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1. OVERVIEW AND BACKGROUND INFORMATION 

1.1 Introduction 

Satellite-based Passive Microwave (PMW) observations of sea surface temperature (SST) 
are particularly valuable in cloudy conditions, where infrared observations are not available. 
PMW observations from instruments like AMSR-E and AMSR-2 have the ability to perform 
observations in cloudy conditions, but have limitations when e.g. severe rain is present. The 
exact influences of rain and other atmospheric conditions on the PMW observations and on 
the SST retrievals have until now not been quantified. Many microwave-based retrievals not 
only make use of channels below 10 GHz, which carry most of the information about 
surface properties, but also of the higher frequencies, i.e. 18 GHz, 23 GHz, 37 GHz and 
some even 89 GHz. The higher frequencies are more strongly influenced by atmospheric 
compounds such as water droplets and ice crystals. This study examines the influence on 
different atmospheric effects, such as cloud cover, ice and water content and aerosols, 
using observations from the CALIOP, which is an active sensor onboard Cloud–Aerosol 
Lidar and the Infrared Pathfinder Satellite Observations (CALIPSO) instrument, and the 
Moderate Resolution Imaging Spectroradiometer (MODIS) that were flying in the same 
satellite constellation as e.g. the AMSR-E satellite (the A-train). A multisensory matchup 
approach has been followed, where the PMW observations have been matched with in situ 
observations, and the CALIOP and MODIS products to facilitate the assessment of the 
impact of these effects. 

Two types of SST retrievals are used to test the atmospheric impact: an optimal estimation 
retrieval and a regression like retrieval, both retrievals have been developed within the ESA 
CCI SST project with the aim of generating a pilot Climate Data Record (CDR) of SST from 
AMSR-E and AMSR-2. The outcome of the study will serve to better characterize the PMW 
based SST observations in regions with e.g. persistent cloud cover, where these 
observations are the only source of SST information. The findings thus provide an 
important contribution to understanding PMW SST observations and towards combining 
PMW and IR satellite records.  

The report is structured such that the input data are described in section 1.2 and the 
generation of the matchup dataset in Section 1.3. Chapter 2 presents the content of the 
multi-sensor matchup database (MMD) and the analysis of the atmospheric impact is 
performed in Chapter 3. Recommendations on how to improve retrieval algorithms are 
found in Chapter 4. Finally, discussion and conclusions are found in Chapter 5. 

1.2 Input Data 

Several different observations and auxiliary data are used in this study to investigate the 
performance and the dependencies of the PMW SST retrievals. The main data types and 
their characteristics are presented in this section.  

1.2.1 CALIPSO Level 2 Cloud Product 

CALIOP is an active sensor onboard Cloud–Aerosol Lidar and Infrared Pathfinder Satellite 
Observations (CALIPSO). It is a near-nadir-viewing, polarization-sensitive, elastic 
backscatter lidar that uses a laser transmitting at dual wavelengths of 1063 nm and 532 
nm. The combination of total backscatter radiation measured at 1063 nm and the degree of 
linear depolarization at 532 nm are used to discriminate between clouds and aerosols (Liu 
et al. 2009). The lidar surface footprint is 333 m for both cross track and along track and 
has a vertical resolution of 30m at altitudes below 8.2km. The data are recorded in nominal 
increments of 15 consecutive laser pulses, which is nominally equivalent to a distance of 5-
km along the laser ground-track. Each CALIOP product file covers a 50-minute time interval 
for half orbit, and approximately 10,000 files are produced yearly. 
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Figure 1-1: Left panels: examples of the first 10 CALIPSO orbital ground tracks on 
2018-01-01 in the day and night portions, respectively. Right panel: example of 
CALIOP-VFM horizontal resolution (along-track) of 5 km and vertical resolution of 30 
m, 60m and 180m at altitudes below 8.2 km, 20.2 km and 30.1 km, respectively. The 
red line shows that the horizontal midpoints from each vertical layer are extracted to 
represent one pixel. 

 

Table 1-1: The vertical and horizontal resolution of the CALIOP VFM data. 

