈𝐼

− 𝛾 ∑ 𝛿(𝑦𝑖 , 𝑦𝑗)
𝑖∈𝐼
𝑗∈𝜕𝑖

. 

where 𝛼 and 𝛾 are positive weights and 𝛿(⋅) is the Kronecker impulse. In the multi-sensor case, a different unary 

term is added for each sensor, so that it is possible to fuse the different posterior probabilities while enforcing 

contextual relationships. The overall equation is: 

𝑈(𝑌|𝑋) = −∑∑𝛼𝑠

𝑆

𝑠=1

log 𝑃(𝑦𝑖|𝑥𝑖𝑠)

𝑖∈𝐼

− 𝛾 ∑ 𝛿(𝑦𝑖 , 𝑦𝑗)
𝑖∈𝐼
𝑗∈𝜕𝑖

, 

where the notation 𝑥𝑖𝑠  indicates the dependence of image data on both the pixel location 𝑖 and the sensor 𝑠 

(𝑠 = 1,2, … , 𝑆), 𝑆 is the number of sensors, and {𝛼𝑠}𝑠=1
𝑆  is a set of positive weights. 

Within the HRLC pipeline, in order to ensure consistency with the aforementioned pixelwise formulation and 

inspired by the similarity between the unary term and LOGP, the MRF approach is applied to the posterior 

probabilities resulting from the pixelwise fusion of the outputs of the optical and SAR classifiers. Therefore, in 

our specific setting, the overall equation becomes: 
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𝑈(𝑌|𝑋) = −∑ 𝛼 log𝑃ℱ(𝑦𝑖|𝑥𝑖)

𝑖∈𝐼

− 𝛾 ∑ 𝛿(𝑦𝑖 , 𝑦𝑗)
𝑖∈𝐼

𝑗∈𝜕𝑖

, 

As compared to the previous fusion approaches, the strategy based on MRFs incorporates spatial information, 

an important contribution in the application to high-resolution remote sensing imagery, which is intrinsic in the 

HRLC project. The weights 𝛼 and 𝛾 that tune the tradeoff among the various contributions to the energy function 

𝑈 are optimized by extending to the MRF fusion formulation the approaches described in Section Error! R

eference source not found. with regard to the consensus formulation. Also in this respect, intermediate feedback 

from the Validation Team and the Climate Group about the desired characteristics of the output HRLC map in 

terms of smoothness, removal of salt-and-pepper classification noise, and detail preservation have been taken 

into account. 

In the application of MRF-based methods to decision fusion, special focus is devoted to the minimization of the 

energy function 𝑈 with respect to the random field 𝑌 of the class labels [84]. First, as an efficient tradeoff 

between accuracy and computational burden, the iterated conditional mode (ICM) algorithm is adopted. It 

ensures short execution times, yet, it converges to a local minimum of the energy, which can be possibly 

suboptimal [82]. We shall investigate, either methodologically or experimentally, the opportunity to make use 

of global (or near-global) energy minimization methods based on graph-theoretic concepts (namely, graph cuts 

[83] and belief propagation methods [82]). On one hand, they ensure convergence to minima with stronger 

optimality properties than ICM. On the other hand, their computational burden is significantly higher and needs 

to be properly evaluated according to the data size involved in the HRLC project. 

 

8.3 Cascade multitemporal model 
Multitemporal models are used to propagate information towards years. This is especially important in the case 

of historical maps since, in these cases, the availability of data has lot of variability. This may cause inconsistencies 

in the classification, due to sparse acquisitions taken in different months of the year. 

With the use of a multitemporal cascade model, it is possible to enforce consistency in the maps while preserving 

the actual changes of interest for the study. According to the rationale of the HRLC project to generate a static 

product in 2019 and historical products going backward to 1990, a cascade multitemporal approach is used. The 

scheme of the cascade approach is shown in Figure 8.1: 

 

Figure 8.1: Temporal dependence in cascade model (example for the pair 2015-2019). 

Keeping the same notations used in previous section, let the entire feature vector for pixel 𝑖 at times 𝑡0 and 𝑡1 

be, respectively 𝑥𝑖
0 and 𝑥𝑖

1. In the same way, the corresponding labels are {𝑦𝑖
𝑡}𝑡∈{0,1}.  
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Then, the fused posteriors at time 𝑡0 (the ones to propagate) are 𝑃𝐹(𝑦𝑖
0|𝑥𝑖

0), while the ones at time 𝑡1 are 

𝑃𝐹(𝑦𝑖
1|𝑥𝑖

1). It is worth noting that 𝑃𝐹(𝑦𝑖
0|𝑥𝑖

0) coincides with the final posteriors probabilities obtained at time 𝑡0, 

as described in section 8.1. 

