| Customer | : ESRIN | Document Ref | : | SST_CCI-TN-UOL-001 |
|----------|---------|--------------|---|--------------------|
| WP No    | :       | Issue Date   | : | 04 May 2012        |
|          |         | Issue        | : | 1                  |

Project : ESA CCI Phase 1 (SST)

Title

: MMD Content Specification

Abstract : This Technical Note contains the content specification for producing MMD files

Author

6. Colet

Accepted

2 mginh

Paul Spinks Space ConneXions Ltd

:

Distribution : SST\_cci team members ESA (Craig Donlon)

:

Gary Corlett

University of Leicester

#### EUROPEAN SPACE AGENCY CONTRACT REPORT

The work described in this report was done under ESA contract. Responsibility for the contents resides in the author or organisation that prepared it.



## AMENDMENT RECORD

This document shall be amended by releasing a new edition of the document in its entirety. The Amendment Record Sheet below records the history and issue status of this document.

# AMENDMENT RECORD SHEET

| ISSUE | DATE         | REASON FOR CHANGE                                |
|-------|--------------|--------------------------------------------------|
| А     | 2 June 2011  | Initial draft                                    |
| В     | 21 June 2011 | Updated with feedback from UoE and BC            |
| С     | 22 July 2011 | Minor updates for agreed final MMD specification |
| 1     | 04 May 2012  | First release                                    |
|       |              |                                                  |



# **TABLE OF CONTENTS**

| 1.               | INTRODUCTION                                        | 4      |
|------------------|-----------------------------------------------------|--------|
| 1.1              | Purpose and Scope                                   | 4      |
| 1.2              | Structure of the Document                           | 4      |
| 1.3              | Definitions of Terms                                | 4      |
| 1.4              | Input data                                          | 5      |
| 1.5              | MMD output format                                   | 0      |
| 1.6              | Match-up rules                                      | 0      |
| 1.7              |                                                     | С      |
| 2.               | DIMENSIONS                                          | B      |
| 3.               | MATCH-UP CENTRE PIXEL                               | 9      |
| 3.1              | Note on match-up NWP fields                         | 4      |
|                  |                                                     |        |
| 4.               | METOP_MD1                                           | 5      |
| 4.1              | Note on METOP_MD NWP fields1                        | 7      |
| 5.               | SEVIRI_MD1                                          | B      |
| ~                |                                                     |        |
| <b>0.</b><br>6 1 | AISR LEVEL ID                                       | l<br>Q |
| 0.1              |                                                     | J      |
| 7.               | AVHRR GAC                                           | 9      |
| 7.1              | Notes on AVHRR GAC                                  | 3      |
|                  |                                                     |        |
| 8.               | AMSR-E L2P                                          | 5      |
| 9.               | TMI L2P                                             | 7      |
| 10.              | SEA ICE CONCENTRATION                               | 9      |
|                  |                                                     | _      |
| 11.              | AEROSOL ABSORBING INDEX4                            | D      |
| 12.              | IN SITU DATA4                                       | 1      |
| 13.              | INGESTION OPERATIONS:4                              | 2      |
| 11               |                                                     | 2      |
| 14.              | CREATION OF REFERENCE FLAG                          | 2      |
| 15.              | CREATION OF DUMMY MATCH-UPS44                       | 4      |
| 16.              | CO-REGISTRATION AND REMOVAL OF DUPLICATE MATCH-UPS4 | 5      |
| 17.              | EXTRACTS FROM THE MMS4                              | B      |
| 18.              | RRDP EXTRACT                                        | 9      |
|                  | ·····                                               | -      |
| 19.              | HIGH LATITUDE EXTRACTS                              | D      |
| 20.              | UNIVERSAL SCALING FACTORS                           | 1      |



### 1. INTRODUCTION

The SST\_CCI project is part of the ESA Climate Change Initiative, which aims to produce and validate sea surface temperature (SST) SST essential climate variable (ECV) data products. In order to identify the best performing algorithm or combination of algorithms, the SST\_CCI project is holding an open Round Robin (RR) algorithm intercomparison and product validation exercise. In support of the RR the project team will be carrying out a number of studies to improve the clear-sky masking and retrieval algorithms.

Traditional SST algorithm development has used a single sensor match-up dataset, where the retrieved SST from one satellite instrument is matched to a single in situ measurement. To support the development and validation activities in the SST\_CCI project, we require a multi-sensor match-up dataset (MMD) of temporal and spatial coincidences between multiple satellite datasets and a time series of SST from an in situ sensor (such as a drifting buoy).

The MMD approach offers improved information for interpretation of the diurnal cycle and time difference between the various satellite measurements, as well as a partition of the uncertainty budget into components for individual sensors (including in situ). Each multi-sensor match-up (MM) is supplemented with auxiliary data describing estimates of the atmospheric and surface state at the time of the satellite observation.

### 1.1 **Purpose and Scope**

This document provides the specification for creating the SST\_CCI MMD. It defines the inputs and the output file content and format. It also identifies which fields can be queried to produce MMD outputs.

### **1.2** Structure of the Document

After this introductory section, the document is divided into a number of major sections. Section 2 provides details of the dimensions of the various MMD fields. Sections 3 to 12 inclusive list each MMD variable, a brief description, field format and dimension sizes, whether the record is to be queryable, the input data source and ingestion operations

### **1.3 Definitions of Terms**

The following terms have been used in this report with the meanings shown.

| Term   | Definition                                   |
|--------|----------------------------------------------|
| AAI    | Aerosol Absorbing Index                      |
| AN     | Analysis                                     |
| AMSR-E | Advanced Microwave Scanning Radiometer - EOS |
| ATSR   | Along Track Scanning Radiometer              |
| AVHRR  | Advanced Very High Resolution Radiometer     |
|        |                                              |



| BT      | Brightness Temperature                               |  |  |  |  |  |  |  |  |  |
|---------|------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| dBT     | Delta BT                                             |  |  |  |  |  |  |  |  |  |
| dSST    | Delta SST                                            |  |  |  |  |  |  |  |  |  |
| ECMWF   | European Centre for Medium Range Weather Forecasting |  |  |  |  |  |  |  |  |  |
| FC      | Forecast                                             |  |  |  |  |  |  |  |  |  |
| FFM     | Fast Forward Model                                   |  |  |  |  |  |  |  |  |  |
| GAC     | Global Area Coverage                                 |  |  |  |  |  |  |  |  |  |
| GHRSST  | Group for High Resolution SST                        |  |  |  |  |  |  |  |  |  |
| GOME    | Global Ozone Monitoring Experiment                   |  |  |  |  |  |  |  |  |  |
| GRIB    | Gridded Binary file format                           |  |  |  |  |  |  |  |  |  |
| HDF     | Hierarchical Data Format                             |  |  |  |  |  |  |  |  |  |
| METOP   | Meteorological Operational Satellite                 |  |  |  |  |  |  |  |  |  |
| MMD     | Multi-sensor Match-up Dataset                        |  |  |  |  |  |  |  |  |  |
| NetCDF  | Network Common Data Form                             |  |  |  |  |  |  |  |  |  |
| NOAA    | National Oceanic and Atmospheric Administration      |  |  |  |  |  |  |  |  |  |
| NWP     | Numerical Weather Prediction                         |  |  |  |  |  |  |  |  |  |
| ОМІ     | Ozone Monitoring Instrument                          |  |  |  |  |  |  |  |  |  |
| SEVIRI  | Spinning Enhanced Visible and Infrared Imager        |  |  |  |  |  |  |  |  |  |
| SST     | Sea Surface Temperature                              |  |  |  |  |  |  |  |  |  |
| SST_CCI | SST Climate Change Initiative                        |  |  |  |  |  |  |  |  |  |
| TCWV    | Total Column Water Vapour                            |  |  |  |  |  |  |  |  |  |
| ТМІ     | TRMM Microwave Imager                                |  |  |  |  |  |  |  |  |  |
| TOMS    | Total Ozone Mapping Spectrometer                     |  |  |  |  |  |  |  |  |  |
| TRMM    | Tropical Rainfall Measuring Mission                  |  |  |  |  |  |  |  |  |  |

# 1.4 Input data

The following input datasets are required to produce MMD files.

DS1: ATSR MD files - single sensor match-ups in monthly NetCDF files



- DS2: METOP MD files single sensor match-ups in daily NetCDF files
- DS3: SEVIRI MD files single sensor match-ups in daily NetCDF files
- DS4: AVHRR MD files single sensor match-ups in monthly NetCDF files
- DS5: ATSR Level 1b files single orbit files in Envisat format
- DS6: AVHRR GAC Level 1b files single orbit files in NOAA KLM format
- DS7: AMSR-E Level 2 files single orbit files in GHRSST L2P format (NetCDF)
- DS8: TMI Level 2 files single orbit files in GHRSST L2P format (NetCDF)
- DS9: Drifter files history of drifting buoy measurements in NetCDF
- DS10: Sea Ice files daily files of sea ice concentration (one for each hemisphere) in OSI-SAF HDF and Net CDF format
- DS11: TOMS-type aerosol daily files of TOMS/GOME-1/OMI/GOME-2 aerosol absorbing index (AAI) in NetCDF
- DS12: ECMWF ERA-interim reanalysis forecast and analysis fields in GRIB and NetCDF

### **1.5 MMD output format**

The SST\_CCI MMD files will be output in NetCDF format.

### 1.6 Match-up rules

The SST\_CCI MMD shall be built using the following spatial and temporal match-up rules:

- Spatial. Each MM record shall have a central reference location using the priority of ATSR > METOP > AVHRR GAC. The centre of each additional satellite data added to the MM record shall overlap the central reference location.
- All match-ups shall use a maximum time window of 12 hours.

### **1.7** From concept to reality

The MMD approach described in this document uses as its basis pre-existing MD datasets for ATSR, AVHRR GAC, METOP Full Resolution Area Coverage (FRAC) and SEVIRI. The reason for using these files is that long-term archives of METOP FRAC and SEVIRI data were not available at the start of the project. A future operational system would not use the exact approach described in this document; instead it would ideally have the capability to create multi-sensor match-ups from scratch. This sub-section summarises the main differences between the two methods. We start by considering the ideal case.



As noted earlier, the traditional way of creating single sensor MDs for algorithm development and validation compares a single satellite measurement to a single in situ measurement. In this approach the in situ data are assumed to be the reference dataset and the nearest-in-space-and-time (using predefined criteria) match-up pair between the in situ measurement and the satellite dataset is selected in each case. The current predefined criterion recommended by the GHRSST ST-VAL group for satellite SST validation is that the in situ measurement should be located within the satellite pixel within 2 hours of the satellite overpass (https://www.ghrsst.org/ghrsst-science/science-team-groups/stval-wg/sses-common-principles/) based on previous work of Minnett (1991; RD.234). Validation match-up criteria is an active area of research and the limits will be reviewed prior to the product validation work which does not start until February 2014.

In developing our MMD a slightly different approach is required in that a satellite dataset is chosen as the primary reference for a particular multi-sensor match, to which all other datasets (including in situ) are matched. For the non-primary matches, the match-up rule on temporal coincidence between satellite datasets is relaxed to within 12 hours, to allow for the multiple overpass times of the various satellites. The strict criterion on spatial overlap is retained, but in this case the centre of the second satellite pixel must reside within the boundary of the first satellite pixel. This process is somewhat simplified if a priority is assigned to each satellite dataset in order to define the primary sensor.

