

Fire_cci

Emilio Chuvieco University of Alcalá (Spain)

- Science challenges: main questions.
- Project response to those challenges
- Advances and difficulties
- Anticipated outcomes.

Science challenges

- What is the actual magnitude of fire impacts?
 - How much area is burned annually?
 - How much biomass is actually consumed?
 - What is the share of biomass burning in total GHG emissions?
 - What is the role of fire in carbon accounting? Is biomass burning "carbon neutral"?
- What are the recent trends in fire activity?
- What factors are behind fire occurrence?

Fire factors

Impacts of recent warming on fire occurrence

GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L09703, doi:10.1029/2006GL025677, 2006

Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska

Eric S. Kasischke¹ and Merritt R. Turetsky²

Received 16 January 2005; accepted 29 March 2006; published 3 May 2006.

Western US Forest Wildfires and Spring-Summer Temperature

Figure 1. Decadal patterns in burned area across the NABR and in individual ecozones (on the x-axis, 6 = 1960s, 7 = 1970s, etc.; see Table 2 for the key to the ecozones).

18 AUGUST 2006 VOL 313 SCIENCE www.sciencemag.org

✤ Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity

A. L. Westerling, 1,2* H. G. Hidalgo, 1 D. R. Cayan, 1,3 T. W. Swetnam⁴

civice meeting, Toulouse, May 2012

Mean annual precipitation (mm / year)

CMUG integration meeting, Toulouse, May 2012

 $- \rightarrow$

Not enough precipitation Too much precipitation

Van der Werf, 2009

3000

Trends in fire activity

Harrison, S. P., J. R. Marlon y P. J. Bartlein (2010): Fire in the Earth System, en Changing Climates, Earth Systems and Society, Springer Netherlands: 21-48. CMUG integration meeting, Toulouse, May 2012

Fire Impacts

Ecosystems' dependency of fire

Shlisky, A., J. Waugh, P. Gonzalez, M. Gonzalez, M. Manta, H. Santoso, E. Alvarado, A. Ainuddin Nuruddin, D.A. Rodríguez-Trejo, R. Swaty, D. Schmidt, M. Kaufmann, R. Myers, A. Alencar, F. Kearns, D. Johnson, J. Smith, D. Zollner and W. Fulks. 2007. Fire, Ecosystems and People: Threats and Strategies for Global Biodiversity Conservation. GFI Technical Report 2007-2. The Nature Conservancy. Arlington, VA.

Fire emissions: Top down approach

Emissions are estimated as a function of gas concentrations or emitted energy

(Em=f(Fire Radiate Power))

April 30, 2000

October 30, 2000

Source: MOPITT

Fire emissions: Bottom-up approach

Emissions = burned area Χ biomass Χ combustion completeness Х

September, 2000

emission factors

Van der Werf, 2009

C Average emissions from biomass burning (1997-2009)

Average carbon emissions over 1997–2009 were 2.0 PgC year⁻¹ with considerable interannual variability. Van der Werf et al., 2010: Journal of Atmospheric Science, GFED v3

¿How much area is actually burned every year?

- Inconsistencies between RS products and official forest fire statistics.
- Inconsistencies between RS products.
- Internal uncertainty of each RS product.

Different BA estimations

- FAO (FRA2010): 0.6 Mkm². Only 78 countries are covered.
- RS products:
 - L3JRC: 3.5 4.5 Mkm² (2000-07)
 - MCD45 c5: 3.3 3.6 Mkm² (2000–2006)
 - GFED v2: 2.97 3.74 Mkm² (2001-2004)
 - GFED v3: 3.39 4.31 Mkm² (1997-2009).

Average area of forest annually affected by fire by country, 2005

FRA2010

GVED v3

Uncertainty in BA estimation

L3JRC - GFED3

% of BA from different satellite products

Red: over estimation Blue: under estimation

(Giglio et al., 2010).

-40

80

20

40

5

CMUG in

Scientific goals of fire_CCI

- 1. Refine definition of user requirements (GCOS are unrealistic and unfocused).
- 2. Improve current estimations of global burned area. Validate and intercompare BA global products.
- 3. Test improvements of climate-vegetationcarbon models with new BA data.

Project phases

- 1. Improve GCOS requirements: URD and PSD.
- 2. Generation of BA time series:
 - 1. Pre-processing.
 - 2. Burned Area Algorithm Development.
 - 3. Round-Robin exercise.
 - 4. Validation / intercomparison.
- 3. Integration with carbon-emission models.