The final fused posterior probability obtained by the cascade method is then given by[85]: 

𝑃𝐹(𝑦𝑖
1|𝑥𝑖

1, 𝑥𝑖
0) ∝  

𝑃𝐹(𝑦𝑖
1|𝑥𝑖

1)

𝑃(𝑦𝑖
1)

∑
𝑃𝐹(𝑦𝑖

0|𝑥𝑖
0)

𝑃(𝑦𝑖
0)

𝑦𝑖
0

𝑃(𝑦𝑖
0, 𝑦𝑖

1), 

where 𝑃(𝑦𝑖
1) and 𝑃(𝑦𝑖

0) are the prior probabilities corresponding to 𝑡1 and 𝑡0, respectively, which are often 

omitted considering that spatial MRF prior is already in the model. Then 𝑃(𝑦𝑖
0, 𝑦𝑖

1) is the joint probability matrix 

(JPM) representing the chances of having a temporal transition among certain classes. 

This matrix is different for each area of study and derived according to the indications of the Climate group. It is 

worth recalling that the adopted cascade approach is a rigorous probabilistic Bayesian strategy to incorporate 

temporal dependence information in the classification of a time series. Its integration in the pipeline for the 

historical product is aimed at minimizing inconsistencies across the different years. At the same time, its 

probabilistic Bayesian formulation prevents the risk of erroneously “censoring” specific temporal transitions (like 

a deterministic rule-based approach could do). In particular, the use of a dedicated JPMs on each one of the 

three study areas of the project is consistent with the fact that diverse temporal transitions are expected in Sahel, 

Siberia, and the Amazon. In this respect, the use of this prior information about the JPM plays a role similar to 

the use of prior information about the land cover classes, as represented by their training samples. 

 

The obtained 𝑃𝐹(𝑦𝑖
1|𝑥𝑖

1, 𝑥𝑖
0) is then integrated into an MRF formulation at time 𝑡 = 𝑡1, having: 

𝑈(𝑌1|𝑋1, 𝑋0) = −∑

[
 
 
 

−𝑙𝑜𝑔 𝑃𝐹(𝑦𝑖
1|𝑥𝑖

1, 𝑥𝑖
0) − 𝛾 ∑ 𝛿 (𝑦𝑖

1 , 𝑦𝑗
1)

𝑖∈𝐼
𝑗∈𝜕 𝑖

 

]
 
 
 

𝑖∈𝐼

 , 

8.4 Spatial Harmonization 
The spatial harmonization module is in charge of ensuring consistency across the granule borders in the final 

fusion product. In general, it may happen that, due to the different characteristics of data, and more generally 

due to possible issues on data availability, neighbouring granules may result in land cover maps with slightly 

different characteristics. These differences may generally impact the output product in terms of edge artifacts 

at the interface between the two granules. Therefore, in order to prevent such possible artifacts in the final 

mosaic, a spatial harmonization module is run on such neighbouring granules. The overlapping parts among the 

two granules are indeed fused using an ad hoc linear opinion pool that incorporates space-varying weights to 

ensure seamless spatial fusion (see 8.2). 

 

Figure 8.30: Overlapping granules and space-varying weights (brighter values are closer to 1, while darker values are 
closer to 0) 
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Let 𝑥𝑖
1 be the value of the 𝑖-th pixel in the lattice of the first granule, let 𝑥𝑖

2 be the value of the corresponding 

pixel in the lattice of the second granule, and let 𝛼 be a set of weights that spatially vary with a constant gradient 

over the intersecting area, with 𝛼𝑖 ∈ [0,1] be the weight corresponding to the previously considered 𝑖-th pixel. 

The spatial harmonization module computes the harmonized posterior probability 𝑝(𝑦𝑖|𝑥𝑖
1, 𝑥𝑖

2) according to: 

𝑃(𝑦𝑖|𝑥𝑖
1, 𝑥𝑖

2) = 𝛼𝑖 𝑃(𝑦𝑖|𝑥𝑖
1) + (1 − 𝛼𝑖) 𝑃(𝑦𝑖|𝑥𝑖

2), 

where 𝑃(𝑦𝑖|𝑥𝑖
𝐺) is the posterior probability resulting from the decision fusion module applied to the granule 𝐺, 

with 𝐺 = {1,2}. More specifically, the two input posteriors are meant as the output of the MRF stage. The spatial 

harmonization process, which has been described here with regard to a pair of neighbouring granules, is then 

applied across all four borders of each granule (i.e., up, down, left, and right). 

 

8.5 Temporal Harmonization 

8.5.1 Post classification comparison module 

The PCC generator module is responsible for computing the post classification comparison (PCC) map that is an 

input to the change detection module.  

The change detection module analyses the whole time series of raw data to determine whether a change 

occurred in a given time window and, in the positive case, in which year it occurred. To minimize its 

computational burden, the processing is performed only on those pixels that are marked as changed by the 

optical, SAR, and fusion processing chains, i.e., the pixels that exhibit different land cover labels in the LC maps 

obtained five years apart from each other. The PCC generator processor is indeed responsible for providing the 

change detection module the indication about such pixels to process. 