To define the priority for each sensor we use the best available knowledge of the estimated performance of each sensor relative to each other sensor. We also need to consider the full list of sensors being evaluated within the project. The SST\_CCI project will create two categories of data products:

- 1. A long-term record that combines the ATSR and AVHRR series
- 2. A short-term demonstration product that combines ATSR, METOP, SEVIRI, AMSR-E and TMI.

Within both categories the ATSR series is to be used to bias correct the other infrared sensors. Consequently in any multi-sensor match-up the ATSR will always be the primary sensor. Subsequently one would add METOP FRAC, AVHRR GAC, followed by SEVIRI and then the PMW sensors.

To support the many activities proposed within the SST\_CCI the MMD will not contain information on a single satellite pixel but will contain image extracts from each sensor covering roughly the same spatial area in total. In addition, each MMD record will have an in situ history covering the match-up window where available (e.g. a drifting buoy record covering 12 hours each side of the primary satellite sensor overpass time), and will also contain auxiliary information on the atmospheric and surface state from NWP models, aerosol forecasts and sea-ice analyses.



# 2. DIMENSIONS

| Number | Name                | Size      |
|--------|---------------------|-----------|
| 0      | matchup             | Unlimited |
| 1      | callsign.length     | 16        |
| 2      | filename.length     | 80        |
| 3      | matchup.nwp.an.time | 13        |
| 4      | matchup.nwp.fc.time | 25        |
| 5      | matchup.nwp.ny      | 1         |
| 6      | matchup.nwp.nx      | 1         |
| 7      | metop.ny            | 11        |
| 8      | metop.nx            | 11        |
| 9      | metop.nwp.nz        | 60        |
| 10     | metop.nwp.ny        | 1         |
| 11     | metop.nwp.nx        | 1         |
| 12     | seviri.ny           | 3         |
| 13     | seviri.nx           | 3         |
| 14     | atsr.ny             | 11        |
| 15     | atsr.nx             | 11        |
| 16     | atsr.nwp.nz         | 60        |
| 17     | atsr.nwp.ny         | 1         |
| 18     | atsr.nwp.nx         | 1         |
| 19     | avhrr.ny            | 5         |
| 20     | avhrr.nx            | 3         |
| 21     | avhrr.nwp.nz        | 60        |
| 22     | avhrr.nwp.ny        | 1         |
| 23     | avhrr.nwp.nx        | 1         |
| 24     | amsre.ny            | 1         |
| 25     | amsre.nx            | 1         |
| 26     | tmi.ny              | 1         |
| 27     | tmi.nx              | 1         |
| 28     | seaice.ny           | 1         |
| 29     | seaice.nx           | 1         |
| 30     | aai.ny              | 1         |
| 31     | aai.nx              | 1         |
| 32     | insitu.time         | 48        |

| Table 1: Dimensions of data to be store | red in MMS |
|-----------------------------------------|------------|
|-----------------------------------------|------------|



# 3. MATCH-UP CENTRE PIXEL

| Variable          | Contains                                   | Format | Dimensions | Query | Where to find                                                                                                 | Notes                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|--------------------------------------------|--------|------------|-------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| matchup.id        | Unique ID for each match-<br>up in the MMS | Long   | 0          | Yes   | Create on ingestion                                                                                           | Ingestion operation [1]                                                                                                                                                                                                                                                                                                                                                                                       |
| matchup.time      | Time for primary match-up location         | Long   | 0          | Yes   | ATSR MD file:<br>atsr.time<br>METOP_MD file:<br>msr_time &<br>dtime<br>SEVIRI_MD file:<br>msr_time &<br>dtime | Only include for primary sensor.<br>ATSR time in MD file is in Julian time.<br>Time is provided for each row of METOP and<br>SEVIRI extracts as a delta (dtime) from the time of<br>the insitu measurement (msr_time); the time of the in<br>situ measurement in the MD files is stored as<br>seconds from 01/01/1981 00:00:00, which needs to<br>be changed to the SST_CCI Epoch.<br>Ingestion operation [2] |
| matchup.latitude  | Latitude for primary match-<br>up location | Float  | 0          | Yes   | ATSR MD file:<br>atsr.latitude<br>METOP_MD file:<br>lat[10,10]<br>SEVIRI_MD file:<br>lat[2,2]                 | Only include for primary sensor<br>ATSR stored as float<br>METOP and SEVIRI stored as scaled short<br>Ingestion operation [3]                                                                                                                                                                                                                                                                                 |
| matchup.longitude | Longitude for primary match-up location    | Float  | 0          | Yes   | ATSR MD file:<br>atsr.longitude<br>METOP_MD file:<br>lon[10,10]<br>SEVIRI_MD file:<br>lon[2,2]                | Only include for primary sensor<br>ATSR stored as float<br>METOP and SEVIRI stored as scaled short<br>Ingestion operation [3]                                                                                                                                                                                                                                                                                 |



| matchup.insitu_callsign | In situ callsign for primary match-up                | String | 1, 0 | Yes<br>Any<br>field<br>value              | ATSR MD file<br>insitu.callsign<br>METOP_MD file<br>msr_id<br>SEVIRI_MD file<br>msr_id       | Only include for primary sensor<br>Gives WMO ID of in situ measurement                                                                                                                                                                                                                         |
|-------------------------|------------------------------------------------------|--------|------|-------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| matchup.insitu_dataset  | In situ data type for primary<br>match-up            | Byte   | 0    | Yes<br>Select<br>single<br>or<br>multiple | ATSR MD file:<br>insitu.dataset<br>METOP_MD file:<br>msr_type<br>SEVIRI_MD file:<br>msr_type | Only include for primary sensor<br>For ATSR:<br>0 = drifter<br>1 = mooring (non-GTMBA)<br>2 = ship<br>3 = GTMBA<br>4 = radiometer<br>5 = Argo<br>6 = dummy sea-ice<br>7 = dummy diurnal variability<br>For METOP & SEVIRI:<br>0 = moored<br>1 = drifter<br>2 = ship<br>Ingestion operation [4] |
| matchup.reference_flag  | Flag to indicate if match-up contains reference data | Byte   | 0    | Yes<br>Select<br>single<br>or<br>multiple |                                                                                              | Only include for primary sensor<br>0 = Training<br>1 = Test<br>2 = Selection<br>3 = Validation<br>4 = Undefined<br>5 = Duplicate<br>Created by UoL                                                                                                                                             |
| matchup.valid           | Flag to indicate if match-up is valid or invalid     | Byte   | 0    | Yes<br>Select<br>single<br>or<br>multiple | Create on ingestion                                                                          | 0 = valid<br>1 = invalid<br>Ingestion operation [5]                                                                                                                                                                                                                                            |



| matchup.primary_sensor           | Flag to indicates ID of<br>primary match-up sensor | Byte | 0   | Yes<br>Select<br>single<br>or<br>multiple | Create o<br>ingestion  | Only include for primary sensor<br>0 = ATSR_MD<br>1 = METOP_MD<br>2 = SEVIRI_MD<br>3 = AVHRR_MD<br>Ingestion operation [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------|----------------------------------------------------|------|-----|-------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| matchup.primary_filename         | Name of MD file providing<br>primary reference     | Char | 2,0 | No                                        | Create on ingestion    | Only include for primary sensor<br>Ingestion operation [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| matchup.primary_md_record_number | MD file record number of<br>primary reference      | Long | 0   | No                                        | Create on ingestion    | Ingestion operation [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| matchup.sensor_list              | List of sensors included in<br>MMS record          | Long | 0   | Yes<br>Select<br>single<br>or<br>multiple | Create on<br>ingestion | Bit 0 = ATSR_MDBit 1 = METOP_MDBit 2 = SEVIRI_MDBit 3 = ATSR-1Bit 4 = ATSR-2Bit 5 = ATSR-3 (AATSR)Bit 6 = NOAA-TN (TIROS-N)Bit 7 = NOAA-6 (NOAA-A)Bit 8 = NOAA-7 (NOAA-C)Bit 9 = NOAA-8 (NOAA-E)Bit 10 = NOAA-9 (NOAA-F)Bit 11 = NOAA-9 (NOAA-G)Bit 12 = NOAA-11 (NOAA-G)Bit 13 = NOAA-12 (NOAA-D)Bit 14 = NOAA-13 (NOAA-I)Bit 15 = NOAA-14 (NOAA-J)Bit 16 = NOAA-15 (NOAA-K)Bit 17 = NOAA-16 (NOAA-L)Bit 18 = NOAA-17 (NOAA-M)Bit 20 = NOAA-18 (NOAA-M)Bit 21 = METOP-A (METOP-2)Bit 22 = AMSR-EBit 23 = TMIIn future add new sensors to end of current list; 4-bytes allows for 32 unique 'sensors' fordemonstration system.Ingestion operation [8] |



| matchup.nwp.an.sea_ice_fraction           | ECMWF ERA-interim sea-<br>ice concentration<br>interpolated to match-up<br>location keeping synoptic<br>time     | Float | 0,3,5,6 | No | GGAS CI   | Interpolation to NWP coordinates using CDO tools |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------|---------|----|-----------|--------------------------------------------------|
| matchup.nwp.an.sea_surface_temperature    | ECMWF ERA-interim sea<br>surface temperature<br>interpolated to match-up<br>location keeping synoptic<br>time    | Float | 0,3,5,6 | No | GGAS SSTK | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.an.10m_east_wind_component    | ECMWF ERA-interim 10 m<br>east wind component<br>interpolated to match-up<br>location keeping synoptic<br>time   | Float | 0,3,5,6 | No | GGAS U10  | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.an. 10m_north_wind_component  | ECMWF ERA-interim 10 m<br>north wind component<br>interpolated to match-up<br>location keeping synoptic<br>time  | Float | 0,3,5,6 | No | GGAS V10  | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.sea_surface_temperature    | ECMWF ERA-interim sea<br>surface temperature<br>interpolated to match-up<br>location keeping synoptic<br>time    | Float | 0,4,5,6 | No | GGFS SSTK | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.surface_sensible_heat_flux | ECMWF ERA-interim<br>surface sensible heat flux<br>interpolated to match-up<br>location keeping synoptic<br>time | Float | 0,4,5,6 | No | GAFS SSHF | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.surface_latent_heat_flux   | ECMWF ERA-interim<br>surface latent heat flux<br>interpolated to match-up<br>location keeping synoptic<br>time   | Float | 0,4,5,6 | No | GAFS SLHF | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.mean_sea_level_pressure    | ECMWF ERA-interim mean<br>sea level pressure<br>interpolated to match-up<br>location keeping synoptic<br>time    | Float | 0,4,5,6 | No | GGFS MSL  | Interpolation to NWP coordinates using CDO tools |



