

→ THE EUROPEAN SPACE AGENCY

Objective

Objective: Compare performance of the different algorithms/product and validate river discharge time series

Validate River Discharge (Lead Hydro Matters)

- Validation:
 - With Cal/Val in-situ data over validation period
 - With independent in-situ data
- Errors first prior to an end-to-end error budget:
 - WSE errors between altimetry and in-situ data
 - Quantile approach time lag between Q and WSE & daily vs monthly
 - Rating curve algorithm

Consistency analysis and round robin (Lead CLS)

- Format: CCI data Standard
- Time/space resolution: Completeness and spatial coverage
- Errors (in situ comparison): Discharge products are compared to in situ data (RMSE, Pearson, Bias, Nash, KGE)

Validation – available data

With Cal/Val in-situ data

Available in-situ discharge data for each station <u>used</u> to setup satellite-based RD methodology.

- 9 databases
- > 53 stations with in-situ data

With Independent in-situ data

Available in-situ discharge data for each station **not used** to setup satellite-based RD methodology.

- 6 databases
- 16 stations with in-situ data

Validation - methodology

Validation period

All period (cal/val)

With Cal/Val in-situ data

- Identify overlap period between merge WSE from altimeters and insitu discharge = closest date with time gap < 24H
- Divided this common period into Cal/Val periods

First 1/3 part = Validation period (Red)

Last 2/3 parts = Calibration period (Blue)

CHAD - MAILAO CHAD - LAI CHAD - AM-TIMAN AMAZON - SAO-FELIPE AMAZON - OBIDOS

2000-01-01

2004-01-01

2008-01-01

2012-01-01

2016-01-01

- Identify overlap period between satellite-based RD products independent in-situ discharge = closest date with time gap < 24H
 - Over all available stations per products
 - Over common stations between products

-20 -

-40

Validation - results

With Cal/Val in-situ data

uncal – CDF cal – BestFIT cal – Copula RD – alti

All period (cal/val)

Over all period (at least 20 years) we observed a **very** good efficiency over calibrated methods with KGE > 0.5 and NRMSE < 11%

-20

Validation - results

uncal - CDF cal - BestFIT cal - Copula RD - alti

 $med = -1.24 \quad med = -0.57 \quad med = -4.55 \quad med = 0.49$

All period (cal/val)

Over all period (at least 20 years) we observed a very good efficiency over calibrated methods with KGE > 0.5 and NRMSE < 11%

Validation period

Validation period largely affected by old/less accurate missions (MODIS, LandSAT, T/P, Envisat, ERS2)
BUT still good efficiency: median NRSME < 15%

With Cal/Val in-situ data

PBIAS

uncal - CDF cal - BestFIT cal - Copula RD - alti

All period (cal/val)

Over all period (at least 20 years) we observed a very good efficiency over calibrated methods with KGE > 0.5 and NRMSE < 11%

Validation period

Validation period largely affected by old/less accurate missions (MODIS, LandSAT, T/P, Envisat, ERS2) **BUT** still **good** efficiency: median **NRSME < 15%**

With Independent in-situ data

Over all available stations per products

uncal - CDF cal - BestFIT cal - Copula RD - alti

 $med = -0.81 \quad med = -8.43 \quad med = -4.87 \quad med = -0.43$

- High disparity for uncalibrated method for multibased RD
- Over calibrated methods: very good efficiency with KGE >0.75 and NRMSE
- < 13.5%

With Cal/Val in-situ data

PBIAS

uncal - CDF cal - BestFIT cal - Copula RD - alti

med = -1.24 med = -0.57 med = -4.55 med = 0.49

All period (cal/val)

Over all period (at least 20 years) we observed a **verv** good efficiency over calibrated methods with KGE > 0.5 and NRMSE < 11%

100

Validation period

Validation period largely affected by old/less accurate missions (MODIS, LandSAT, T/P. Envisat, ERS2) BUT still good efficiency: median **NRSME < 15%**

With Independent in-situ data

Over all available stations per products

- High disparity for uncalibrated method for multibased RD
- Over calibrated methods: very good efficiency with KGE >0.75 and NRMSE
- < 13.5%