Let 𝑌𝑡 and 𝑌𝑇  be the land cover maps generated by the decision fusion module, let 𝑡 and 𝑇 be the corresponding 

years, with 𝑡 < 𝑇, and let 𝑌𝑖
𝑡 and 𝑌𝑖

𝑇  be the labels assigned to the 𝑖-th pixel in the two maps. In case 𝑌𝑡 and 𝑌𝑇  

are defined on the same pixel lattice (i.e., they are generated with the same spatial resolution), the computation 

of the PCC map is straightforward and only requires comparing the two maps on a pixel-by-pixel basis: 

𝑃𝐶𝐶𝑖 = {
1    𝑖𝑓    𝑌𝑖

𝑡 ≠ 𝑌𝑖
𝑇

0    𝑖𝑓    𝑌𝑖
𝑡 = 𝑌𝑖

𝑇  
 

When the two land-cover maps are defined on two different pixel lattices (i.e., one map corresponds to the year 

2019 at 10m resolution and the other corresponds to the year 2015 at 30m resolution), a different processing 

scheme is adopted (see 8.3). Please note that the PCC map is always defined on the coarser lattice, as the change 

detection module works at the resolution of 30m. 
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Figure 8.3: Flowchart of the PCC generation when two different resolutions are considered. 

First, the coarser-resolution image is upsampled to the finer-resolution grid. Due to the integer resolution ratio, 

there exists a 3x3 window on the finer lattice that corresponds to a single pixel in the coarser lattice. The 

upsampling is done by replicating each pixel at 30m resolution onto the corresponding window of the 10m lattice. 

Then, the PCC map is computed by comparing each 3x3 window: a change label is assigned when there are more 

than 4 pixels (out of the 9 pixels in the window) with different values. 

 

8.5.2 Temporal harmonization module 

The temporal harmonization module is deployed in the historical processing chain and is responsible for the post-

processing of the fused land cover maps and the successive update based on the results of the change detection 

module. In practice, the module acts as a feedback loop between the change detection module and the fusion 

module.  

First, after applying the cascade multitemporal module, a check is performed on the produced land-cover maps 

for assessing proper temporal consistency. The cascade multitemporal module is able to model the probability 

of land-cover transitions between two separated years and uses this information to properly regularize the 

predicted class posterior probabilities of the historical classifiers by exploiting a robust Bayesian formulation. 

However, it does not model land-cover trends over more than two years as it is allowed to see the posteriors of 

only two dates at time. For this reason, some wrong land-cover changes might remain in the maps. In many 

cases, a priori information can be used to detect and remove them. For example, for some classes is not 

reasonable that their presence in the time series is allowed to oscillate, such as the urban areas. Hence, expert 

rules have been adopted to detect those unrealistic trends and then to correct them with the expected trend. 

For example, in the case of urban areas, if we have built-up in the whole time series but not in 2005, then the 

land cover of 2005 is expected to be built-up as well. It is worth noting that the historical time series of land-

cover maps is at the resolution of 30m. In the case of 2019, the static map at the resolution of 10m is first 
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downsampled to the target resolution of 30m. Due to the resolution ratio with the historical maps, there is always 

a 3x3 window at 10m resolution that corresponds to a single pixel in the 30m resolution lattice. The label assigned 

to the 30m pixel corresponds to the most frequent label in such a 3x3 window. In the case of a tie, the label is 

chosen randomly among such most frequent labels. There are cases where the temporal consistency check finds 

errors and inconsistency in the 2019 map with respect to the whole historical time series, which are thus 

corrected. Hence, the output 30m resolution version of 2019 is saved and delivered as part of the historical 

products. 

 

Figure 31. Practical example of the downsampling of the high-resolution LC map. 

 

Then, the change detection module is run iteratively starting from 2015-2019 to 1990-1995. After each iteration 

the change detection output is used to update the least recent land-cover map.  The rationale is that the temporal 

consistency check outputs the land cover maps of all the considered years. Then, the change detection module 

analyses the pixels that, according to the fusion module, have changed within a given time frame. For such an 

analysis, the change detection module uses the entire time series of data for a given pixel. There are cases in 

which this thorough analysis reports that no change is detected in the considered time window. Therefore, the 

temporal harmonization module uses this information to ensure consistency with the thorough analysis done by 

the change detection module. Figure 32 details the processing scheme of the temporal harmonization module. 