| matchup.nwp.fc.boundary_layer_height                  | ECMWF ERA-interim<br>boundary layer height<br>interpolated to match-up<br>location keeping synoptic<br>time              | Float | 0,4,5,6 | No | GGFS BLH  | Interpolation to NWP coordinates using CDO tools |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------|---------|----|-----------|--------------------------------------------------|
| matchup.nwp.fc.10m_east_wind_component                | ECMWF ERA-interim 10 m<br>east wind component<br>interpolated to match-up<br>location keeping synoptic<br>time           | Float | 0,4,5,6 | No | GGFS U10  | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.10m_north_wind_component               | ECMWF ERA-interim 10 m<br>north wind component<br>interpolated to match-up<br>location keeping synoptic<br>time          | Float | 0,4,5,6 | No | GGFS V10  | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.2m_temperature                         | ECMWF ERA-interim 2 m<br>temperature interpolated to<br>match-up location keeping<br>synoptic time                       | Float | 0,4,5,6 | No | GGFS T2   | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.2m_dew_point                           | ECMWF ERA-interim 2 m<br>dew point interpolated to<br>match-up location keeping<br>synoptic time                         | Float | 0,4,5,6 | No | GGFS D2   | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.downward_surface_solar_radiation       | ECMWF ERA-interim<br>downward surface solar<br>radiation interpolated to<br>match-up location keeping<br>synoptic time   | Float | 0,4,5,6 | No | GAFS SSRD | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.<br>downward_surface_thermal_radiation | ECMWF ERA-interim<br>downward surface thermal<br>radiation interpolated to<br>match-up location keeping<br>synoptic time | Float | 0,4,5,6 | No | GAFS STRD | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.surface_solar_radiation                | ECMWF ERA-interim<br>surface solar radiation<br>interpolated to match-up<br>location keeping synoptic<br>time            | Float | 0,4,5,6 | No | GAFS SSR  | Interpolation to NWP coordinates using CDO tools |



| matchup.nwp.fc.surface_thermal_radiation            | ECMWF ERA-interim<br>surface thermal radiation<br>interpolated to match-up<br>location keeping synoptic<br>time | Float | 0,4,5,6 | No | GAFS STR  | Interpolation to NWP coordinates using CDO tools |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|---------|----|-----------|--------------------------------------------------|
| matchup.nwp.fc.turbulent_stress_east_component      | ECMWF ERA-interim<br>turbulent stress east<br>interpolated to match-up<br>location keeping synoptic<br>time     | Float | 0,4,5,6 | No | GAFS EWSS | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.<br>turbulent_stress_north_component | ECMWF ERA-interim<br>turbulent stress north<br>interpolated to match-up<br>location keeping synoptic<br>time    | Float | 0,4,5,6 | No | GAFS NSSS | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.evaporation                          | ECMWF ERA-interim<br>evaporation interpolated to<br>match-up location keeping<br>synoptic time                  | Float | 0,4,5,6 | No | GAFS E    | Interpolation to NWP coordinates using CDO tools |
| matchup.nwp.fc.total_precipitation                  | ECMWF ERA-interim total<br>precipitation interpolated to<br>match-up location keeping<br>synoptic time          | Float | 0,4,5,6 | No | GAFS TP   | Interpolation to NWP coordinates using CDO tools |

### 3.1 Note on match-up NWP fields

- 1. For the match-up, the NWP analysis and forecast fields are to be interpolated spatially to the match-up location defined by matchup.longitude and matchup.latitude but not in time.
- 2. For the time dimension the following rule shall be used to keep the model synoptic time:
  - For forecast (FC) fields: Find t0 equal to the nearest forecast time (every 3 hours) to matchup.time, and then select forecast fields from (t0 48 hr.) to (t0 + 24 hr.), which is 25 samples at 3 hr. resolution.
  - For analysis (AN) fields: Find t0 equal to the nearest analysis time (every 6 hours) to matchup.time, and then select analysis fields from (t0 48 hr.) to (t0 + 24 hr.), which is 13 samples at 6 hr. resolution



# 4. METOP\_MD

| Variable                         | Contains                                                                           | Format | Dimensions | Query | Where to find                                                                                       | Note                                                                                                                                                          |
|----------------------------------|------------------------------------------------------------------------------------|--------|------------|-------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| metop.time                       | Time of observation at centre of<br>METOP extract in seconds from<br>SST_CCI Epoch | Long   | 0          | No    | METOP_MD file<br>msr_time & dtime                                                                   | Time is provided for each row of METOP<br>extract as a delta (dtime) from the primary<br>time of the insitu measurement (msr_time)<br>Ingestion operation [2] |
| metop.dtime                      | Time of each METOP image<br>extract row as milliseconds from<br>metop.time         | Short  | 0,7        | No    | METOP_MD file<br>msr_time & dtime                                                                   | Time is provided for each row of METOP<br>extract as a delta (dtime) from the primary<br>time of the insitu measurement (msr_time)<br>Ingestion operation [2] |
| metop.longitude                  | Longitude of METOP image extract                                                   | Float  | 0,7,8      | No    | METOP_MD file<br>lon                                                                                |                                                                                                                                                               |
| metop.latitude                   | Latitude of METOP image extract                                                    | Float  | 0,7,8      | No    | METOP_MD file<br>lat                                                                                |                                                                                                                                                               |
| metop.reflectance_006            | 0.6 micron percent reflectance of METOP image extract                              | Short  | 0,7,8      | No    | METOP_MD file<br>VIS006                                                                             |                                                                                                                                                               |
| metop.reflectance_009            | 0.9 micron percent reflectance of METOP image extract                              | Short  | 0,7,8      | No    | METOP_MD file<br>VIS009                                                                             |                                                                                                                                                               |
| metop.reflectance_016            | 1.6 micron percent reflectance of METOP image extract                              | Short  | 0,7,8      | No    | METOP_MD file<br>VIS012<br>Note: Field is stored in MD file<br>as 1.2 micron, which is<br>incorrect |                                                                                                                                                               |
| metop.brightness_temperature_037 | 3.7 micron BT of METOP image extract                                               | Short  | 0,7,8      | No    | METOP_MD file<br>IR037                                                                              |                                                                                                                                                               |



| Variable                         | Contains                                                      | Format | Dimensions | Query | Where to find                         | Note |
|----------------------------------|---------------------------------------------------------------|--------|------------|-------|---------------------------------------|------|
| metop.brightness_temperature_108 | 10.8 micron BT of METOP image extract                         | Short  | 0,7,8      | No    | METOP_MD file<br>IR108                |      |
| metop.brightness_temperature_120 | 12.0 micron BT of METOP image extract                         | Short  | 0,7,8      | No    | METOP_MD file<br>IR120                |      |
| metop.solar_zenith_angle         | Solar zenith angles of METOP image extract                    | Short  | 0,7,8      | No    | METOP_MD file<br>solzen               |      |
| metop.satellite_zenith_angle     | Satellite zenith angles of METOP image extract                | Short  | 0,7,8      | No    | METOP_MD file<br>satzen               |      |
| metop.relative_azimuth_angle     | Relative azimuth angles of<br>METOP image extract             | Short  | 0,7,8      | No    | METOP_MD file<br>relazi               |      |
| metop.sea_surface_temperature    | Sea surface temperature of<br>METOP image extract             | Short  | 0,7,8      | No    | METOP_MD file<br>sst                  |      |
| metop.sst_confidence_level       | Confidence Level of METOP<br>image extract                    | Byte   | 0,7,8      | No    | METOP_MD file<br>sst_confidence_level |      |
| metop.sst_mask_indicator         | Classification mask for METOP image extract                   | Byte   | 0,7,8      | No    | METOP_MD file<br>sst_mask_indicator   |      |
| metop.sst_missing_reason         | Indication of reason for missing SST in METOP image extract   | Byte   | 0,7,8      | No    | METOP_MD file<br>sst_missing_season   |      |
| metop.aerosol_optical_depth      | Estimate of aerosol optical depth for METOP image extract     | Short  | 0,7,8      | No    | METOP_MD file<br>x_aod                |      |
| metop.saharan_dust_index         | Estimate of SEVIEI Saharan dust index for METOP image extract | Short  | 0,7,8      | No    | METOP_MD file<br>x_sdi                |      |



#### SST\_CCI-TN-UOL-001 Issue 1

| Variable                    | Contains                                                        | Format | Dimensions | Query | Where to find                 | Note                    |
|-----------------------------|-----------------------------------------------------------------|--------|------------|-------|-------------------------------|-------------------------|
| metop.sea_ice_concentration | Estimate of sea-ice<br>concentration for METOP image<br>extract | Byte   | 0,7,8      | No    | METOP_MD file<br>x_ice_conc   |                         |
| metop.land_sea_mask         | Land/sea mask for METOP extract                                 | Byte   | 0,7,8      | No    |                               | Ingestion operation [9] |
| metop.11b_filename          | Source (metagranule) filename                                   | Char   | 2,0        | No    | METOP_MD file<br>box_filename |                         |
| metop.matchup.elem          | Match-up across-track position in source file                   | Short  | 0          | No    |                               |                         |
| metop.matchup.line          | Match-up along-track position in source file                    | Short  | 0          | No    |                               |                         |
| metop.md_filename           | Filename of parent METOP_MD file                                | Char   | 2,0        | No    | METOP_MD file                 |                         |
| metop.md_record_number      | Record ID from parent<br>METOP_MD file                          | Long   | 0          | No    | METOP_MD file                 |                         |

# 4.1 Note on METOP\_MD NWP fields

NWP single level and model level analysis fields are to be interpolated spatially and temporally to the coordinates and time defining the centre of the METOP extract



# 5. SEVIRI\_MD

| Variable                          | Contains                                                                            | Format | Dimensions | Query | Where to find                       | Note                                                                                                                                                           |
|-----------------------------------|-------------------------------------------------------------------------------------|--------|------------|-------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| seviri.time                       | Time of observation at centre of SEVIRI image extract in seconds from SST_CCI Epoch | Long   | 0          | No    | SEVIRI _MD file<br>msr_time & dtime | Time is provided for each row of SEVIRI extract as<br>a delta (dtime) from the primary time of the insitu<br>measurement (msr_time)<br>Ingestion operation [2] |
| seviri.dtime                      | Time of each SEVIRI image extract row as milliseconds from seviri.time              | Short  | 0,12       | No    | SEVIRI_MD file<br>msr_time & dtime  | Time is provided for each row of SEVIRI extract as<br>a delta (dtime) from the primary time of the insitu<br>measurement (msr_time)<br>Ingestion operation [2] |
| seviri.latitude                   | Latitude of SEVIRI image extract                                                    | Float  | 0,12,13    | No    | SEVIRI _MD file<br>lat              |                                                                                                                                                                |
| seviri.longitude                  | Longitude of SEVIRI image extract                                                   | Float  | 0,12,13    | No    | SEVIRI _MD file<br>lon              |                                                                                                                                                                |
| seviri.reflectance_006            | 0.6 micron reflectance factor of SEVIRI image extract                               | Short  | 0,12,13    | No    | SEVIRI _MD file<br>VIS006           |                                                                                                                                                                |
| seviri.reflectance_008            | 0.8 micron reflectance factor of SEVIRI image extract                               | Short  | 0,12,13    | No    | SEVIRI _MD file<br>VIS008           |                                                                                                                                                                |
| seviri.reflectance_016            | 1.6 micron reflectance factor of SEVIRI image extract                               | Short  | 0,12,13    | No    | SEVIRI _MD file<br>IR_016           |                                                                                                                                                                |
| seviri.brightness_temperature_039 | 3.9 micron BT of SEVIRI image extract                                               | Short  | 0,12,13    | No    | SEVIRI _MD file<br>IR_039           |                                                                                                                                                                |
| seviri.brightness_temperature_087 | 8.7 micron BT of SEVIRI image extract                                               | Short  | 0,12,13    | No    | SEVIRI _MD file<br>IR_087           |                                                                                                                                                                |



