Fire Disturbance

CMUG Interaction meeting Emilio Chuvieco (fire_cci science leader)

Points of discussion

- Description of user requirements (URD): relations with GCOS and CMUG requirements.
- Description of product specifications (PSD).
- Product validation (PVP) and the Round Robin approach.
- Needs of ECMWF data.
- Common issues with other ECVs.

URD preparation

- First draft of URD questions (September).
- Revision by partners ESA CMUG.
- User questionnaire (October-November).
- Elaboration of answers and first draft (December-January).
- Revision by partners ESA CMUG (February).
- Revision by scientist who answered (March-April).

Target audience

- Atmospheric emission scientists.
- Carbon budget modellers
- Vegetation dynamic modellers
- Natural hazards managers.
- Fire ecologists.

47 scientists

Applications of BA information

End-User	Application	Total of answers
Atmospharia	Monitoring (i.e. observations and data assimilation) of trace gases, aerosols and emissions	20
Chomistry Community	Operational use in atmospheric composition monitoring	9
Chemistry Community	Modelling of atmospheric chemistry	8
	Air Pollution Control	7
	Monitoring and modelling of carbon fluxes	26
Climate-Vegetation Community	Vegetation dynamics (seasonal, interannual)	34
	Species migration	17
	Production of land cover maps	23
Earth Observation Community	Production of other ECVs	8
Natural Hazard	Fire hazard monitoring	28
Prevention Community	Desertification	10
Forest Services	Forest management	22
Forest Services	Post-fire vegetation conditions	34

Models quoted

Model name	Type of Model	Domain	Typical Resolution
Community Land Model (CLM)	Dynamic vegetation/carbon model	Global	up to 1 deg.
ECMWF Integrated Forecasting System	Atmospheric Model	Global	15-25 km
CASA	Dynamic vegetation/carbon model	Global or regional	500 m – 0.5 deg
SEIB	Dynamic vegetation/carbon model	Global	ca. 0.5 deg.
IBIS, INLAND, SITE	Biosphere-atmosphere interaction	Global or regional	300 m – 1 deg.
FOFEM, CRBSUM, LANDSUM, FireBGC, FireBGCv2	Fire ecology	Regional to landscape	10's m – km
ORCHIDEE	Dynamic vegetation/carbon model	Global or regional	8 km – 0.5 deg.
Carbon Tracker	Carbon model	Regional	10 km
HYBRID	Dynamic vegetation/carbon model	Global	0.25 deg.
LPJ-GUESS	Dynamic vegetation/carbon model	Global	0.5 deg.

CCI project interaction meeting - ECMWF, Reading, UK - March 2011

User Requirements

- Accuracy, temporal and spatial resolution depend on the product.
- Alternatives:
 - Pixel-based BA information:
 - Sensor.
 - Merged.

- Gridded BA information.

It was not made explicit which product the requirements refer to!

Average requirements

	GCOS	Ideal	Reasonable	Minimum
Thematic	5%	5 %	15 %	25 %
Accuracy ¹		10 %	20%	30%
Geolocation accuracy		1 km	3 km	6 km
Spatial resolution	250 m	pixel	Pixel-0.25°	0.50
		0.25 km	0.85 km	10 km
Temporal resolution	daily	2. 3 days	6.1 days	8.8 days
		1 day	1.5 days	3 days
Stability	5%	5%	15 %	25 %
		5 %	5 %	5 %
		URD	CMUG	

(1) Importance of balancing omission and commission errors

Average requirements

	GCOS	Ideal	Reasonable	Minimum
Formats		NetCDF-Shape	HDF-NetCDF	ASCII
Indicators		Burn severity, date detection	Clouds, water- top. contam.	Confidence level, dom. vegetation

CMUG

Additional aspects

- Documentation of the product.
- Quality flags.
- Utilities to transfer between formats.
- Sound validation and documentation about the process.
- Assure long-term archiving.
- Organize workshops with key user communities.

PSD proposals

Pixel based product

Grid based product

- Suggested:
 - Sensor-based BA (both monthly)
 - information (ATSR, VGT, MERIS).