Over common stations between products = 3 stations

uncal - CDF cal - BestFIT cal - Copula RD - alti

 $med = -15.22 \quad med = -8.43 \quad med = -4.87 \quad med = -3.59$

- For the 3 common stations, the same analyse can be made than before

With Cal/Val in-situ data

All period over common stations between calibrated RD products

- Over satellite-based RD-cal products (21 stations)

With Cal/Val in-situ data

- Over satellite-based RD-cal products (21 stations) : NRMSE < 15 %
- RD-multi able to add some points where alti is not available

esa

With Cal/Val in-situ data

- Over satellite-based RD-cal products (21 stations) : **NRMSE < 15 %**
- RD-multi able to add some points where alti is not available
- RD-alti able to better catch the high variability

With Cal/Val in-situ data

All period over common stations between calibrated RD products PO - PONTELAGOSCURO cal-BestFIT OB - SALEKHARD

- Over satellite-based RD-cal products (21 stations) : NRMSE < 15 %
- RD-multi able to add some points where alti is not available
- RD-alti able to better catch the high variability

With Independent in-situ data

All period over available stations for all RD products

- Validation with independent in-situ data: (11 stations)

With Independent in-situ data

All period over available stations for all RD products

- Validation with independent in-situ data: (11 stations) : **NRMSE < 30 %**
- RD-alti able to provide a good estimation of the temporal variability with the flood events but there is still outliers
- **RD-multi less efficient** than RD-alti and do not catch the extreme events over the same period **but can provide more years of observation**

ABN database

With Independent in-situ data

- Validation with independent in-situ data: (11 stations) : **NRMSE < 30 %**
- RD-alti able to provide a good estimation of the temporal variability with the flood events but there is still outliers
- **RD-multi less efficient** than RD-alti and do not catch the extreme events over the same period **but can provide more years of observation**
- RD-alti able to provide a good estimation of the RD over the arctic basin especially if we take into account the associated uncertainty
- RD-multi [uncal-CDF] difficulty to observed frozen period masked out in the multi indices calculation probability of snow by MODIS

ArcticGRO database

14

Uncertainty

Uncertainty propagation

- Essential for assessing the reliability of RD estimations
- **Method**: Gaussian error propagation quantifies uncertainties in parameters a, WSE, b, and z0.
- **Assumptions**: Assumes parameter uncertainties are independent and based on linearization.
- Average Uncertainty:
 - Sensor changes over time.
 - Misinterpretation of altimeter data.
 - Challenges with rating curves and spatial disparities.
 - Increased sensitivity during extreme flow events.

Uncertainty

esa

Uncertainty propagation

- Essential for assessing the reliability of RD estimations
- **Method**: Gaussian error propagation quantifies uncertainties in parameters a, WSE, b, and z0.
- **Assumptions**: Assumes parameter uncertainties are independent and based on linearization.
- Average Uncertainty:
 - Sensor changes over time.
 - Misinterpretation of altimeter data.
 - Challenges with rating curves and spatial disparities.
 - Increased sensitivity during extreme flow events.

Error from using Quantile approach vs. Overlap approach

- RD estimates using the quantile function (non-overlap) approach have **higher uncertainties** compared to the overlap approach over the same period:
 - Non-Overlap Approach: Median KGE = 0.62, NRMSE = 14.0%
 - Overlap Approach: Median KGE = 0.90 , NRMSE = 9.9%
- Larger time gaps (> 10years) between Q and WSE data lead to decreased statistical performance, particularly in rivers with high variability
- Quantile approach = sensitive to temporal distribution of hydrological events: leading to variability in performance across different stations and periods.

