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1. Introduction

This document describes the final evaluation and selection of algorithms considered during
the altimetry Round Robin process of the Sea State CCI project.

In order to be able to keep at least two algorithms for each category (Low Rate
Measurement Mode, LRM and Synthetic Aperture Radar Mode, SARM), the final choice
between the two has been made by consensus between the project management (Fabrice,
Guillaume and Ellis), ESA (Craig & Paolo), and the production team (lfremer), based on a
selection of qualitative and quantitative criteria listed below. The reason for selecting two
algorithms is to keep some flexibility for taking into account other constraints (processing
time, portability in the production environment).

As exposed in the CCl Sea State User Requirement Document, users of the CCl dataset are
strongly concerned by:

- stability of estimates across instruments (eventually from TOPEX to Jason 6 and
beyond, especially across the LRM to SARM boundary);

- accuracy and stability of high sea state values;

- accuracy at the coast where sea state and sea level may be combined into a total
sea level (note that extremes are the most important in this context, and applications
probably require the combination of models and EO data to arrive a the necessary
sampling).

We acknowledge that the data will also be used for many other applications (such as
defining the sea state climate for engineering projects, again a question for which extremes
are dominant). We shall thus follow the requirements laid out in the CCI-Sea State “User
Requirement Document”, and in particular the section 5.1 ‘top level requirements’.

Among these the concern for coastal applications and high resolution are the most relevant
for selecting retracking algorithms. Indeed, the CCI-Sea State User questionnaire shows that
a significant fraction of sea state data users are ocean and coastal engineers (around 30%
among the 184 participants to the survey). One of the first motivation to use satellite sea
state was the study of extreme events (o the question “your interest in satellite data
concerns?”, more than 120 answered “extreme event”). Most participants to the survey were
interested in long-term significant wave height data at high-resolution (~10 km) for the study
of extreme sea state conditions and the impact on the coast. This was confirmed by the
recommendations of the UCM to produce consistent long-term sea state data records in
order to better characterize extreme sea states and trends.



2. Criteria for LRM non-filtered data and for SARM data

Because denoising techniques can be capable to separate noise from signal (e.g. Quilfen
and Chapron 2019) we have set a lower limit on the spectral level at 50% of the expected
Power Spectral Density (PSD) level, based on the denoised CCI-v1 data (such as shown in
Quilfen and Chapron 2019 for the Agulhas current region). The logic is that if the retracked
data is below that level some important signal is certainly missing in the data.

A first estimate of this global mean PSD is shown below, as provided by Y. Quilfen, using
Jason 2 data only.
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Figure 1: Average power spectral density from the de-noised Jason 2 data over the globe.
This was obtained using 256-point segment from the 1 Hz data (original MLE4 or denoised
data).

Note that we have not enforced an upper limit to the PSD because potentially the noise and
signal can be separated (e.g. using the kind of denoising applied to CCl-v1), although it may
be more difficult for higher spectral levels.

The average global PSD of Hs should be around 0.4 m2/cycle/ km at 100 km wavelength
and 0.1 m2/cycle/ km at 50 km wavelength. The general shape of the Hs spectra estimated



by Quilfen and Chapron (2019) is supported by numerical modelling (Ardhuin et al. 2017)
and theoretical analysis (Villas-Boas and Young, submitted). In general the spectral shape
follows the surface kinetic energy (KE) spectrum because the variability of Hs is dominated
by current-induced refraction, and this KE spectrum may be further linked to the SSH
spectrum via the surface quasi-geostrophic theory (e.g. Klein et al. 2008).

The spatial variability along the tracks contains signal and noise. We thus expect the data to
have higher variance than the signal alone. This excess of variance due to noise may be
removed by adequate filtering (e.g. Quilfen et al. 2018). However, if the variance is lower, it
means that some signal must have been removed in the processing. For this reason we
have defined the following criteria for the spatial scales of interest to most users (50-100km
wavelengths). These are also the scales for which we expect the new algorithms to provide
useful data:

Spectral level at 100 km (qualitative pass / fail): the global average PSD should be above
0.2 m? (cycle/km).

Spectral level at 50 km (qualitative pass / fail): the global average PSD should be above
0.05 m?/ (cycle/km).

We propose to estimate a combined score as follows, the lowest score being the best:
0.3 * Accuracy against models for global areas (std in m)

+ 0.3 * Accuracy against coastal buoys (Standard deviation of the differences (SDD) in
m for all buoys < 20 km from shore):

+ 0.1* Accuracy (compared to models, SDD in m) for large Hs (5 m)
+ 0.1* Accuracy (compared to models, SDD in m) for very large Hs (10 m) :

+ 0.1* Intrinsic noise level (SDD in m)

+

0.1* Intrinsic noise level (SDD in m) for d2c < 20 km

Alternatively we may give 1 point for the algorithm with the highest score on a given criterion,
2 points for the second ... and add the points with the same weights as defined above. The
final ranking is obtained by ranking the score in inverse order. Presumably the result will be
the same.