| Variable                          | Contains                                                     | Format | Dimensions | Query | Where to find                          | Note |
|-----------------------------------|--------------------------------------------------------------|--------|------------|-------|----------------------------------------|------|
| seviri.brightness_temperature_097 | 9.7 micron BT of SEVIRI image extract                        | Short  | 0,12,13    | No    | SEVIRI _MD file<br>IR_097              |      |
| seviri.brightness_temperature_108 | 10.8 micron BT of SEVIRI image extract                       | Short  | 0,12,13    | No    | SEVIRI _MD file<br>IR_108              |      |
| seviri.brightness_temperature_120 | 12.0 micron BT of SEVIRI image extract                       | Short  | 0,12,13    | No    | SEVIRI _MD file<br>IR_120              |      |
| seviri.brightness_temperature_134 | 13.4 micron BT of SEVIRI image extract                       | Short  | 0,12,13    | No    | SEVIRI _MD file<br>IR_134              |      |
| seviri.solar_zenith_angle         | Solar zenith angles of SEVIRI image extract                  | Short  | 0,12,13    | No    | SEVIRI _MD file<br>solzen              |      |
| seviri.satellite_zenith_angle     | Satellite zenith angles of SEVIRI image extract              | Short  | 0,12,13    | No    | SEVIRI _MD file satzen                 |      |
| seviri.relative_azimuth_angle     | Relative azimuth angles of SEVIRI image extract              | Short  | 0,12,13    | No    | SEVIRI _MD file<br>relazi              |      |
| seviri.sea_surface_temperature    | Sea surface temperature of SEVIRI image extract              | Short  | 0,12,13    | No    | SEVIRI_MD file<br>sst                  |      |
| seviri.sst_confidence_level       | Confidence Level of SEVIRI image extract                     | Short  | 0,12,13    | No    | SEVIRI_MD file<br>sst_confidence_level |      |
| seviri.sst_mask_indicator         | Classification mask for SEVIRI image extract                 | Short  | 0,12,13    | No    | SEVIRI_MD file<br>sst_mask_indicator   |      |
| seviri.sst_missing_reason         | Indication of reason for missing SST in SEVIRI image extract | Short  | 0,12,13    | No    | SEVIRI_MD file<br>sst_missing_season   |      |



| Variable                     | Contains                                                   | Format | Dimensions | Query | Where to find                      | Note                    |
|------------------------------|------------------------------------------------------------|--------|------------|-------|------------------------------------|-------------------------|
| seviri.aerosol_optical_depth | Estimate of aerosol optical depth for SEVIRI image extract | Short  | 0,12,13    | No    | SEVIRI_MD file<br>x_aod            |                         |
| seviri.saharan_dust_index    | Estimate of Saharan dust index for SEVIRI image extract    | Short  | 0,12,13    | No    | SEVIRI_MD file<br>x_sdi            |                         |
| seviri.land_sea_mask         | Land/sea mask for SEVIRI extract                           | Byte   | 0,12,13    | No    |                                    | Ingestion operation [9] |
| seviri.prd_filename          | Source PRD filename                                        | Char   | 2,0        | No    | SEVIRI_MD file<br>box_prd_filename |                         |
| seviri.sat_filename          | Source SAT filename                                        | Char   | 2,0        | No    | SEVIRI_MD file<br>box_sat_filename |                         |
| seviri.matchup.elem          | Match-up across-track position in source file              | Short  | 0          | No    |                                    |                         |
| seviri.matchup.line          | Match-up along-track position in source file               | Short  | 0          | No    |                                    |                         |
| seviri.md_filename           | Filename of parent SEVIRI_MD file                          | Char   | 2,0        | No    | SEVIRI_MD file                     |                         |
| seviri.md_record_number      | Record ID from parent SEVIRI_MD file                       | Long   | 0          | No    | SEVIRI_MD file                     |                         |



# 6. ATSR LEVEL 1B

| Variable                                       | Contains                                                                              | Format | Dimensions | Query | Where to find                                         | Note                                                                                    |
|------------------------------------------------|---------------------------------------------------------------------------------------|--------|------------|-------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|
| atsr. <sen_id>.time</sen_id>                   | Time of observation at centre of ATSR extract in seconds from SST_CCI Epoch           | Long   | 0          | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Time in ATSR file stored in modified Julian date format. Ingestion operation [2]        |
| atsr. <sen_id>.dtime</sen_id>                  | Time of each ATSR image extract row as milliseconds from atsr. <sen_id>.time</sen_id> | Short  | 0,14       | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Time in ATSR file stored in modified Julian date format. <b>Ingestion operation [2]</b> |
| atsr. <sen_id>.latitude</sen_id>               | Latitudes of ATSR image extract                                                       | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                                                                                         |
| atsr. <sen_id>.longitude</sen_id>              | Longitudes of ATSR image extract                                                      | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                                                                                         |
| atsr. <sen_id>.reflectance_55_nadir</sen_id>   | Nadir view 0.55 micron reflectance for ATSR image extract                             | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                                                                |
| atsr. <sen_id>.reflectance_55_forward</sen_id> | Forward view 0.55 micron reflectance for ATSR image extract                           | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                                                                |
| atsr. <sen_id>.reflectance_66_nadir</sen_id>   | Nadir view 0.66 micron reflectance for ATSR image extract                             | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                                                                |
| atsr. <sen_id>.reflectance_66_forward</sen_id> | Forward view 0.66 micron reflectance for ATSR image extract                           | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                                                                |
| atsr. <sen_id>.reflectance_87_nadir</sen_id>   | Nadir view 0.87 micron reflectance for ATSR image extract                             | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                                                                |
| atsr. <sen_id>.reflectance_87_forward</sen_id> | Forward view 0.87 micron reflectance for ATSR image extract                           | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                                                                |



| Variable                                                  | Contains                                                    | Format | Dimensions | Query | Where to find                                         | Note                                                 |
|-----------------------------------------------------------|-------------------------------------------------------------|--------|------------|-------|-------------------------------------------------------|------------------------------------------------------|
| atsr. <sen_id>.reflectance_16_nadir</sen_id>              | Nadir view 1.6 micron reflectance for ATSR image extract    | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                             |
| atsr. <sen_id>.reflectance_16_forward</sen_id>            | Forward view 1.6 micron reflectance for ATSR image extract  | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                             |
| atsr. <sen_id>.brightness_temperature_37_nadir</sen_id>   | Nadir view 3.7 micron reflectance for ATSR image extract    | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                             |
| atsr. <sen_id>.brightness_temperature_37_forward</sen_id> | Forward view 3.7 micron reflectance for ATSR image extract  | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                             |
| atsr. <sen_id>.brightness_temperature_11_nadir</sen_id>   | Nadir view 10.8 micron reflectance for ATSR image extract   | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                             |
| atsr. <sen_id>.brightness_temperature_11_forward</sen_id> | Forward view 10.8 micron reflectance for ATSR image extract | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                             |
| atsr. <sen_id>.brightness_temperature_12_nadir</sen_id>   | Nadir view 12.0 micron reflectance for ATSR image extract   | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]<br>Ingestion operation [11] |
| atsr. <sen_id>.brightness_temperature_12_forward</sen_id> | Forward view 12.0 micron reflectance for ATSR image extract | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]<br>Ingestion operation [11] |
| atsr. <sen_id>.detector_tempertaure_12</sen_id>           | 12 micron channel detector temperature                      | Short  | 0          | No    | Detector T file                                       | Ingestion operation [12]<br>Only required for ATSR-1 |
| atsr. <sen_id>.confidence_word_nadir</sen_id>             | Nadir view confidence word for ATSR image extract           | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                             |
| atsr. <sen_id>.confidence_word_forward</sen_id>           | Forward view confidence word for ATSR image extract         | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10]                             |



| Variable                                                | Contains                                                   | Format | Dimensions | Query | Where to find                                         | Note                     |
|---------------------------------------------------------|------------------------------------------------------------|--------|------------|-------|-------------------------------------------------------|--------------------------|
| atsr. <sen_id>.cloud_flags_nadir</sen_id>               | Nadir view cloud flags for ATSR image extract              | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10] |
| atsr. <sen_id>.cloud_flags_forward</sen_id>             | Forward view cloud flags for ATSR image extract            | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [10] |
| atsr. <sen_id>.solar_zenith_angle_nadir</sen_id>        | Nadir view solar zenith angles of ATSR image extract       | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [13] |
| atsr. <sen_id>.solar_zenith_angle_forward</sen_id>      | Forward view solar zenith angles of ATSR image extract     | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [13] |
| atsr. <sen_id>.satellite_zenith_angle_nadir</sen_id>    | Nadir view satellite zenith angles of ATSR image extract   | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [13] |
| atsr. <sen_id>.satellite_zenith_angle_forward</sen_id>  | Forward view satellite zenith angles of ATSR image extract | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file | Ingestion operation [13] |
| atsr. <sen_id>.solarazimuth_angle_nadir</sen_id>        | Nadir view solar azimuth angles of ATSR image extract      | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                          |
| atsr. <sen_id>.solar_azimuth_angle_forward</sen_id>     | Forward view solar azimuth angles of ATSR image extract    | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                          |
| atsr. <sen_id>.satellite_azimuth_angle_nadir</sen_id>   | Nadir view solar azimuth angles of ATSR image extract      | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                          |
| atsr. <sen_id>.satellite_azimuth_angle_forward</sen_id> | Forward view solar azimuth angles of ATSR image extract    | Short  | 0,14,15    | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                          |
| atsr. <sen_id>.I1b_filename</sen_id>                    | Source ATSR Level 1b filename                              | Char   | 2,0        | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                          |