Objective

Objective: Compare performance of the different algorithms/product and validate river discharge time series

Validate River Discharge (Lead Hydro Matters)

- Validation:
 - With Cal/Val in-situ data over validation period
 - With independent in-situ data
- Errors first prior to an end-to-end error budget:
 - WSE errors between altimetry and in-situ data
 - Quantile approach time lag between Q and WSE & daily vs monthly
 - Rating curve algorithm

Consistency analysis and round robin (Lead CLS)

- Format: CCI data Standard
- Time/space resolution: Completeness and spatial coverage
- Errors (in situ comparison): Discharge products are compared to in situ data (RMSE, Pearson, Bias, Nash, KGE)

Validation - methodology

- Metrics computation from discharge estimates and in situ timeseries
- Example with the Obidos station from RD-alti product

Obidos full period example. RD-Alti

Validation - methodology

- Metrics computation from discharge estimates and in situ timeseries
- Example with the Obidos station from RD-alti product

Obidos validation period example. RD-Alti

Nash coefficient results

$$NSE = 1 - \frac{\sum_{i=1}^{n} (O_i - S_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}$$

- (NSE median of 0.79) than the validation period (NSE median of 0.60)
- Validation over the calibration period shows greater results
- Recent period was used for calibration. Past period for validation
- Altimetry data over ERS or Envisat period is less accurate than recent period with Jason-3, Sentinel3A/B and Sentinel6A

Validation - methodology

- Uncertainties w.r.t errors
- Example with the Obidos station from RD-alti product

$$\sqrt{\frac{1}{n} * \sum_{i=0}^{n} (\frac{1}{o_i} * (U_i - |o_i - S_i|))^2} * 100\%$$

Uncertainties evolution at Obidos station for RD-alti discharge estimates (left panel, 12% in average) and differences w.r.t in situ (right panel, 7% in average)

- Products uncertainties (RD-alti) quite consistent w.r.t error
- Differences about a few tens of percent (median value of 30%)
- Uncertainties w.r.t errors are more consistent during the calibration period
- The differences between errors and uncertainties are correlated with the uncertainty values
- => the greater the uncertainty, the greater the difference w.r.t the errors

Comparisons between uncertainties and errors of RD-alti discharge estimates

- Datasets
 - RD-alti
 - RD-multi (BESTFIT, COPULA, UNCAL)
- Period:
 - Full period
 - Validation period
- Monthly average

- RD-alti: KGE 0.78 and NRMSE 7.3% as median values with 38 stations. Results are slightly worse with monthly averages (~5% decrease in KGE, 37% increase in NRMSE) => need for better temporal sampling
- RD-multi: KGE 0.4 and NRMSE 10.8% as median values with 24 stations. Monthly averaging improves results (~15% increase in KGE, ~35% decrease in NRMSE for cal-BestFit) => need for noise reduction
- RD-alti and RD-multi offer complementary benefits, with RD-multi's better temporal sampling and noise reduction with monthly averaging enhancing climate study discharge time series

Conclusion

- The CCI River Discharge Products (CRDP) demonstrate a high level of accuracy and reliability compared to other satellite-based and modeled discharge time series
- Better results for RD-alti than RD-multi when comparing to in situ data (NSE, NRMSE, KGE ...)
- RD-alti limitations: the non-overlap method used for estimation introduces some level of uncertainty. Main sources of uncertainty should be highlighted (oldest altimeter data, bias resolution methods). Need for better temporal sampling
- **RD-multi limitations:** difficulties separating land, vegetation, and water signals. Algorithms could be improved and other ancillary data sources (e.g. temperature data) should be used. Need for noise reduction
- Uncertainty:
 - RD-alti: Uncertainties are available. Quite good consistency between errors and uncertainties. Ongoing tasks to provide "end to end" error budget
 - RD-multi: Need to be implemented
- RD-alti and RD-multi: leading options for studying river dynamics and for water resource management at global and regional scales
- Ongoing tasks to provide a merged dataset (with RD-alti and multi) with the latest products versions

river discharge cci

climate.esa.int/projects/river-discharge

With RSEG

DATA

RSEG Comparison: Only satellite-based discharge data considered (flags 1, 2, 3). Time Series Issues:

- Short Series: Some stations, like the Amazon, have limited satellite data.
- Data Gaps: Some stations end earlier, not always due to GRDC data availability.

With RSEG

DATA

RSEG Comparison: Only satellite-based discharge data considered (flags 1, 2, 3). Time Series Issues:

- Short Series: Some stations, like the Amazon, have limited satellite data.
- Data Gaps: Some stations end earlier, not always due to GRDC data availability.