3. Evaluation results

As mentioned above, the spatial variability along the tracks contains signal and noise. In the
figure below, the STARV2 retracker stands out as having a PSD at 100 km wavelength that
is 4 times lower than all the other retrackers and that appears too low compared to the
analysis discussed above. As a result STARvV2 is excluded from the final selection.
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Figure 2: Average power spectral density from the Jason 3 data over the selected tracks.



Figure 3: Average power spectral density from the Sentinel-3A data over the selected tracks.
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The following tables apply the criteria of section 2.2 to the Round Robin results to arrive at a
relative score for each metric and overall ranking. The rows corresponding to WHALES _ad;,
WHALES realPTR_adj, Adaptive HFA and LR-RMC_HFA are shaded in grey as they are
excluded from the selection since they correspond to algorithms using a filtering techniques
that need further assessment and can be applied a posteriori. Full results are presented in
Annex A.

Metric score and overall ranking for Low Rate Measurement mode (LRM) (Jason-3
retracking)
Algorithm swh_sdd | swh_sdd | swh_sdd | swh_sdd | noise noise overall
ocean coast >5m >10m ocean coast ranking
a,b*
MLE-3 1 3 1 4 3 11,11
MLE-4 3 8 4 6 2 9,8




Brown-Peaky 4 9 3 1 1 1 10,7
WHALES 5 7 5 5 6 6 6,4
WHALES_adj 7 2 7 10 9 8 4,9
WHALES_rea 6 6 6 3 5 5 7,5
IPTR

WHALES_rea 9 1 9 8 7 7 5,10
IPTR_adj

Adaptive 8 5 8 7 8 10 3,3
Adaptive_HF 10 4 10 9 11 11 2,2
A

TALES 2 10 2 2 4 4 8,6
STARv2 11 11 11 11 10 9 1,1

*The overall ranking is calculated using two methods: a) based on weighted metric scores;
b) based on weighted metric results.

Metric score and overall ranking for SAR mode and PLRM (Sentinel-3 retracking)

M

Algorithm swh_sd |[swh_sd |[swh_sd |swh_sd | noise noise overall
d ocean | d coast d >5m d>10m ocean coast ranking
a,b*

SAMOSA-2.5 1 1 1 2 3 3 8,8
WHALES-SA 5 4 6 3 4 5 4.4
R

DeDop-Waver 2 5 2 4 6 7 5,5
LR-RMC 6 8 7 7 5 4 2,2
LR-RMC_HFA 7 7 8 8 7 6 1,1
MLE-4-PLRM 3 2 5 5 1 2 7,7
TALES-PLRM 4 3 3 6 2 1 6,6
STARvV2-PLR 8 6 4 1 8 8 3,3




4. Conclusion

Based on the evaluation in section 3 we select two algorithms from each category (Low Rate
Measurement Mode, LRM and Synthetic Aperture Radar Mode, SARM) for further
development and implementation in the production of the v2 dataset during the current
phase of Sea State CCI:

LRM final selection

1) Adaptive
2) WHALES

SARM final selection

1) LR-RMC
2) WHALES-SAR

We recommend that a further round robin be conducted early in a phase 2 of Sea State CCl
focussing on the re-evaluation of SARM algorithms that will have benefitted from further
development during the intervening period.
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Annex A: Full results

Jason-3 LRM algorithm evaluation table

Metrics Weight MLE-3 MLE-4 Brown-Peaky WHALES WHALES ad] WHALES realPTR WHALES_realPTR_ad) Adaptive Adaptive HFA TALES STARwZ

Comparison against model (ey46r1): swh_sdd [d2¢ > 20 km) 0.3 0675 0308 02793 02216 0.2172 0.221 0.2154 0.2158 0.2103 03166 0.1923
Ranking 1 3 4 5 7 B 9 8 10 2 n

Weighted ranking 03 08 12 15 21 18 27 24 3 06 33

Weighted metrics 0.202 0.052 0.084 0.066 0.065 0,066 0.065 0.065 0.063 0.095 0.058

Comparison against buoys: swh_sdd (2 <= 20 km) 0.3 1323 0657 0.6506 0.6935 1.4202 0.6992 14366 07221 07231 06399 04352
Ranking 3 B =) 7 2 & 1 5 4 10 11

Weighted ranking 03 24 27 2.1 0.6 18 03 15 1.2 3 33

Welghted metrics 0.3970 0.1971 0.1952  0.2081 0.4261 0.2008 04310 0.2166 0.2169 0.1920 0.1306

Comparison against model (cy46r1): swh_sdd (SWH > 5 m} 0.1 0414 0365 03688 03548 0.3448 0.3466 03367 03445 03356 0.375 03118
Ranking 1 4 3 5 7 6 9 8 10 2 11

Welghted ranking 01 o4 0.3 05 07 06 09 08 1 0.2 11

Weighted metrics 0.0414 0.0365 00365 0.0355 0.0345 0.0347 0.0337  0.0345 0.0336 0.0375 0.0312