| Variable                                              | Contains                                                                  | Format | Dimensions | Query | Where to find                                         | Note                                                   |
|-------------------------------------------------------|---------------------------------------------------------------------------|--------|------------|-------|-------------------------------------------------------|--------------------------------------------------------|
| atsr. <sen_id>.VC1_filename</sen_id>                  | Source ATSR visible channel calibration filename                          | Char   | 2,0        | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                                                        |
| atsr. <sen_id>.GC1_filename</sen_id>                  | Source ATSR general calibration filename                                  | Char   | 2,0        | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                                                        |
| atsr. <sen_id>.matchup.elem</sen_id>                  | Match-up across-track position in source file                             | Short  | 0          | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                                                        |
| atsr. <sen_id>.matchup.line</sen_id>                  | Match-up along-track position in source file                              | Long   | 0          | No    | ATS_TOA_1P file<br>AT2_TOA_1P file<br>AT1_TOA_1P file |                                                        |
| atsr. <sen_id>.land_sea_mask</sen_id>                 | Land/sea mask for ATSR image extract                                      | Byte   | 0,14,15    | No    |                                                       | Ingestion operation [9]                                |
| atsr. <sen_id>. nwp.sea_ice_fraction</sen_id>         | ECMWF ERA-interim sea ice fraction<br>interpolated to image extract       | Float  | 0,17,18    | No    | ECMWF files<br>GGAS CI                                | Interpolation to NWP<br>coordinates using CDO<br>tools |
| atsr. <sen_id>.nwp.snow_albedo</sen_id>               | ECMWF ERA-interim snow albedo<br>interpolated to image extract            | Float  | 0,17,18    | No    | ECMWF files<br>GGAS ASN                               | Interpolation to NWP<br>coordinates using CDO<br>tools |
| atsr. <sen_id>.nwp.sea_surface_temperature</sen_id>   | ECMWF ERA-interim sea surface temperature interpolated to image extract   | Float  | 0,17,18    | No    | ECMWF files<br>GGAS SSTK                              | Interpolation to NWP<br>coordinates using CDO<br>tools |
| atsr. <sen_id>.nwp.total_column_water_vapour</sen_id> | ECMWF ERA-interim total column water vapour interpolated to image extract | Float  | 0,17,18    | No    | ECMWF files<br>GGAS TCWV                              | Interpolation to NWP<br>coordinates using CDO<br>tools |
| atsr. <sen_id>.nwp.mean_sea_level_pressure</sen_id>   | ECMWF ERA-interim surface pressure interpolated to image extract          | Float  | 0,17,18    | No    | ECMWF files<br>GGAS MSL                               | Interpolation to NWP<br>coordinates using CDO<br>tools |
| atsr. <sen_id>.nwp.total_cloud_cover</sen_id>         | ECMWF ERA-interim total cloud cover interpolated to image extract         | Float  | 0,17,18    | No    | ECMWF files<br>GGAS TCC                               | Interpolation to NWP<br>coordinates using CDO<br>tools |



| Variable                                             | Contains                                                                              | Format | Dimensions | Query | Where to find              | Note                                  |             |            |
|------------------------------------------------------|---------------------------------------------------------------------------------------|--------|------------|-------|----------------------------|---------------------------------------|-------------|------------|
| atsr. <sen_id>.nwp.10m_east_wind_component</sen_id>  | ECMWF ERA-interim 10 m wind speed<br>east component interpolated to image<br>extract  | Float  | 0,17,18    | No    | ECMWF files<br>GGAS U10    | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.10m_north_wind_component</sen_id> | ECMWF ERA-interim 10 m wind speed<br>north component interpolated to image<br>extract | Float  | 0,17,18    | No    | ECMWF files<br>GGAS V10    | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.2m_temperature</sen_id>           | ECMWF ERA-interim 2m temperature<br>interpolated to image extract                     | Float  | 0,17,18    | No    | ECMWF files<br>GGAS T2     | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.2m_dew_point</sen_id>             | ECMWF ERA-interim 2m dew point<br>interpolated to image extract                       | Float  | 0,17,18    | No    | ECMWF files<br>GGAS D2     | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.albedo</sen_id>                   | ECMWF ERA-interim albedo interpolated to<br>image extract                             | Float  | 0,17,18    | No    | ECMWF files<br>GGAS AL     | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.skin_temperature</sen_id>         | ECMWF ERA-interim skin temperature speed interpolated to image extract                | Float  | 0,17,18    | No    | ECMWF files<br>GGAS SKT    | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.log_surface_pressure</sen_id>     | ECMWF ERA-interim log surface pressure<br>interpolated to image extract               | Float  | 0,17,18    | No    | ECMWF files<br>SPAM LNSP   | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.temperature_profile</sen_id>      | ECMWF ERA-interim temperature profile<br>interpolated to image extract                | Float  | 0,16,17,18 | No    | ECMWF files<br>SPAM T      | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.water_vapour_profile</sen_id>     | ECMWF ERA-interim water vapour profile<br>interpolated to image extract               | Float  | 0,16,17,18 | No    | ECMWF files<br>GGAM Q      | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.nwp.ozone_profile</sen_id>            | ECMWF ERA-interim ozone profile<br>interpolated to image extract                      | Float  | 0,16,17,18 | No    | ECMWF files<br>GGAM O3     | Interpolation<br>coordinates<br>tools | to<br>using | NWP<br>CDO |
| atsr. <sen_id>.cloud_mask_bayes_max_nadir</sen_id>   | ATSR nadir view Bayesian maximum channel cloud mask for image extract                 | Short  | 0,14,15    | No    | Output from ARC3 processor |                                       |             |            |



| Variable                                                      | Contains                                                                 | Format | Dimensions | Query | Where to find              | Note                    |
|---------------------------------------------------------------|--------------------------------------------------------------------------|--------|------------|-------|----------------------------|-------------------------|
| atsr. <sen_id>.cloud_mask_bayes_max_dual</sen_id>             | ATSR dual view Bayesian maximum<br>channel cloud mask for image extract  | Short  | 0,14,15    | No    | Output from ARC3 processor |                         |
| atsr. <sen_id>.cloud_mask_bayes_min_nadir</sen_id>            | ATSR nadir view Bayesian minimum<br>channel cloud mask for image extract | Short  | 0,14,15    | No    | Output from ARC3 processor |                         |
| atsr. <sen_id>.cloud_mask_bayes_min_dual</sen_id>             | ATSR dual view Bayesian minimum<br>channel cloud mask for image extract  | Short  | 0,14,15    | No    | Output from ARC3 processor |                         |
| atsr. <sen_id>.saharan_dust_index_2</sen_id>                  | ATSR Saharan Dust Index (SDI) mask from 2-channel algorithm              | Short  | 0,14,15    | No    | Output from ARC3 processor |                         |
| atsr. <sen_id>.saharan_dust_index_3</sen_id>                  | ATSR Saharan Dust Index (SDI) mask from<br>3-channel algorithm           | Short  | 0,14,15    | No    | Output from ARC3 processor |                         |
| atsr. <sen_id>.ffm.brightness_temperature_37_nadir</sen_id>   | RTTOV modelled nadir 3.7 BT                                              | Float  | 0, 17, 18  | No    | Output from ARC3 processor | Scale as per channel BT |
| atsr. <sen_id>.ffm.brightness_temperature_37_forward</sen_id> | RTTOV modelled forward 3.7 BT                                            | Float  | 0, 17, 18  | No    | Output from ARC3 processor | Scale as per channel BT |
| atsr. <sen_id>.ffm.brightness_temperature_11_nadir</sen_id>   | RTTOV modelled nadir 11 BT                                               | Float  | 0, 17, 18  | No    | Output from ARC3 processor | Scale as per channel BT |
| atsr. <sen_id>.ffm.brightness_temperature_11_forward</sen_id> | RTTOV modelled forward 11 BT                                             | Float  | 0, 17, 18  | No    | Output from ARC3 processor | Scale as per channel BT |
| atsr. <sen_id>.ffm.brightness_temperature_12_nadir</sen_id>   | RTTOV modelled nadir 12 BT                                               | Float  | 0, 17, 18  | No    | Output from ARC3 processor | Scale as per channel BT |
| atsr. <sen_id>.ffm.brightness_temperature_12_forward</sen_id> | RTTOV modelled forward 12 BT                                             | Float  | 0, 17, 18  | No    | Output from ARC3 processor | Scale as per channel BT |



| Variable                                        | Contains                                          | Format | Dimensions | Query | Where to find              | Note |
|-------------------------------------------------|---------------------------------------------------|--------|------------|-------|----------------------------|------|
| atsr. <sen_id>.ffm.dbt_dsst_37_nadir</sen_id>   | RTTOV nadir 3.7 BT tangent linear w.r.t<br>SST    | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dsst_37_forward</sen_id> | RTTOV forward 3.7 BT tangent linear w.r.t<br>SST  | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dsst_11_nadir</sen_id>   | RTTOV nadir 11 BT tangent linear w.r.t<br>SST     | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dsst_11_forward</sen_id> | RTTOV forward 11 BT tangent linear w.r.t<br>SST   | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dsst_12_nadir</sen_id>   | RTTOV nadir 12 BT tangent linear w.r.t<br>SST     | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dsst_12_forward</sen_id> | RTTOV forward 12 BT tangent linear w.r.t<br>SST   | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dtcwv_37_nadir</sen_id>  | RTTOV nadir 3.7 BT tangent linear w.r.t<br>TCWV   | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dtcwv_37_nadir</sen_id>  | RTTOV forward 3.7 BT tangent linear w.r.t<br>TCWV | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dtcwv_11_nadir</sen_id>  | RTTOV nadir 11 BT tangent linear w.r.t<br>TCWV    | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dtcwv_11_nadir</sen_id>  | RTTOV forward 11 BT tangent linear w.r.t<br>TCWV  | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |
| atsr. <sen_id>.ffm.dbt_dtcwv_12_nadir</sen_id>  | RTTOV nadir 12 BT tangent linear w.r.t<br>TCWV    | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |



#### SST\_CCI-TN-UOL-001 Issue 1

| Variable                                       | Contains                                         | Format | Dimensions | Query | Where to find              | Note |
|------------------------------------------------|--------------------------------------------------|--------|------------|-------|----------------------------|------|
| atsr. <sen_id>.ffm.dbt_dtcwv_12_nadir</sen_id> | RTTOV forward 12 BT tangent linear w.r.t<br>TCWV | Float  | 0, 17, 18  | No    | Output from ARC3 processor |      |

### 6.1 Notes on ATSR Level 1b

<sen\_id> = '1' for ATSR-1

<sen\_id> = '2' for ATSR-2

<sen\_id> = '3' for AATSR

NWP single level and model level analysis fields are to be interpolated spatially and temporally to the coordinates and time defining the centre of the ATSR extract

A single MMS record can have multiple ATSR Level 1b image extracts, for example, during the overlap of ATSR-2 and AATSR.