The image only considers the best-class product. Nevertheless, the output of the CCI HRLC processing chain 

consists of the best-class map, the second best-class map, and the two posterior probabilities corresponding to 

the aforementioned maps. Concerning the second best-class map, it is always kept unchanged and, for those 

pixels in which the change is reverted, it inherits the best-class label that was chosen by the fusion module and 

then reverted. Finally, the output uncertainty measures mirror those coming from the optical, SAR, and fusion 

processing chains. 
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Figure 32. Flowchart of the temporal harmonization processing scheme 

 

 

 

8.6 Deep Learning Solution 
As an alternative to the aforementioned approaches to decision fusion, the multisensor fusion stage of the HRLC 

processing chain can also benefit from deep learning architectures. In this case, multi-sensor classification and 

fusion are dealt with by a deep convolutional neural network [47], [84], [85], [86] rather than by the specific 

aforementioned formulations. This is promising from the viewpoint of classification performance as confirmed 

by the accuracy gain observed in several recent international contests, in which deep learning solutions have 

overcome previous methods (e.g., recent IEEE GRSS Data Fusion Contests [87], [88] or ISPRS 2D Semantic Labeling 

competitions [89], [90]). On the other hand, the implementation, training, and computational complexity of the 

deep formulation will be significantly higher than those involved by the previous, more traditional, approaches. 

In the specific case of the decision fusion block of the HRLC processing chain, an effective deep learning 

formulation would be based on the aforementioned CNN, autoencoder, and adversarial components that have 

been mentioned in previous sections. Adversarial networks are especially promising in this case thanks to their 

domain adaptation capabilities and to the opportunity to use them to map optical and SAR products into a 

homogeneous domain [49] (see also Section 5). 

 

9 Multitemporal change detection and trend analysis 

In accordance with the SoW [AD2] and as per the lessons learned from the CCI MRLC, the scheme shown in Figure 

33 is used for the generation of HRLC change products. In particular, the multitemporal change detection (CD) 

and trend analysis processing chain, assumes to have the entire optical data time series from 1990-2019 already 

pre-processed (i.e., radiometrically corrected and co-registered). Additional to this information, this processing 

chain requires as input the five years regional HRLC maps (30m). As output from the processing chain, there will 

be the change information at 30 m in yearly time scale. 
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Figure 33. Block-based representation of the processing chain for the multitemporal change detection and trend 
analysis. 

LC Changes can be divided into three classes [86]: (1) seasonal changes, impacting plant phenology or 

proportional cover of LC types with different plant phenology; (2) gradual changes such as inter-annual climate 

variability (e.g., trends in mean NDVI) or gradual change inland management or land degradation; and (3) abrupt 

(or permanent) changes, caused by disturbances such as deforestation, urbanization, floods, and fires. 

The CCI HRLC change products will be developed with an emphasis on quantification of abrupt/permanent 

changes since climate change tends to be more abrupt than gradual. The analysis is performed over the products 

derived from the multitemporal optical merging step, plus the HRLC static and five years regional maps.  

9.1 Timeline analysis and Cascade Paradigm 

Backward timeline analysis considering every five years is defined in order to be in-line with land cover maps 

production and faster in the processing chain (see Figure 34). The analysis will be performed in a top-down time 

scale direction and abrupt/permanent changes occurring at longer time scales will be identified in an 

unsupervised way.  

 

Figure 34. Timeline analysis in the processing chain. 

The processing chain is based on a cascade paradigm (Figure 35) and the CD algorithm will use the LC maps every 

five years to produce the yearly change maps. 
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Figure 35. cascade paradigm of the processing chain. 

9.2 Post Classification Comparison Map 

Considering the LC maps produced every five years, it is possible to generate the Post Classification Comparison 

(PCC) maps. These maps have been produced in order to: 1) align the changes that have occurred during five 

years derived from the LC maps to the changes detected in multitemporal change detection processing chain, 

and 2) reduce the computational burden. Here we should take into account that the CD processing chain works 

in pixel level in a yearly basis from 1990 to 2019 considering three subcontinental area in Amazonia, Africa and 

Siberia [AD4]. The changes in different areas have been categorized to what really matters for climate modelling 

as it is visualized in Figure 36. 

 Amazonia Africa Siberia 

Land 
disturbances 

− deforestation, land 
clearing by fires or 
cutting 

− crop plantation 

− afforestation 

− floodings linked to 
heavy precipitation 
or dam construction 

− drought events 

− deforestation 

− afforestation 

− crop plantation 

− floodings linked to 
heavy precipitation 
or dam construction 

− landslides linked to heavy 
precipitation on thawed 
permafrost areas 

− floodings linked to extreme 
precipitation events or dam 
construction 

− longer freezing periods 
during cold years 

− fires/storm/tree cuttings 
leading to land clearing 

− infrastructure 
developments for gas 
exploitation in the arctic 
zone 

Figure 36. High priority transitions for different areas. 

As a result, the changed pixels derived from PCC map have been divided into two categories, high priority changes 

and low priority changes. The pixels that have highlighted as the high priority changes will be further analyzed in 

the multi-temporal CD and trend analysis step.   