(both monthly) **Alternatives:**

Pixel merged BA

- Suggested:
 - 0.1x0.1° biweekly
- Alternatives:
 - 0.1x0.1^o monthly

Proposals for the PSD

	PSD proposal	URD Requirements		
	Pixel /grid	Ideal	Reasonable	Minimum
Thematic	20%	5 %	15 %	25 %
Accuracy		10 %	20%	30%
Geolocation accuracy	1 km	1 km	3 km	6 km
Spatial resolution	Pixel / 0.1 ° grid	pixel	Pixel-0.25°	0.5°
		0.25 km	0.85 km	10 km
Temporal resolution	± 3.5 days	2. 3 days	6.1 days	8.8 days
		1 day	1.5 days	3 days
Stability	15%	5%	15 %	25 %
		5 %	5 %	5 %
Formats	HDF-NetCDF	NetCDF-Shape	HDF-NetCDF	ASCII

Minimum burned patch

Sensor	Spatial Resolution	Minimum BA patch mapped	Minimum number of contiguous pixels
ATSR	1000 m	5,000,000 m ²	5
AATSR	1000 m	5,000,000 m ²	5
VEGETATION	1000 m	5,000,000 m ²	5
MERIS-RR	1200 m	14,400,000 m ²	10
MERIS-FR	300 m	900,000 m ²	10

What proportion of the total BA is captured from that MMU? - Mediterranean areas: > 500 ha is 51 %

Pixel indicators

Table 2 - Fields of the Target BA pixel based product

Layer	Attribute	Units	Data Type
1	Date of the first detection	Day of the year, from 1 to 365, 0 if it is unburned the whole period	Integer
2	Confidence level of BA algorithm ¹	0 to 100 (100 meaning highest probability of BA detection)	Byte
3	% of cloud contamination throughout the month (or average value of snow probability)	0 to 100 ²	Byte
4	% of cloud shadow contamination throughout the month	0 to 100 ³	Byte
5	Average water contamination throughout the month	0 to 1004	Byte
6	Number of cloud free observations throughout the month	0 to 31	Byte
7	Estimation of uncertainty associated to pre-processing	0 to 100 ⁵	Byte

Grid indicators

Table 4 - Fields of the BA grid products

Attribute	Units	Data Type
Sum of burned area	Square metres	Integer
Grid size	Square metres	Integer
Confidence level ^e	0 to 100	Byte
% of cloud contamination throughout the month	0 to 100	Byte
% of cloud shadow contamination throughout the month	0 to 100	Byte
% of water-snow contamination throughout the month	0 to 100	Byte
Homogeneity index = Mean fire size / total area burned	0 to 100	Byte

Product validation Plan

- Standard methods (CEOS cal_val).
- Definition of a common protocol for reference data.
 - Higher resolution images (Landsat mainly).
 - Fire perimeters (+Landsat images).
 - Available reference information (previous projects).
 - Automatic process + visual inspection + cloud removal

CCI project interaction meeting – ECMWF, Reading, UK – March 2011

Product validation Plan

- Validation phases:
 - Internal:
 - Calibration.
 - Temporal consistency: time series on study sites
 - Spatial variability: additional global sampling.
 - External:
 - Round Robin.
 - Global Open (after production)

CCI project interaction meeting – ECMWF, Reading, UK – March 2011

Study sites (Temporal validation)

Validation sites (spatial validation)

Automatic generation of BA perimeters

Bastarrika et al., 2011, RSE

Factors of Uncertainty

• Input data:

- Sensor limitations.
- Image problems (reception, calibration problems)
- Preprocessing errors (atmospheric correction, cloudwater-snow-topo shadows removal)

• BA Algorithm:

- Time after burn.
- Burn conditions
 - Ecosystem cover climatic zones).
 - Burned area size.
- Validation process (reference data).

R-R database

- Calibrated reflectances from ATSR, VGT and MERIS
- Reference BA perimeters
- Auxiliary information: land cover data, hot spots, ecoregions, etc.
- Optional: Alternative sites from user.
- Single quality indices need to be defined from validation metrics. For instance, how to weight?:
 - Omission and commission errors
 - Temporal consistency.
 - Spatial consistency (fire-prone ecosystems)

Needs for ECMWF data

- No needs for ECMWF were identified. DLR is in charge of pre-processing.
- Atmospheric correction:
 - Vis-NIR based algorithms for automatic retrieval of dark objects for estimating aerosol optical thickness (AOT).
 - Water vapor is calculated for MERIS using the atmospheric precorrected differential absorption (APDA) method and the cell-based atmospheric LUTs.
 - The ozone column for sea level is fixed at 330 DU, decreasing with elevation as defined in the mid-latitude summer atmosphere of the MODTRAN code.

Common issues to other ECVs

- Common Input data?
- Common algorithms for pre-processing?
 - Geometric correction.
 - Atmospheric correction.
 - Cloud mask.
 - Land-Water mask (SRTM + GSHHS or dynamic)
- Common areas?
 - Geographical projection.
 - Subsets
- Common File standards:
 - Formats
 - File name structure.
 - Metadata.

Single Global BA files

For MERIS FR 1.8 Gb per period in HDF5 format; 12 Gb in GeoTIFF

Should we use common tiles?

Illustration of the MODIS Land L2G/L3/L4 tile grid (provided by Jacques Descloitres).

CCI project interaction meeting - ECMWF, Reading, UK - March 2011

CCI project interaction meeting - ECMWF, Reading, UK - March 2011