# 7. AVHRR GAC

| Variable                                           | Contains                                                                   | Format | Dimensions | Query | Where to<br>find                 | Note                    |
|----------------------------------------------------|----------------------------------------------------------------------------|--------|------------|-------|----------------------------------|-------------------------|
| avhrr. <sen_id>.time</sen_id>                      | Time at centre of AVHRR image extract<br>as seconds from SST_CCI Epoch     | Long   | 0          | No    | Output from<br>ARC2<br>processor | Ingestion operation [2] |
| avhrr. <sen_id>.dtime</sen_id>                     | Time of AVHRR image row as milliseconds from avhhr. <sen_id>.time</sen_id> | Short  | 0,19       | No    | Output from<br>ARC2<br>processor | Ingestion operation [2] |
| avhrr. <sen_id>.latitude</sen_id>                  | Latitudes of AVHRR image extract                                           | Float  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.longitude</sen_id>                 | Longitudes of AVHRR image extract                                          | Float  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.reflectance_1</sen_id>             | Channel 1 reflectance for AVHRR image extract                              | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.reflectance_2</sen_id>             | Channel 2 reflectance for AVHRR image extract                              | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.reflectance_3a</sen_id>            | Channel 3a reflectance for AVHRR image extract                             | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.brightness_temperature_3b</sen_id> | Channel 3b brightness temperature for AVHRR image extract                  | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.brightness_temperature_4</sen_id>  | Channel 4 brightness temperature for AVHRR image extract                   | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.brightness_temperature_5</sen_id>  | Channel 5 brightness temperature for AVHRR image extract                   | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |



| Variable                                             | Contains                                                 | Format | Dimensions | Query | Where to<br>find                 | Note                    |
|------------------------------------------------------|----------------------------------------------------------|--------|------------|-------|----------------------------------|-------------------------|
| avhrr. <sen_id>.solar_zenith_angle</sen_id>          | Solar zenith angles for AVHRR image extract              | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.satellite_ zenith_angle</sen_id>     | Satellite zenith angles for AVHRR image extract          | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.relative_azimuth_angle</sen_id>      | Difference between solar and satellite azimuth angles    | Short  | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.ict_temperature</sen_id>             | Temperature of internal calibration target               | Short  | 0,19       | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.reflectance_to_radiance_1</sen_id>   | Reflectance to radiance conversion factor for channel 1  | Float  | 0          | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>. reflectance_to_radiance_2</sen_id>  | Reflectance to radiance conversion factor for channel 2  | Float  | 0          | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>. reflectance_to_radiance_3a</sen_id> | Reflectance to radiance conversion factor for channel 3a | Float  | 0          | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.bad_data</sen_id>                    | AVHRR image data quality flag                            | Byte   | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.cloud_flag</sen_id>                  | CLAVR-x cloud mask                                       | Byte   | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.cloud_probability</sen_id>           | CLAVR-x cloud probability                                | Byte   | 0,19,20    | No    | Output from<br>ARC2<br>processor |                         |
| avhrr. <sen_id>.land_sea_mask</sen_id>               | Land/sea mask for AVHRR image extract                    | Byte   | 0,19,20    | No    |                                  | Ingestion operation [9] |



| Variable                                               | Contains                                                                             | Format | Dimensions | Query | Where to find                    | Note                                                                                                                  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------|--------|------------|-------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| avhrr. <sen_id>.I1b_filename</sen_id>                  | Source AVHRR Level 1b product                                                        | Char   | 2,0        | No    | Output from<br>ARC2<br>processor | GAC files are termed Level 1B according<br>to NOAA definition; by ESA definition they<br>are actually Level 1A files. |
| avhrr. <sen_id>.matchup.elem</sen_id>                  | Across-track location of match-up in source file                                     | Short  | 0          | No    | Output from<br>ARC2<br>processor |                                                                                                                       |
| avhrr. <sen_id>.matchup.line</sen_id>                  | Along-track location of match-up in source file                                      | Short  | 0          | No    | Output from<br>ARC2<br>processor |                                                                                                                       |
| avhrr. <sen_id>.l1b_record_number</sen_id>             | Record number of AVHRR scan-line from parent L1B file                                | Short  | 0,19       | No    | Output from<br>ARC2<br>processor |                                                                                                                       |
| avhrr. <sen_id>. nwp.sea_ice_fraction</sen_id>         | ECMWF ERA-interim sea ice fraction<br>interpolated to image extract                  | Float  | 0,22,23    | No    | ECMWF files<br>GGAS CI           | Interpolation to NWP coordinates using CDO tools                                                                      |
| avhrr. <sen_id>.nwp.snow_albedo</sen_id>               | ECMWF ERA-interim snow albedo<br>interpolated to image extract                       | Float  | 0,22,23    | No    | ECMWF files<br>GGAS ASN          | Interpolation to NWP coordinates using CDO tools                                                                      |
| avhrr. <sen_id>.nwp.sea_surface_temperature</sen_id>   | ECMWF ERA-interim sea surface<br>temperature interpolated to image<br>extract        | Float  | 0,22,23    | No    | ECMWF files<br>GGAS SSTK         | Interpolation to NWP coordinates using CDO tools                                                                      |
| avhrr. <sen_id>.nwp.total_column_water_vapour</sen_id> | ECMWF ERA-interim total column water<br>vapour interpolated to image extract         | Float  | 0,22,23    | No    | ECMWF files<br>GGAS TCWV         | Interpolation to NWP coordinates using CDO tools                                                                      |
| avhrr. <sen_id>.nwp.mean_sea_level_pressure</sen_id>   | ECMWF ERA-interim surface pressure<br>interpolated to image extract                  | Float  | 0,22,23    | No    | ECMWF files<br>GGAS MSL          | Interpolation to NWP coordinates using CDO tools                                                                      |
| avhrr. <sen_id>.nwp.total_cloud_cover</sen_id>         | ECMWF ERA-interim total cloud cover interpolated to image extract                    | Float  | 0,22,23    | No    | ECMWF files<br>GGAS TCC          | Interpolation to NWP coordinates using CDO tools                                                                      |
| avhrr. <sen_id>.nwp.10m_east_wind_component</sen_id>   | ECMWF ERA-interim 10 m wind speed<br>east component interpolated to image<br>extract | Float  | 0,22,23    | No    | ECMWF files<br>GGAS U10          | Interpolation to NWP coordinates using CDO tools                                                                      |



| Variable                                               | Contains                                                                              | Format | Dimensions | Query | Where to<br>find                 | Note                                             |
|--------------------------------------------------------|---------------------------------------------------------------------------------------|--------|------------|-------|----------------------------------|--------------------------------------------------|
| avhrr. <sen_id>.nwp.10m_north_wind_component</sen_id>  | ECMWF ERA-interim 10 m wind speed<br>north component interpolated to image<br>extract | Float  | 0,22,23    | No    | ECMWF files<br>GGAS V10          | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.nwp.2m_temperature</sen_id>            | ECMWF ERA-interim 2m temperature interpolated to image extract                        | Float  | 0,22,23    | No    | ECMWF files<br>GGAS T2           | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.nwp.2m_dew_point</sen_id>              | ECMWF ERA-interim 2m dew point<br>interpolated to image extract                       | Float  | 0,22,23    | No    | ECMWF files<br>GGAS D2           | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.nwp.albedo</sen_id>                    | ECMWF ERA-interim albedo<br>interpolated to image extract                             | Float  | 0,22,23    | No    | ECMWF files<br>GGAS AL           | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.nwp.skin_temperature</sen_id>          | ECMWF ERA-interim skin temperature speed interpolated to image extract                | Float  | 0,22,23    | No    | ECMWF files<br>GGAS SKT          | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.nwp.log_surface_pressure</sen_id>      | ECMWF ERA-interim log surface pressure interpolated to image extract                  | Float  | 0,22,23    | No    | ECMWF files<br>SPAM LNSP         | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.nwp.temperature_profile</sen_id>       | ECMWF ERA-interim temperature<br>profile interpolated to image extract                | Float  | 0,21,22,23 | No    | ECMWF files<br>SPAM T            | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.nwp.water_vapour_profile</sen_id>      | ECMWF ERA-interim water vapour<br>profile interpolated to image extract               | Float  | 0,21,22,23 | No    | ECMWF files<br>GGAM Q            | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.nwp.ozone_profile</sen_id>             | ECMWF ERA-interim ozone profile<br>interpolated to image extract                      | Float  | 0,21,22,23 | No    | ECMWF files<br>GGAM O3           | Interpolation to NWP coordinates using CDO tools |
| avhrr. <sen_id>.ffm.brightness_temperature_3b</sen_id> | RTTOV modelled channel 3b BT                                                          | Short  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor | Scale as per channel BT                          |
| avhrr. <sen_id>.ffm.brightness_temperature_4</sen_id>  | RTTOV modelled channel 4 BT                                                           | Short  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor | Scale as per channel BT                          |



#### SST\_CCI-TN-UOL-001 Issue 1

| Variable                                              | Contains                                         | Format | Dimensions | Query | Where to<br>find                 | Note                    |
|-------------------------------------------------------|--------------------------------------------------|--------|------------|-------|----------------------------------|-------------------------|
| avhrr. <sen_id>.ffm.brightness_temperature_5</sen_id> | RTTOV modelled channel 5 BT                      | Short  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor | Scale as per channel BT |
| avhrr. <sen_id>.ffm.dbt_dsst_3b</sen_id>              | RTTOV channel 3b BT tangent linear<br>w.r.t SST  | Float  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor |                         |
| avhrr. <sen_id>.ffm.dbt_dsst_4</sen_id>               | RTTOV channel 4 BT tangent linear<br>w.r.t SST   | Float  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor |                         |
| avhrr. <sen_id>.ffm.dbt_dsst_5</sen_id>               | RTTOV channel 5 BT tangent linear<br>w.r.t SST   | Float  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor |                         |
| avhrr. <sen_id>.ffm.dbt_dtcwv_3b</sen_id>             | RTTOV channel 3b BT tangent linear<br>w.r.t TCWV | Float  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor |                         |
| avhrr. <sen_id>.ffm.dbt_dtcwv_4</sen_id>              | RTTOV channel 4 BT tangent linear<br>w.r.t TCWV  | Float  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor |                         |
| avhrr. <sen_id>.ffm.dbt_dtcwv_5</sen_id>              | RTTOV channel 5 BT tangent linear<br>w.r.t TCWV  | Float  | 0, 22, 23  | No    | Output from<br>ARC3<br>processor |                         |

# 7.1 Notes on AVHRR GAC

<sen\_id> = 'TN' for AVHRR TIROS-N

<sen\_id> = '6' for AVHRR NOAA-6

<sen\_id> = '7' for AVHRR NOAA-7



<sen\_id> = '8' for AVHRR NOAA-8
<sen\_id> = '9' for AVHRR NOAA-9
<sen\_id> = '10' for AVHRR NOAA-10
<sen\_id> = '11' for AVHRR NOAA-11
<sen\_id> = '12' for AVHRR NOAA-12
<sen\_id> = '12' for AVHRR NOAA-13
<sen\_id> = '13' for AVHRR NOAA-14
<sen\_id> = '14' for AVHRR NOAA-15
<sen\_id> = '16' for AVHRR NOAA-16
<sen\_id> = '16' for AVHRR NOAA-17
<sen\_id> = '18' for AVHRR NOAA-18
<sen\_id> = '19' for AVHRR NOAA-19
<sen\_id> = 'M2' for AVHRR METOP-A

NWP single level and model level analysis fields are to be interpolated spatially and temporally to the coordinates and time defining the centre of the AVHRR extract

A single MMS record can have multiple AVHRR GAC image extracts, for example, in 2010 where there is data from NOAA 15, 16, 17, 18 & 19.