9.3 Abrupt/permanent change and trend detection 

A limited number of methods have been developed in the literature that allow the analysis of long time series 

(with 16 days acquisitions) and can be considered as scalable to the spatial resolutions of the available sensors 

in this project. Possible adaptation/combination is foreseen, given the fact that most of state-of-the-art methods: 

(1) have been developed for medium and/or low spatial resolution applications; (2) make use of a single spectral 

value per each evaluated year; and (3) focus on single LC only (e.g., forest and/or vegetation). In order to map 

the abrupt/permanent changes, Breaks For Additive Seasonal and Trend (BFAST) [87] to be considered that is a 

generic CD approach for time series, involving the detection and characterization of change. BFAST integrates 

the iterative decomposition of time series into trend, seasonal and noise components with methods for detecting 

changes, without the need to select a reference period, set a threshold, or define a change trajectory. In other 

words, using BFAST methodology will allow us to: i) detect multiple abrupt/permanent changes in the seasonal 
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and trend components of the time series, ii) characterize the gradual and abrupt ecosystem changes by deriving 

the time, magnitude, and direction of change within the trend component of the time series; and iii) generate 

color-coded maps where different colours represent the year in which a given change has occurred. The main 

limitation of this method is that it has been developed for MODIS data and tested mainly in NDVI index, and a 

few vegetation indices, and in particular for forest change detection. Adaptation to both HR data and other 

spectral information is thus required. 

Figure 37 shows the general block scheme followed in this case, where features are first extracted from optical 

TS. As second step, feature TS are regularized to compensate for further errors like cloud/shadow from pre-

processing steps. As third step, the adapted BFAST algorithm will be used to generate the color-coded change 

map. As the output, the method uses the multi-feature regular SITS to provide the information of: i) pixels with 

abrupt changes in long term SITS across regional extents ii) the time in which a change has happened, iii) the 

probability of a given change. 

 

Figure 37. General block scheme multitemporal change detection processing chain. 

 

9.4 Multitemporal change detection processing chain 

Let 𝑆𝐼𝑇𝑆 = {𝑋1, 𝑋2, … , 𝑋𝑁} be a pre-processed satellite image time series acquired over the same geographical 

area in the period [𝑡1, 𝑡𝑁]. Assume the SITS have non-uniform time sampling, and each image has a total number 

of 𝑃 pixels. Given an image 𝑋𝑛 ∈ 𝑆𝐼𝑇𝑆, each pixel value represents the surface reflectance value in a given spatial 

position and a temporal instant 𝑡𝑛. Let 𝐵 = { 𝑏1, 𝑏2, … , 𝑏𝐾} be the set of bands that compose the images and 𝐾 

the total number of bands.  

In details (Figure 38), the input of the processing chain is pre-processed SITS that is employed in feature 

extraction together with feature reduction to distinguish the spectral trends of different sets of LC changes. Then 

the time series reconstruction is developed to generate a continues and dense SITS. Here, the cloud/shadow 

mask and the PCC mask have imposed to the algorithm to remove cloudy pixels and select high priority changed 

pixels, respectively. Finally, the abrupt change detection by means of BFAST methodology is implemented to 

detect the year in which the change has happened. A feature fusion step is considered before BFAST 

methodology to fuse all the available features by using a modified multifeature Change Vector Analysis (CVA) 

based method.  
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Figure 38. Detailed block-based representation of the multitemporal change detection processing chain. 

The SITS carries information about the ground response in different spectrum. The extraction of the information 

from the multi-band SITS needs the employment of algorithms to learn the suitable feature space for the 

problem-solving. The main character that involves in the feature space analysis is the discrimination capability 

of different LC classes. As a result, the employment of just a single feature is not enough. Multiple features are 

required, and the identification of the most proper is an essential task. 

9.4.1 Feature Extraction and Feature Reduction 

The first stage is to determine a suitable Feature Space (FS), which is one of the most important factors in 

distinguishing the spectral trends of various sets of LC changes. The combination of the spectral bands acquired 

by the sensor provides suitable information to analyse the LC behaviour for SITS. Thus, all possible couples of the 

available sensor bands are considered to compute a set of Normalized Difference Indices (𝑁𝐷𝐼𝑓, 𝑓 = (1,… , 𝐹)) 

of different bands as follow: 

 
𝑁𝐷𝐼𝑓 =

𝑏𝑖 − 𝑏𝑗

𝑏 + 𝑏𝑗

, 𝑓 = (1, … , 𝐹) (1) 

This stage transforms the 𝐵-dimensional FS into a F-dimensional FS (equation (2)). where 𝑏𝑖  and 𝑏𝑗  belong to 𝐵, 

the set of bands available in a sensor, and 𝑖 and 𝑗 𝜖 [1,2, … , 𝐾]. 