Com parison against model (cy36rl): swh_sdd [SWH > 10 m) 01 0541 0531 05557 0.5382 0.5024 05464 05086 0.5163 05043 05509 0.5017
Ranking 4 & 1 5 10 3 ] 7 a 2 11

Weighted ranking 04 06 0.1 0.5 1 03 038 0.7 0.9 0.2 11

Weighted metrics 0.0541 0.0531 00556 00538 0.0502 0.0546 00509  0.0516 0.0504 0.0551 0.0502

Noise: swh (d2e = 20 km) 0.1 0505 0519 05513 0.3396 0.2171 0.3656 02335 0.2248 0.1199 04581 0.1729

Ranking 3 2 1 6 o 5 7 8 1 4 10

Welghted ranking 03 0.2 0.1 06 0.9 o5 07 0.8 11 04 1

Weighted metrics 0.0505 0.051% 00551 0.0340 0.0217 0.0366 0.0234  0.0225 0.0120 0.0458 0.0173

Noise: swh (d2c <= 20 km) 0.1 D572 0554 05872 03734 0.25596 0.3934 0.2902  0.2276 0.1308 0.5214 0.2372

Ranking 2 3 1 6 8 5 7 10 11 4 9

Weighted ranking 02 03 0.1 0.6 0.8 05 0.7 i 11 04 0.9

Weighted metrics 00572 00554 00587 0u0373 0.0260 0.0393 00290 0.0228 0.0131 0.0521 0.0237

Method 1: Total weighted ranking 22 48 4.5 58 6.1 5.5 6.1 7.2 83 48 10.7

Method 2: Total Welghted metrics 0.803 0.486 0.48527 043513 0.62361 0.44126 0.6325 0.41269 038008 04775 0.3106

Ranking (method 1) 11 9 10 [ 4 7 5 3 2 a 1

Ranking (method 2) 11 & s 4 9 £l Pl 3 2 6 1

Sentinel-3 SARM and PLRM algorithm evaluation table

Metrics Weight SAMOSA-2.5 WHALES-SAR DeDop-Waver LR-RMC LR-RMC_HFA MLE-4-PLRM TALES-PLRM STARw2-PLRM

Comparison against model (cyd6r1): swh_sdd (d2c = 20 km) 0.3 0.4834 0.263 0,3752 0.2512 0.2444 0.3248 0.314 0.2146
Ranking 1 5 2 & 7 3 4 8

Weighted ranking 0.3 1.5 0.6 18 21 09 12 24

Weighted metricss 0.1450 0.0739 01126 0.0754 0.0733 0.0974 0.0942 0.0644

Comparison against buoys: swh_sdd (d2c <= 20 km) 0.3 21175 0.5684 0.5540 0.4638 0.4795 1.4450 0.6029 0.4924
Ranking 1 4 5 8 7 2 3 6

Welghted ranking 0.3 12 15 24 21 0.6 0.9 18

Weighted metricss 0.6353 0.1705 0.1662 0.1391 0.143% 0.4335 0.1809 0.1477

Comparison against model (cy46rl): swh_sdd (SWH > 5 m) 0.1 06949 0.3502 0432 03311 0.3248 0.3695 0.3848 03778
Rarking 1 B 2 7 8 5 3 4

Weighted ranking 0.1 0.6 0.2 0.7 0.8 0.5 0.3 0.4

Welghted metricss 0.0695 0.0350 00432 00331 0.0325 0.0370 0.0385 0.0378

Comparison against model (cy46r1): swh_sdd [SWH > 10 m) 0.1 0.8423 0.6523 0.6414 0.4404 0.4257 0.5935 0.528 1.1889
Ranking 2 3 4 ? 8 5 6 1

Weilghted ranking 0.2 0.3 0.4 0.7 0.8 0.5 0.6 0.1

Weighted metricss 0.0842 0.0652 0.0641  0.0440 0.0426 0.0594 0.0528 0.1189

Noise: swh (d2e > 20 km) 01 0.398 0.3732 0278 0321 0.2749 0.6742 0.6245 0.1725

Ranking 3 4 & 5 7 1 2 8

Weighted ranking 0.3 0.4 0.6 0.5 0.7 01 0.2 0.8

Waeighted metricss 0.0398 0.0373 00278 0.0321 0.0275 0.0674 0.0625 0.0173

Noise: swh (d2e <= 20 km) 0.1 0.4042 0.3359 0.2837 0.3603 0.3058 0.6815 0.7046 0.2537

Ranking 3 5 7 4 6 r | 1 8

Weighted ranking 03 0.5 0.7 04 0.6 0.2 01 08

Weighted metricss 0.0404 0.0336 0.0284  0.0360 0.0306 0.0682 0.0705 0.0254

Method 1: Total weighted ranking 15 4.5 4.0 6.5 71 28 a3 6.3

Method 2: Total Weighted metrics 1.0142 0.4206 0.4423 0.3598 0.3503 0.7628 0.4993 0.4114

Ranking (method 1) g 4 5 2 1 T 6 3

Ranking [methed 2) & 4 5 2 1 7 [ 3
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