# 8. AMSR-E L2P

| Variable                            | Contains                                                                 | Format | Dimensions | Query | Where to find                                    | Note                                                                                           |
|-------------------------------------|--------------------------------------------------------------------------|--------|------------|-------|--------------------------------------------------|------------------------------------------------------------------------------------------------|
| amsre.time                          | Time at centre of AMSR-E L2P<br>extract in seconds from SST_CCI<br>Epoch | Long   | 0          | No    | AMSR-E L2P file<br>time & sst_dtime              | Time per row (sst_dtime) stored in seconds from reference time (time). Ingestion operation [2] |
| amsre.dtime                         | Time of each AMSR-E image row in<br>milliseconds from amsre.time         | Short  | 0,24       | No    | AMSR-E L2P file<br>time & sst_dtime              | Time per row (sst_dtime) stored in seconds from reference time (time). Ingestion operation [2] |
| amsre.latitude                      | Latitude of AMSR-E L2P extract                                           | Float  | 0,24,25    | No    | AMSR-E L2P file<br>lat                           |                                                                                                |
| amsre.longitude                     | Longitude of AMSR-E L2P extract                                          | Float  | 0,24,25    | No    | AMSR-E L2P file<br>lon                           |                                                                                                |
| amsre.sea_surface_temperature       | SST of AMSR-E extract                                                    | Short  | 0,24,25    | No    | AMSR-E L2P file<br>sea_surface_temperature       |                                                                                                |
| amsre.SSES_bias_error               | SSES bias field for AMSR-E extract                                       | byte   | 0,24,25    | No    | AMSR-E L2P file<br>SSES_bias_error               |                                                                                                |
| amsre.SSES_standard_deviation_error | SSES SD field for AMSR-E extract                                         | Byte   | 0,24,25    | No    | AMSR-E L2P file<br>SSES_standard_deviation_error |                                                                                                |
| amsre.proximity_confidence          | Proximity confidence level for AMSR-<br>E extract                        | Byte   | 0,24,25    | No    | AMSR-E L2P file<br>proximity_confidence          |                                                                                                |
| amsre.rejection_flag                | Rejection flag for AMSR-E extract                                        | Byte   | 0,24,25    | No    | AMSR-E L2P file<br>rejection_flag                |                                                                                                |



| Variable                | Contains                                      | Format | Dimensions | Query | Where to find                        | Note                    |
|-------------------------|-----------------------------------------------|--------|------------|-------|--------------------------------------|-------------------------|
| amsre.confidence_flag   | Confidence flag for AMSR-E extract            | Byte   | 0,24,25    | No    | AMSR-E L2P file<br>confidence_flag   |                         |
| amsre.cool_skin         | Estimate of cool skin for AMSR-E extract      | Byte   | 0,24,25    | No    | AMSR-E L2P file<br>cool_skin         |                         |
| amsre.diurnal_amplitude | Diurnal warming amplitude                     | Byte   | 0,24,25    | No    | AMSR-E L2P file<br>diurnal_amplitude |                         |
| amsre.wind_speed        | Wind speed for AMSR-E extract                 | Byte   | 0,24,25    | No    | AMSR-E L2P file<br>wind_speed        |                         |
| amsre.land_sea_mask     | Land sea mask for AMSR-E extract              | Byte   | 0,24,25    | No    |                                      | Ingestion operation [9] |
| amsre.l2p_filename      | AMSR-E source L2P filename                    | Char   | 2,0        | No    | AMSR-E L2P filename                  |                         |
| amsre.matchup.elem      | Match-up across-track position in source file | Long   | 0          | No    | AMSR-E L2P file                      |                         |
| amsre.matchup.line      | Match-up along-track position in source file  | Long   | 0          | No    | AMSR-E L2P file                      |                         |



# 9. TMI L2P

| Variable                          | Contains                                                 | Format | Dimensions | Query | Where to find                                 | Note                                                                                           |
|-----------------------------------|----------------------------------------------------------|--------|------------|-------|-----------------------------------------------|------------------------------------------------------------------------------------------------|
| tmi.observation_time              | Time of TMI L2P extract in seconds<br>from SST_CCI Epoch | Long   | 0          | No    | TMI L2P file<br>time & sst_dtime              | Time per row (sst_dtime) stored in seconds from reference time (time). Ingestion operation [2] |
| tmi.dtime                         | Time of each TMI image row in milliseconds from tmi.time | Short  | 0,26       | No    | TMI L2P file<br>time & sst_dtime              | Time per row (sst_dtime) stored in seconds from reference time (time). Ingestion operation [2] |
| tmi.latitude                      | Latitude of TMI L2P extract                              | Float  | 0,26,27    | No    | TMI L2P file<br>lat                           |                                                                                                |
| tmi.longitude                     | Longitude of TMI L2P extract                             | Float  | 0,26,27    | No    | TMI L2P file<br>Ion                           |                                                                                                |
| tmi.sea_surface_temperature       | SST of TMI extract                                       | Short  | 0,26,27    | No    | TMI L2P file<br>sea_surface_temperature       |                                                                                                |
| tmi.sses_bias_error               | SSES bias field for TMI extract                          | Byte   | 0,26,27    | No    | TMI L2P file<br>SSES_bias_error               |                                                                                                |
| tmi.sses_standard_deviation_error | SSES SD field for TMI extract                            | Byte   | 0,26,27    | No    | TMI L2P file<br>SSES_standard_deviation_error |                                                                                                |
| tmi.proximity_confidence          | Proximity confidence level for TMI extract               | Byte   | 0,26,27    | No    | TMI L2P file<br>proximity_confidence          |                                                                                                |
| tmi.rejection_flag                | Rejection flag for TMI extract                           | Byte   | 0,26,27    | No    | TMI L2P file<br>rejection_flag                |                                                                                                |



| Variable              | Contains                                      | Format | Dimensions | Query | Where to find                     | Note                    |
|-----------------------|-----------------------------------------------|--------|------------|-------|-----------------------------------|-------------------------|
| tmi.confidence_flag   | Confidence flag for TMI extract               | Byte   | 0,26,27    | No    | TMI L2P file<br>confidence_flag   |                         |
| tmi.cool_skin         | Estimate of cool skin for TMI extract         | Byte   | 0,26,27    | No    | TMI L2P file<br>cool_skin         |                         |
| tmi.diurnal_amplitude | Diurnal warming amplitude                     | Byte   | 0,26,27    | No    | TMI L2P file<br>diurnal_amplitude |                         |
| tmi.wind_speed        | Wind speed for TMI extract                    | Byte   | 0,26,27    | No    | TMI L2P file<br>wind_speed        |                         |
| tmi.land_sea_mask     | Land sea mask for TMI extract                 | byte   | 0,26,27    | No    |                                   | Ingestion operation [9] |
| tmi.l2p_filename      | TMI source L2P filename                       | Char   | 2,0        | No    | TMI L2P filename                  |                         |
| tmi.matchup.elem      | Match-up across-track position in source file | Long   | 0          | No    | TMI L2P file                      |                         |
| tmi.matchup.line      | Match-up along-track position in source file  | Long   | 0          | No    | TMI L2P file                      |                         |



# 10. SEA ICE CONCENTRATION

| Variable             | Contains                                      | Format | Dimensions | Query | Where to find              | Notes                                                                                                                                                                                                                     |
|----------------------|-----------------------------------------------|--------|------------|-------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| seaice.latitude      | Latitude of sea-ice extract                   | Float  | 0,28,29    | No    | Sea-ice concentration file | For HDF files (2008) onwards the values are provided in a separate file.<br>For NetCDF files (up to end 2007) the values are provided in the file (field 'lat').<br>Modified polar stereographic EASE grid used (~ 10 km) |
| seaice.longitude     | Longitude of sea-ice extract                  | Float  | 0,28,29    | No    | Sea-ice concentration file | For HDF files (2008) onwards the values are provided in a separate file.<br>For NetCDF files (up to end 2007) the values are provided in the file (field 'lon').<br>Modified polar stereographic EASE grid used (~ 10 km) |
| seaice.concentration | Sea-ice concentration                         | Short  | 0,28,29    | No    | Sea-ice concentration file | For HDF files (2008) onwards the values are in field 'DATA'.<br>For NetCDF files (up to end 2007) the values are in field<br>'ice_conc'.<br>Modified polar stereographic EASE grid used (~ 10 km)                         |
| seaice.land_sea_mask | Land sea mask for sea-ice extract             | Byte   | 0,28,29    | No    |                            | Ingestion operation [9]                                                                                                                                                                                                   |
| seaice.filename      | Sea ice source filename                       | Char   | 2,0        | No    | Sea-ice concentration file |                                                                                                                                                                                                                           |
| seaice.matchup.elem  | Match-up across-track position in source file | Long   | 0          | No    | Sea-ice concentration file |                                                                                                                                                                                                                           |
| seaice.matchup.line  | Match-up along-track position in source file  | Long   | 0          | No    | Sea-ice concentration file |                                                                                                                                                                                                                           |



# 11. AEROSOL ABSORBING INDEX

| Variable                    | Contains                                       | Туре  | Dimensions | Query | Where to find | Notes                   |
|-----------------------------|------------------------------------------------|-------|------------|-------|---------------|-------------------------|
| aai.latitude                | Latitude of AAI pixel                          | Float | 0,30,31    | No    | AAI files     |                         |
| aai.longitude               | Longitude of AAI pixel                         | Float | 0,30,31    | No    | AAI files     |                         |
| aai.absorbing_aerosol_index | Absorbing aerosol index for centre of match-up | Float | 0,30,31    | No    | AAI files     |                         |
| aai.land_sea_mask           | Land sea mask for AAI position                 | Byte  | 0,30,31    | No    |               | Ingestion operation [9] |
| aai.filename                | AAI source filename                            | Char  | 2,0        | No    | AAI files     |                         |
| aai.matchup.elem            | Match-up across-track position in source file  | Long  | 0          | No    | AAI files     |                         |
| aai.matchup.line            | Match-up along-track position in source file   | Long  | 0          | No    | AAI files     |                         |



# 12. IN SITU DATA

| Variable                       | Contains                                                                  | Format | Dimensions | Query | Where to find                                                                                                                                 | Note                       |
|--------------------------------|---------------------------------------------------------------------------|--------|------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| insitu.time                    | Observation time of in situ data time series in seconds from matchup.time | Long   | 0, 32      | No    | ATSR_MD<br>insitu.time.julian<br>METOP_MD<br>msr_time<br>SEVIRI_MD<br>msr_time<br>In situ history<br>insitu.time                              | Ingestion operation<br>[2] |
| insitu.longitude               | Longitude of in situ data time series                                     | Float  | 0, 32      | No    | ATSR_MD<br>insitu.longitude<br>METOP_MD<br>msr_lon<br>SEVIRI_MD<br>msr_lon<br>In situ history<br>insitu.longitude                             |                            |
| insitu.latitude                | Latitude of in situ data time series                                      | Float  | 0, 32      | No    | ATSR_MD<br>insitu.latitude<br>METOP_MD<br>msr_lat<br>SEVIRI_MD<br>msr_lat<br>In situ history<br>insitu.latitude                               |                            |
| insitu.sea_surface_temperature | In situ sea surface temperature series                                    | Short  | 0, 32      | No    | ATSR_MD<br>insitu.sea_surface_temperature<br>METOP_MD<br>msr_sst<br>SEVIRI_MD<br>msr_sst<br>In situ history<br>insitu.sea_surface_temperature |                            |



### 13. INGESTION OPERATIONS:

[1]. <u>ID</u>. Each match-up in the MMS shall have a unique ID to ensure future updates are added to the correct match-up record.

[2]. <u>Time</u>. All times in the MMD output files shall be stored using two fields, 'time' and 'dtime'. 'time' is the observation time at the centre of the sensor scene stored as seconds from the SST\_CCI Epoch, which is 01/01/1978 00:00:00. 'dtime' is the observation time of each image row (nj, along-track direction) stored as milliseconds from image 'time'.

[3]. Lat/lon. All latitude and longitude values shall be stored in the MMS as floats.