 
𝐹 =

1

2
(𝐾 − 1) × 𝐾 (2) 

Depending on the number of bands (𝐾), the number of resulting NDIs is equal to 𝐹. The obtained NDI indices are 

in the [-1,1] interval, they are more stable to noisy changes, they are able to highlight the interaction between 

singular bands and mitigate the undesirable oscillations of the spectral bands.  

It has been shown in literature that combinations of the different spectral bands can result in redundant 

information [88] . Equation (1), when applied to numerous spectral bands of satellite images, yields a huge 

number of NDIs, the majority of which are uninformative since they are either unrelated or redundant to the 

class concept. Additionally, developing a CD methodology with a large number of features is computationally 

demanding. Principal Component Analysis (PCA) can be used to select the most relevant features based on the 

statistical association of different bands in order to execute band selection. However, PCA can only detect linear 

correlations between data features. Kernel Principal Component Analysis (KPCA) [89] expands PCA to include 

non-linear patterns in the data. As a result, a feature reduction method based on the KPCA is used to keep most 

informative and reliable features. 

9.4.2 Time series reconstruction. 

At this stage, the temporal signature is a raw signal characterized by non-equally distributed temporal sampling 

and non-continuous trend, also affected by noisy oscillation not corrected in the pre-processing step. The state-

of-the-art mainly compares vegetative profiles between inner class temporal signatures. The behaviours are 

modelled, taking into account vegetation cycles and cycling harmonics models. The usage of those strategies 
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does not fit the case of multiple class trends and fails in the presence of abrupt changes or number of cycles 

different from the pre-established values. The development of an ad-hoc non-parametric strategy to reconstruct 

the vegetation-based temporal signature is needed. Moreover, the choice of the appropriate interpolation 

approach is critical in this case since it has a direct impact on the CD accuracy. To this end, preliminary 

symmetrical and consistently sampled NDI-SITS must be created, which is often accomplished by filling in the 

gaps with a linear combination of nearby values.  

To produce reliable and continuous time series for the non-vegetation profiles the strategy is based on two steps: 

i) for each pixel in the image extract the NDI-SITS, ii) perform NDI data-SITS augmentation by upper envelope 

and dropout strategy (a piecewise cubic interpolation is used here) [90]. 

Further details on the augmentation by upper envelope strategy are illustrated as follows: 

• Define a NDI-SITS set (𝑁𝐷𝐼𝑡𝑟), corresponding to a year (365 days), plus the two previous and two later 
months of data; 

• For each 𝑁𝐷𝐼𝑡𝑟 , select the samples that are above a given threshold (defined by trial and error as NDI = 
0.4). This threshold identifies when a given 𝑆𝐼𝑇𝑆𝑝 experiences a significant variability over time; 

• Calculate the local maxima (as the points with zero first derivative and negative second derivative) of 
the selected samples and withdraw the remaining ones (from 𝑁𝐷𝐼𝑡𝑟). This leads to the upper envelope 
of the data; 

• Use the samples below the threshold and the local maxima from previous step for data imputation by 
means of a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). The selection of PCHIP over other 
interpolation methods is justified by its characteristic to preserve the shape of the data and respect 
monotonicity. The combination of these samples is defined as the upper-envelope set; 

• Subtract the imputed data from 𝑁𝐷𝐼𝑡𝑟 . Reinsert the withdrawn samples with a difference greater than 
zero to the upper-envelope set. This step allows to better follow the shape of the original data; 

• Impute the updated upper-envelope set by means of PCHIP; 

• Remove the two previous and two later months from 𝑁𝐷𝐼𝑡𝑟. 

The definition of 𝑁𝐷𝐼𝑡𝑟 allows to better model the beginning and the end of the SITS, thus smoothing 

discontinuities and possible errors in LCCD analysis. 

 In the case of complex land cover classes like vegetation type (i.e., grass, shrubs, forest and crops) that show 

strong variabilities over space and time due to intrinsic seasonality and the large amount of species around the 

world, a third step is added that performs adaptive non-parametric regression of NDI-SITS by considering a 

General Regression Neural Network (GRNN) by taking inspiration from [91] [92](see Figure 39). The non-

parametric regression is used and adapted to produce continuous and regularly sampled temporal signatures for 

vegetation pixels. To do so, four steps are followed: (1) Computation of Normalized Difference Indices (NDI), (2) 

uniform sampling interpolation, (3) low pass filtering and; (4) non-parametric regression through a Multi-Layer 

Perceptron Neural Network (MLP-NN). First, the spectral temporal signatures are combined, generating NDI 

arrays (FS). The combination of the source signals in the 𝐾 bands produce an increased number of features. The 

NDI temporal signatures are then interpolated, considering the density and the shape maintenance requirement. 

A low pass filter reduces the intensity of high-frequency oscillations not usual in the LC temporal signatures, 

achieving a smoother behaviour. Last, a non-parametric regression captures the temporal signatures trend 

reducing the profile complexity and arithmetic dependency. 
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Figure 39. Block-based representation of the time series reconstruction. 

