Sea ice from ESA CCI

Felix Bunzel, Dirk Notz

Models don't directly describe reality

- Models don't directly describe reality
- Observations don't directly describe reality

- Models don't directly describe reality
- Observations don't directly describe reality
- Many observations are based on underlying models

- Models don't directly describe reality
- Observations don't directly describe reality
- Many observations are based on underlying models
- Many model parameterisations are based on underlying observations

- Models don't directly describe reality
- Observations don't directly describe reality
- Many observations are based on underlying models
- Many model parameterisations are based on underlying observations
- Observations are needed to evaluate models

- Models don't directly describe reality
- Observations don't directly describe reality
- Many observations are based on underlying models
- Many model parameterisations are based on underlying observations
- Observations are needed to evaluate models
- Models can help to evaluate observations

- Models don't directly describe reality
- Observations don't directly describe reality
- Many observations are based on underlying models
- Many model parameterisations are based on underlying observations
- Observations are needed to evaluate models
- Models can help to evaluate observations
- Observations provide empirical understanding

- Models don't directly describe reality
- Observations don't directly describe reality
- Many observations are based on underlying models
- Many model parameterisations are based on underlying observations
- Observations are needed to evaluate models
- Models can help to evaluate observations
- Observations provide empirical understanding
- Complex models provide empirical understanding

We can't model everything we observe

We can't model everything we observeWe can't observe everything we model

- We can't model everything we observe
- We can't observe everything we model
- Many methods developed to gain insights from observations can be transferred to models

- We can't model everything we observe
- We can't observe everything we model
- Many methods developed to gain insights from observations can be transferred to models
- Many methods developed to gain insights from models can be transferred to observations

1 How can we use climate models to understand observational uncertainty?

2 How can we use observations to understand model errors?

How thick is Arctic sea ice?

Max-Planck-Institut für Meteorologie

meereisportal.de, after Ricker et al., The Cryosphere, 2014

How thick is Arctic sea ice?

meereisportal.de, after Ricker et al., The Cryosphere, 2014

How thick is Arctic sea ice?

But: Snow thickness is unknown and based on climatology

Max-Planck-Institut für Meteorologie

meereisportal.de, after Ricker et al., The Cryosphere, 2014

1 Carry out free simulation with Earth System Model

Approach

Carry out free simulation with Earth System Model
Calculate freeboard from free simulation

- 1 Carry out free simulation with Earth System Model
- 2 Calculate freeboard from free simulation
- 3 Pretend that we don't know snow thickness from model simulation
- 4 Calculate ice thickness from freeboard in 2.) and a given snow climatology

- 1 Carry out free simulation with Earth System Model
- 2 Calculate freeboard from free simulation
- 3 Pretend that we don't know snow thickness from model simulation
- 4 Calculate ice thickness from freeboard in 2.) and a given snow climatology
- 5 Compare ice thickness from 4.) with ice thickness from 1.)

Time series in January

Time series in January

Time series in January

Warren snow climatology January used by CCI SIT

Snow climatology January in MPI-ESM

Mean bias

Areal distribution of biases in April

Max-Planck-Institut für Meteorologie

1 How can we use climate models to understand observational uncertainty?

2 How can we use observations to understand model errors?

MPI-ESM 1.0 didn't like CCI SIC 1 in some regions

(CCI SIC 1 minus MPI-ESM 1.0 SIC March 2003-2008)

Max-Planck-Institut ür Meteorologie

MPI-ESM 1.0 didn't like CCI SIC 1 in some regions

(CCI SIC 1 minus MPI-ESM 1.0 SIC March 2003-2006)

MPI-ESM 1.0 didn't like CCI SIC 1 in some regions

(CCI SIC 1 minus MPI-ESM 1.0 SIC March 2003-2008)

Max-Planck-Institut ür Meteorologie

MPI-ESM 1.1 likes CCI SIC 1 much better

(CCI SIC 1 minus MPI-ESM 1.0 SIC March 2003-2008)

MPI-ESM 1.1 likes CCI SIC 2 even better

Max-Planck-Institut für Meteorologie

MPI-ESM 1.1 likes CCI SIC 2 even unfiltered

(unfiltered CCI SIC 2 - MPI-ESM 1.0 SIC March 2003-2006)

Neither observations nor models can ever capture reality

- Neither observations nor models can ever capture reality
- The combined analysis of models and observations in ESA CCI has opened new pathways to understand reality

- Neither observations nor models can ever capture reality
- The combined analysis of models and observations in ESA CCI has opened new pathways to understand reality
- For sea ice, model analysis have identified possible shortcomings in ice-thickness products

- Neither observations nor models can ever capture reality
- The combined analysis of models and observations in ESA CCI has opened new pathways to understand reality
- For sea ice, model analysis have identified possible shortcomings in ice-thickness products
- Models have also indicated possible shortcomings in ice-concentration products.

- Neither observations nor models can ever capture reality
- The combined analysis of models and observations in ESA CCI has opened new pathways to understand reality
- For sea ice, model analysis have identified possible shortcomings in ice-thickness products
- Models have also indicated possible shortcomings in ice-concentration products.
- On the other hand, the ice-concentration products have allowed us to identify issues with simulated water masses in our model