[4]. <u>Insitu dataset</u>. All in situ dataset codes shall be stored according to ATSR nomenclature. Therefore, the MMS shall change the value of the METOP\_MD and SEVIRI\_MD codes on ingestion to agree with ATSR\_MD codes.

[5]. <u>Match-up valid</u>. Each MMS record shall contain a single flag to validate/invalidate any MMS record. This flag shall be created on ingestion and shall initially be set such that all values are 0 to indicate all MMS records are valid.

[6]. <u>Primary sensor</u>. Each MMS record shall contain a flag to indicate which MD file is the primary sensor for the MMS record. This flag shall be created on ingestion.

[7]. <u>Primary filename and record</u>. Each MMS record shall store the filename of the MD file contributing the primary sensor for the MMS record, as well as the record number of primary matchup location from the parent MD file.

[8]. <u>Sensor list</u>. Each MMS record shall contain a multi-bit flag to identify all sensors (MD files plus image data) that contribute to the MMS record. This flag shall be created on ingestion.

[9]. <u>Land/sea mask</u>. Each MMS image extract shall have a land/sea mask created on ingestion from a common high resolution mask.

[10]. <u>Shift ATSR imagery</u>. All ATSRs have a small systematic offset between the optimal alignment of the forward view with the nadir view. Consequently, the MMS shall shift the ATSR forward view BTs should be shifted relative to the nadir view BTs on ingestion. The shifts required (relative to the normal ATSR image grid where pixels are numbered from 0 to 511 left to right across-track in the along-track direction are:

- ATSR-1: +3 pixel across-track (xi)
- ATSR-2: +1 pixel across-track (xi) and -1 pixels along-track (xj)
- AATSR: -1 pixel across-track (xi) and -2 pixels along-track (xj)

[11]. <u>AATSR 12 micron BTs</u>. It is believed that there is a calibration error in the AATSR 12 micron channel spectral response function. Consequently, all ATSR 12  $\mu$ m BTs (both nadir and forward) shall have 0.2 K added to them.

[12]. <u>ATSR-1 detector temperature</u>. 12 micron detector temperatures are required for ATSR-1. These shall be added according for the centre of the ATSR-1 extract by linear interpolation from the ATSR-1 Detector T file provided by Owen Embury.

[13]. <u>Convert ATSR elevation angles</u>. Solar and satellite elevation angles are provided in the ATSR Level 1b files. These shall be converted to zenith angles for the MMS using zenith angle = 90-elevation angle.



### 14. CREATION OF REFERENCE FLAG

Each MMS record shall be assigned a 'matchup.reference\_flag' field to distinguish the various uses of the MMD records as the SST\_CCI project progresses. This field can have the values:

- '0' indicates 'training' data
- '1' indicates 'test' data
- '2' indicates 'selection' data
- '3' indicates 'validation' data
- '4' indicates 'unassigned' data
- '5' indicates 'duplicate' data

Initially, this flag shall be set to either '4' or '5' to indicate the data is either unassigned or a duplicate record (see Section 16).

The proportioning of the data into other categories will be done by the University of Leicester as the lead institute for the RRDP exercise. For this process, a subset of the matchup fields (Section 3) is required:

- Time
- Latitude
- Longitude
- Dataset
- Primary sensor

All drifting buoy match-ups within the MMD are split into four categories for use within the project. This segregation is done once using a random number generator on one year's worth of match-ups at a time for each of the three reference sensors (ATSR; METOP; AVHRR GAC).

For data between and 1991 and 2007 the data is split:

• Training – 40%; test – 20%; selection – 40%

For data between and 2008 and 2010 the data is split:

• Training – 40%; test – 10%; selection – 40%; validation – 10%

The segregation ratios were chosen based on the previous experience of the SST\_CCI project team to ensure sufficient match-ups are available throughout the time series for training and selection. The limited amount of buoy matchups for validation is not seen as an issue as the SST\_CCI project will provide uncertainties with each product and will not rely on validation for uncertainty estimates merely for confirmation that the uncertainties are realistic. However, some of the drifting buoy match-ups used for training, test and selection will be used as pseudo-independent data as part of the validation (see Section 7.8 for further details).



# 15. CREATION OF DUMMY MATCH-UPS

In order to support classification activities a sample of <1000 cases are required where there is a good mix of clear water, marginal sea ice and cloud, over a range of illumination conditions and seasons etc., for a wider area and time interval than will be standard in the MMD.

The match-up locations shall be based on the random sample strategy of 50 samples along the 30% ice concentration boundary; this will give of order ~20000 multi sensor matches over the 20 years for the ATSRs (and also therefore the AVHRRs) from which a carefully selected sub-set will be extracted.

Further, add dummy matches for high latitude diurnal warming events and of extreme anomalous SSTs, that otherwise may not be sampled by the random strategy, are required. The match-up locations will be provided by Met.NO and CMS.

The MMD shall provide such extracts for locations defined in the ATSR MD where matchup.insitu\_dataset = 6 for high latitudes and matchup.insitu\_dataset = 7 for diurnal warming events.



### 16. CO-REGISTRATION AND REMOVAL OF DUPLICATE MATCH-UPS

Image collection is based on a fixed number of pixels for different sorts of sensor. For the most part, these extract sizes are designed to ensure coverage of the 101 x 101 pixel image from ATSR (main reference sensor), which is matched at its centre to an in situ observation. Ideally, the overlaps would look like the following:



However, where one of more additional sensors cannot fully cover the 101 x 101, there are two options available. The first option is to simply extract the full number of pixels as in the following example:



The second option is to populate the uncaptured areas with fill values as in the following example:





The MMD shall ingest all satellite imagery using the second option. This means that the centre pixel of any extract is always the one nearest in location to the reference point.

Due to the use of pre-matched data in the ATSR, AVHRR, METOP and SEVIRI MDs, some match-up dataset instances can be filtered out because they are essentially duplicates or overly-numerous for our purposes.

An example of all inputs for one month is show in the figure below:



The above figure contains single sensor and multi-sensor match-ups for:

- A = from the ATSR MD
- M = from the METOP MD
- S = from the SEVIRI MD



• G = from the Pathfinder MDs for AVHRR GAC (up to 2003)

Within each UTC day the MMD shall:

- 1. Keep all A+M+S, with A as the primary
- 2. Keep A+M only if there are no similar A+M+S, with A as the primary
- 3. Keep A+S only if there are no similar A+M+S, with A as the primary
- 4. Keep M+S only if there are no similar A+M+S, with M as the primary
- 5. Keep A (singles) only if no similar A+M+S, A+M or A+S
- 6. Keep M (singles) only if no similar A+M+S, A+M or M+S
- 7. Keep no S singles (unnecessary for adequate S coverage)
- 8. Keep G unless similar to an A (since GAC imagery will be found for all instances in a later step)

"Similar" means a match to the same in situ callsign within 3 hours.



# 17. EXTRACTS FROM THE MMS

Two extracts from the MMS are foreseen:

1. <u>Extract 1</u>. The initial MMD extract is required for the RRDP. For this we only need to extract MMS records matched to drifting buoys, i.e. matchup.insitu\_dataset =0 (assuming METOP and SEVIRI records are converted in ingestion).

The RRDP extract will be in two data files.

- The first data file will contain all training, testing match-ups, i.e. where matchup.insitu\_dataset =0 and matchup.reference\_flag = 0 or 1.
- The second data file will be the algorithm selection dataset, i.e. where matchup.insitu\_dataset =0 and matchup.reference\_flag = 2; it is important that insitu.sea surface temperature field and other fields describing the drifter data are not extracted for this second data file.
- 2. <u>Extract 2</u>. The second extract will be the large area match-ups for the high-latitude classification work, i.e. where matchup.insitu\_dataset = 6.



# **18. RRDP EXTRACT**

An extraction of the MMD is required to run through the ARC3 processor to create the ASDI, cloud mask and forward model fields for ATSR and forward model fields for AVHRR. These ARC3 output fields are then to be ingested into the MMS so that complete MMD extracts for the RRDP can be produced. [Note: The RRDP extract also relies on having the correct matchup.reference\_flag setting, which needs to be done externally by UoL].

For the RRDP MMD extracts from the MMS the following dimensions shall be used instead of those given in Table 1 in Section 2:

| Number | Name      | Size |
|--------|-----------|------|
| 7      | metop.nj  | 1    |
| 8      | metop.ni  | 1    |
| 12     | seviri.nj | 1    |
| 13     | seviri.ni | 1    |
| 14     | atsr.nj   | 1    |
| 15     | atsr.ni   | 1    |
| 19     | avhrr.nj  | 1    |
| 20     | avhrr.ni  | 1    |

In addition, the RRDP MMD extracts shall only contain match-ups to drifting buoys and shall adhere to the matchup.reference\_flag rules defined in Section 18.



# **19. HIGH LATITUDE EXTRACTS**

For classification work within the project imagery will need to be extracted for a larger area than the extract for the RRDP. The locations for these larger extracts are indicated by matchup.insitu\_dataset =6.

For these larger extracts the following dimensions shall be used instead of those given in Table 1 in Section 2:

| Number | Name         | Size |
|--------|--------------|------|
| 14     | atsr.nj      | 201  |
| 15     | atsr.ni      | 201  |
| 16     | atsr.nwp.nz  | 60   |
| 17     | atsr.nwp.nj  | 5    |
| 18     | atsr.nwp.ni  | 5    |
| 19     | avhrr.nj     | 61   |
| 20     | avhrr.ni     | 49   |
| 21     | avhrr.nwp.nz | 60   |
| 22     | avhrr.nwp.nj | 5    |
| 23     | avhrr.nwp.ni | 17   |
| 28     | seaice.nj    | 31   |
| 29     | seaice.ni    | 31   |

Note:

- atsr.nwp.nj and atsr.nwp.ni are sampled evenly across the ATSR grid such that atsr.nwp.nj[0] = atsr.nj[0], atsr.nwp.nj[1] = atsr.nj[50], atsr.nwp.nj[2] = atsr.nj[100] etc.
- avhrr.nwp.nj and avhrr.nwp.ni are sampled evenly across the AVHRR grid such that avhrr.nwp.nj[0] = avhrr.nj[0], avhrr.nwp.nj[1] = avhrr.nj[15], avhrr.nwp.nj[2] = avhrr.nj[30], avhrr.nwp.ni[0] = avhrr.ni[0], avhrr.nwp.ni[1] = avhrr.ni[3], avhrr.nwp.ni[2] = avhrr.nj[6] etc.



# 20. UNIVERSAL SCALING FACTORS

The following universal scaling factors are used to store variables as scaled shorts for all instances of each parameter:

| Parameter (units)                  | add_offset | scale_factor | _FillValue | Valid Range   |
|------------------------------------|------------|--------------|------------|---------------|
| SST (K)                            | 293.15     | 0.001        | -32768     | 271.15, 325.0 |
| BT (K)                             | 260.0      | 0.002        | -32768     | 195.0, 325.0  |
| Reflectance factor (% or unitless) | 0.00       | 0.0001       | -32768     | 0.0, (no max) |
| zenith angle (°)                   | 90.0       | 0.01         | -32768     | 0.0, 180.0    |
| azimuth angle (°)                  | 0.0        | 0.01         | -32768     | -180.0, 180.0 |