The cloud/shadow mask for each image in SITS is imposed to exclude cloudy and cloud shadow pixels [93]. 

Moreover, the PCC map is considered to identify the pixels that have changed during the five years processing 

time. As a result, the high priority changed pixels have been selected to detect the year of change from them 

only and limit the computational burden. The low and high priority changes have been defined by climate users 

considering the climate LC transition matrix. These two filtering processes have a significant impact on improving 

the CD map reliability while reducing the overall processing chain computing load [AD5]. 

 

9.4.3 Abrupt Change Detection 

A binary CD method is implemented to effectively discriminate changed and unchanged pixels. The approach is 

based on a generic CD approach for time series, involving the detection and characterization of Breaks For 

Additive Seasonal and Trend (BFAST) [87] . BFAST detects multiple abrupt changes in the seasonal and trend 

components of the time series and characterizes gradual and abrupt ecosystem change by deriving the time, 

magnitude, and direction of change within the trend component of the time series. However, BFAST was 

developed using MODIS data and has been tested mostly on NDVI and a few other vegetation indices, focusing 

on forest change detection. In this study the BFAST is employed for non-vegetated environments, with a set of 

features that accurately capture the properties of different classes. The pixel-wise abrupt CD based on BFAST 

imposes heavy computations to the system. Thus, in order to meliorate the computational burden, a feature 

fusion strategy is considered to fuse informative features derived from feature selection step. The process is 

based on feature magnitude calculation and is performed by considering data of two adjacent years in SITS. If 

data were not available for two adjacent years in the pixel level, the algorithm considers the next year to produce 

the feature magnitude and change information becomes biannual. Let {𝑁𝐷𝐼1
𝑚,1, 𝑁𝐷𝐼1

𝑚,2
, … , 𝑁𝐷𝐼𝑓

𝑚,𝑛
 } and 

{𝑁𝐷𝐼1
𝑚+1,1, 𝑁𝐷𝐼1

𝑚+1,2
, … , 𝑁𝐷𝐼𝑓

𝑚+1,𝑛} be the sets of NDIs of 𝑓 features for the 𝑚th and (𝑚 + 1)th year of SITS, 

respectively. Let 𝑛  correspond to the total number of days for each year. 

{𝑁𝐷𝐼1
(𝑚,𝑚+1),1

, 𝑁𝐷𝐼1
(𝑚,𝑚+1),2

, … , 𝑁𝐷𝐼𝑓
(𝑚,𝑚+1),𝑛

} is computed by subtracting 𝑁𝐷𝐼𝑓
𝑚  and 𝑁𝐷𝐼𝑓

𝑚+1 for each feature. 

Finally, a hyper magnitude 𝑁𝐷𝐼𝐹
𝑚,𝑚+1 is calculated following the popular technique CVA [94]: 

 

𝑁𝐷𝐼𝐹
𝑚,𝑚+1 = √∑(𝑁𝐷𝐼𝑓

𝑚,𝑚+1)2

𝑓

1

 (3) 

The output of this process will be used as the input for BFAST. The final product is a four-channel image, one is 

related to the year in which a change has occurred, the second provides information on the probability of a 

certain change occurring, the third one shows how reliable is the reported year, considering the time span 
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between the years in which the feature magnitude is calculated and the last channel is the PCC map giving the 

information of the high and low priority pixels.  

The analysis will be fully unsupervised and the CD accuracy is strongly reliant on the SITS fitting quality, as well 

as the characteristics and speed of change over time. The method allows the user to know if there has been some 

disturbance/change, but not the type of disturbance/change. Therefore, the user can derive the information of 

the LC of interest from the five year regional HRLC maps. 

 

Figure 40. Block-based representation of the abrupt change detection. 

 

9.5 A deep learning perspective 

The processing chain for the multitemporal CD and trend analysis could be also analysed from a Deep Learning 

(DL) perspective (see Figure 41). In particular, some works [95]–[99] can be found nowadays in literature that 

deal with rather longer time scale changes or inter-annual changes. The main problem for deep learning 

approaches remains the lack of enough training samples to train the algorithms. This problem is even bigger 

when we talk about CD and long-time series. When training samples are available, the potential in terms of 

accuracy is quite remarkable. Some examples of works carried out in literature, rather in Landsat like data or 

long time series, are provided in the next in order to show the potential of DL. Inspiration could be taken from 

these works in order to be applied on the CCI HRLC with some extra work for training data collection. 

 

Figure 41. New deep learning block-based representation of the processing chain for the multitemporal change 

detection and trend analysis. 
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9.5.1 Learning a Transferable Change Rule from a Recurrent Neural Network (RNN) for Land Cover 

Change Detection (REFEREE). 