RESULTS

- All methods in the CCI+ RD project show better efficiency compared to the global RSEG database (monthly res)
- Reduced Disparity: Methods exhibit less disparity in results
- Calibrated Versions: Show the most significant improvements

With RSEG

DATA

RSEG Comparison: Only satellite-based discharge data considered (flags 1, 2, 3). Time Series Issues:

- Short Series: Some stations, like the Amazon, have limited satellite data.
- Data Gaps: Some stations end earlier, not always due to GRDC data availability.

RESULTS

- All methods in the CCI+ RD project show better efficiency compared to the global RSEG database (monthly res)
- Reduced Disparity: Methods exhibit less disparity in results
- Calibrated Versions: Show the most significant improvements
- Comparison RD-alti vs RSEG
- **Better Accuracy**: RD-alti demonstrates higher accuracy in matching in-situ discharge data compared to the RSEG database
- **Consistent Performance**: RD-alti consistently outperforms RSEG across different stations and time periods, indicating its reliability in estimating river discharge

insitu/RC-alti: RMSE: 745.650 / pBias: 2.620 / NSE: 0.900 / KGE: 0.940 / p-value: 0.000 / nb points: 208 insitu/RSEG: RMSE: 2225.340 / pBias: 51.480 / NSE: 0.240 / KGE: 0.400 / p-value 0.000 / nb points: 36 010: 554.046 / 050: 2110.387 / 090: 6603.613

insitu/RC-alti: RMSE: 846.860 / pBias: 1.620 / NSE: 0.610 / KGE: 0.720 / p-value: 0.000 / nb points: 298 insitu/RSEG: RMSE: 1489.290 / pBias: -3.830 / NSE: -0.300 / KGE: 0.140 / p-value 0.010 / nb points: 215 010: 357 225 / O50: 163 947 / O90: 3742 376

Q10: 691.671 / Q50: 1669.843 / Q90: 3468.4 Q10: 398.380 / Q50: 1411.900 / Q90: 2850.4

With RSEG

DATA

RSEG Comparison: Only satellite-based discharge data considered (flags 1, 2, 3). Time Series Issues:

- Short Series: Some stations, like the Amazon, have limited satellite data.
- Data Gaps: Some stations end earlier, not always due to GRDC data availability.

RESULTS

- All methods in the CCI+ RD project show better efficiency compared to the global RSEG database (monthly res)
- Reduced Disparity: Methods exhibit less disparity in results
- Calibrated Versions: Show the most significant improvements
- Comparison RD-alti vs RSEG
- Better Accuracy: RD-alti demonstrates higher accuracy in matching in-situ discharge data compared to the RSEG database
- Consistent Performance: RD-alti consistently outperforms RSEG across different stations and time periods, indicating its reliability in estimating river discharge
- Comparison RD-multi vs RSEG
- Better Performance: RD-multi consistently outperforms RSEG data when compared with in-situ observations = higher accuracy in estimating RD
- Calibrated Approach Enhancement: Calibrated RD approaches = better performance compared to uncalibrated ones, indicating their advantage in

insitu/cal-BestFIT: NRMSE: 8.67 / pBias: -1.640 / NSE: 0.800 / KGE: 0.840 / p-value: 0.000 / nb points: 267 insitu/RSEG: NRMSE: 67.60 / pBias: 13.030 / NSE: -3.130 / KGE: -0.930 / p-value 0.000 / nb points: 7

nsitu/RSEG: NRMSE: 12.41 / pBias: 6.400 / NSE: 0.430 / KGE: 0.630 / p-value 0.000 / nb points: 123

With GloFAS

- GloFAS Overview: GloFAS, part of Copernicus CEMS, detects global floods using LISFLOOD model with meteorological data.
- Results Analysis:
 - - Discrepancies: Some stations show discrepancies between RD products and GloFAS, indicating inconsistencies in flood detection.
 - - Outliers: Significant differences observed at certain stations suggest limitations in RD product accuracy.
 - RD-alti Superiority: RD-alti outperforms RD-multi, showing potential for improved flood monitoring.
 - **Enhanced Monitoring**: RD-alti and RD-multi complement GloFAS, enhancing flood prediction for better early warning systems.