Relations with other CCIs

- Impacts of biomass burning on:
 - Aerosols / GHG / Clouds.
 - Land Cover.
- Factors affecting fire occurrence:
 - Temperature-rainfall trends, particularly heat waves and "El Niño" episodes (climate prediction)
 - Relations between fire and Tropical deforestation (land cover).

URD-PSD: fire_cci production targets

- Temporal series of BA over 10 selected areas (500x500 km) (1995-2009):
 - Assure spatial accuracy and stability.
 - Consistency across multiple satellites
 - Demonstrate full-time series available.
- Global coverage for five years (1999, 2000, 2003, 2005 and 2008):
 - Demonstrate the semi-operational processing.
 - Ensemble chain, bulk processing of data.

Study sites

Target products

- Burned pixels (mixing all three sensors whenever possible):
 - Monthly files with date of detection.
 - Auxiliary data: Confidence level, land cover, merging information
- Grid product:
 - 0.5 x 0.5 degree (CGM), 15 day temporal resolution.
 - Auxiliary data: Sum of burned area, Proportion of cell burned, Confidence level, % of cloud-free observations, fire distribution, Dominant vegetation burned

Tiles for the pixel product

In addition to standard tiles, the user will have a web tool to interactively select his/her target site and apply for personal downloads

Generation of BA time series: Preprocessing chain

DLR, 2011

BA Algorithm MERIS FRS

MERIS – MODIS BA and HS

BA Algorithm VGT Results

VGT detection dates

VGT vs MODIS

Final merged product: pixel

Grid outputs

Grid layer 1: Total sum area burned

Grid layer 2 (proportion burned) resembles layer 1

Grid layer 3: Confidence levels

Currently only aggregation of ATSR and SPOT BA (only recent delivery of MERIS FRS data with confidence levels) Note different month from example shown in previous slide

85

Validation

- Standard CEOS Validation protocol.
- Landsat-TM/ETM+ multitemporal change detection:
 - Temporal validation: study sites.
 - Spatial validation: stratified random sampling.
- Validation metrics:
 - Accuracy (agreement global-reference data).
 - Error balance (over-under estimation).
 - Temporal consistency.

Brasil

Global validation

Fuzzy error matrix

Fuzzy approach

1.0 0.8 0.6 0.4 0.2 0.0

Error matrix

	Refere		
Global product	Burned	Unburned	Global total
Burned	<i>p</i> ₁₁	p ₁₂	<i>p</i> ₁₊
Unburned	p ₂₁	<i>p</i> ₂₂	р ₂₊
Reference Total	<i>p</i> ₊₁	<i>p</i> ₊₂	p=1

Comparison

g, Toulouse, May 2012

Acronym	Sensor	Developer
GBS_ATSR	ATSR	Globcarbon project
ISA_ATSR	ATSR	Instituto Superior de Agronomia within the CCI project
UL_VGT	Vegetation	University of Leicester within the R-R exercise
IFI_VGT	Vegetation	Globcarbon project
UTL_VGT	Vegetation	Globcarbon project
ISA_VGT	Vegetation	Instituto Superior de Agronomia within the CCI Project
UAH_MERIS	MERIS	University of Alcalá within the CCI project

Selection of algorithms

- Algorithms were compared in pairs
- Ranking based on the number of times (study sites) one algorithm was significantly better than another (t-test at p<0.05)
- Example

Metric X	Algorithm A	Algorithm B
Algorithm A	-	Number of sites where A is better than B
Algorithm B	Number of sites where B is better than A	-

R-R results

GBS_ATSR

IFI_VGT

UTL_VGT

• BA algorithms/products tend to underestimate (red areas), with exceptions (green areas)

ISA_VGT

UAH_MERIS

UL VGT

ISA ATSR

Main challenges of fire_CCI

- Data volume:
 - More than 70,000 scenes for study sites have been processed.
 - Global processing is not feasible with current processing power.
- Data availability:
 - Temporal series are scarce with MERIS FRS.
 - ATSR geometrical problems.

Main challenges of fire_CCI

- BA mapping is competitive:
 - None of the input sensors was designed for BA mapping.
 - Little experience with ESA sensors. None for MERIS, partial for VGT and ATSR (Globcarbon and L3JRC)
 - MODIS products are well considered by science community.
- Time constrains, particularly for BA algorithms.