The goal of this work is to design an efficient transferable change rule for binary and multi-class CDs. To do so, 

the method relies on an improved Long Short-Term Memory (LSTM) model, in a RNN learning framework, that 

acquires and records the change information of long-term sequences of remote sensing data. Experiments were 

carried out in three different datasets/cities (Taizhou, Kunshan and Yancheng in China), with different types of 

changes. The results of REFEREE were compared with non-deep learning approaches such as Change Vector 

Analysis (CVA), Principal Component Analysis (PCA), Iteratively-Reweighted Multivariate Alteration Detection 

(IRMAD) and Supervised Slow Feature Analysis (SSFA). The results, summarized in Table 8, show the high 

potential of REFEREE over standard methods with an increase of accuracy over 10-30% for the binary CD case 

and over 10-25% for the multiple CD case. 

Table 8. Kappa coefficient and Overall Accuracy (OA) for the three datasets in (a) binary and (b) multiple change 

detection cases. 

 

(a) 

 

(b) 

9.5.2 Forest Change Detection in Incomplete Satellite Images with Deep Neural Network. 

The goal of this work is to detect forest cover changes (deforestation and fire) over a period of 29 years (1987-

2015). The study area is located in Australia and Landsat images are used. This is the closest example to what we 

will face in the CCI HRLC project, both in time span and data type. Given the well-known problem of incomplete 

and contaminated Landsat data, this approach includes the pre-processing steps as well, which are not addressed 

with deep learning approaches. The CD problem is addressed as a classification problem itself, where features 

are learnt using a deep neural network in a data-driven fashion. Based on these highly discriminative 

representations, it is possible to determine forest changes and predict their onset and offset timings. Results are 

compared to state-of-the-art approaches such Support Vector Machines (SVM), Random Forest (RF), Bag of visual 

Words (BoW) and Scale Invariant Feature Transform (SIFT). The proposed approach in this paper showed an 

improvement of about 16-24% for the forest changes (see Table 9) and a mean onset/offset prediction error of 

4.9months (an error reduction of five months – see Table 9 and Figure 42). 
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Table 9. Example of classification/change detection and onset/offset detection. 

Accuracies are given in percentage, whereas the error units are months. 

 

 

 

 

 

Figure 42. Sample result of the ground truth onset/offset events. In each plot, the top bar shows ground truth, and 

the bottom bar shows prediction from the proposed approach. 

9.5.3 Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep 

Information Learning Method to Landsat Data 

The goal of [98] is to detect long-term urban changes by addressing temporal spectral variance and a scarcity of 

training samples in Landsat images from 1984-2016. Once again, we are in a similar situation to the CCI HRLC 

project. This time the focus is on urban changes, and not on vegetation LC like, which is indeed complementary 

to the paper presented in section 10.4.2. The method is applied to Landsat observations over urban areas in four 

cities in the temperate zone (Beijing, New York, Melbourne, and Munich). The method is trained using 

observations of Beijing collected in 1999, and then used to map urban areas in all target cities for the entire 

1984–2016 period. The method uses two main steps: (1) use of RNN to minimize seasonal urban spectral 

variance; and (2) introduce an automated transfer strategy to maximize information gain from limited training 

samples when applied to new target cities in similar climate zones. The method is compared to other state-of-

the-art methods (SVM, RF and RNN-LSTM), achieving comparable or even better accuracies (see Table 10). The 

overall accuracy of single-year urban maps is approximately 96±3% among the four target cities. 
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Table 10. Detection results from state-of-the-art methods and proposed method with OA and run-time. 

 

 

Given computational burden of deep learning base methodologies, they have been let aside in the context of the 

project, but could be considered for further activities. 

10 Post-processing 

The post processing module has been developed to address the residual misregistration in the land-cover map 

time series and the residual errors of the change detection module. The post processing considers the spatial 

extent of the detected changes. Those changes that are too small to be realistic are removed and the land cover 

of the most recent year is used. The priority of the changes is taken into account in order to avoid removing small 

high priority changes that are still reasonable. Also, the classes involved in the changes are considered regardless 

of the priority.  

The module works by iteratively computing the PCC map of the output land cover maps from the decision fusion 

modules, starting from 2015-2019 to 1990-1995. The small changes detected in the PCC are analysed in terms of 

best classes involved in the land cover transition and priority of the change. Generally, for high priority changes 

only isolated clusters of 1 to 5 changed pixels are considered in the post processing (the cluster size depends on 

both mapped region and involved classes), apart from cases where they are clearly errors due to residual 

misregistration. For low-priority changes, we generally consider slightly larger minimum allowed clusters, but it 

still depends on both the region and the involved classes. For example, changes related to road construction are 

always kept, even if they are associated to small changes. Concerning the second best-class map, it inherits the 

best-class label that was chosen by the fusion module for those pixels in which the change is removed. Finally, 

the output uncertainty measures mirror those coming from the optical, SAR, and fusion processing chains. 
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