Profile spatial resolution  

Altitude 
region Vertical 

resolution 
(meters) 

Horizontal 
resolution 
(meters) 

Profiles 
per 5 
km 

Samples 
per 

profile Base 
(km) 

Top 
(km) 

-0.5 8.2 30 333 15 290 

8.2 20.2 60 1000 5 200 

20.2 30.1 180 1667 3 55 

Total 545 
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The standard version 4.10 Level 2 lidar vertical feature mask (CAL_LID_L2_VFM) product 
was used and the data product provides feature classification within a vertical profile. As 
shown in Table 1-1 (also see Figure 1-1), the vertical and horizontal resolution of the profile 
varies as a function of altitude above mean sea level (Hunt et al., 2009). For each layer 
detected in the CALIOP backscatter data, a set of feature classification flags are derived to 
represent (a) feature type (e.g., cloud, aerosol, stratospheric layer); (b) feature subtype; (c) 
layer ice-water phase (clouds only); and (d) the amount of horizontal averaging required for 
layer detection. Note that, if the feature type (a) is detected as cloud,  the cloud type can be 
further acquired from feature subtype (b), such as low overcast (transparent), low overcast 
(opaque), transition stratocumulus, low, broken cumulus, altocumulus (transparent), 
altostratus (opaque), cirrus (transparent) and deep convective (opaque). 

For the cloud layer analysis, the lidar Level 2, 5 km cloud layer product (CAL_LID_L2_ 
05km CLay) version 4.10 was used. The cloud layer products were built around two tightly 
coupled data types. The first of these is a set of column properties, which describe the 
temporal and spatial location of the vertical column of atmosphere being sampled. Column 
properties include satellite position data and viewing geometry, information about the 
surface type and lighting conditions, and the number of features (e.g., cloud and/or aerosol 
layers) identified within the column. For each set of column properties, there is an 
associated set of layer properties. These layer properties specify the spatial and optical 
characteristics of each feature found (e.g. opacity flag), and include quantities such as layer 
base and top altitudes, optical depth, layer-integrated ice water path. 

While the 5 km layer products are reported on a uniform 5 km grid, the amount of horizontal 
averaging required to detect a layer may exceed 5 km. For example, detection of subvisible 
cirrus during daylight operations may require averaging to 20 km or even 80 km 
horizontally. In these cases, the layer properties of the feature detected are replicated as 
necessary to span the full extent of the averaging interval required for detection. The 
maximum number of layers reported per profile in the cloud layer products is 10. 

The fundamental data product is the vertical location of cloud and aerosol layer boundaries. 
All other layer properties, such as integrated ice water path, are computed with reference to 
these boundaries. Clouds and aerosols are reported separately in the CALIOP layer 
products. Stratospheric features are recorded in the 5 km aerosol product. In this analysis 
we did not use the aerosol layer products, only the cloud layer products. 

1.2.2 MODIS Level 2 Cloud Product 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an imaging radiometer 
that measures radiances at 36 wavelengths with centre wavelengths ranging from the 
visible to thermal infrared (0.413–14.235 mm) and spatial resolution from 250 m to 1 km. 
One of its advantages is its high spatial resolution that provides larger statistics and a more 
comprehensive cloud map compared to that of active sensors. The MODIS cloud detection 
algorithm (Ackerman et al. 1998; Frey et al. 2008) uses a fuzzy-logic scheme to quantify 
whether a spectral test categorizes a particular field of view (FOV) to be confidently cloudy, 
probably cloudy, probably clear, or confidently clear. The MODIS cloud product combines 
infrared and visible techniques to determine both physical and radiative cloud properties. 
MODIS infrared channel radiances are used to derive cloud top temperature, cloud top 
height, effective emissivity, cloud phase (ice vs. water, opaque vs. non-opaque), and cloud 
fraction under both daytime and nighttime conditions. MODIS visible radiances are used to 
derive cloud optical thickness and effective particle radius and cloud shadow effects. Near 
infrared solar reflected radiance provides additional information in the retrieval of cloud 
particle phase (ice vs. water, clouds vs. snow). 

In this study, cloud fraction, cloud phase infrared, cloud optical thickness and cloud mask 
were taken at a spatial resolution of 5 km from the collection 6 MYD06_L2 product, 
containing data collected from the Aqua platform (http://modis-
atmos.gsfc.nasa.gov/MYD06_L2/). The MYD06_L2 consists of parameters at a spatial 

http://modis-atmos.gsfc.nasa.gov/MYD06_L2/
http://modis-atmos.gsfc.nasa.gov/MYD06_L2/
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resolution of either 1- km or 5-km (at nadir). For 1-km resolution parameters, such as cloud 
optical thickness, the nearest-neighbour pixel to the 5 km pixel for other parameters was 
extracted (Baum et al, 2012). Each MYD06_L2 product file covers a five-minute time 
interval and approximately 288 files are produced daily. Nighttime files are smaller than 
their daytime counterparts since only cloud top properties are retrieved at night. 

Because MODIS is a passive sensor, it has significant limitations in describing cloud 
vertical structures with its column-integrated cloud properties such as cloud optical depth, 
particle effective radius, and cloud top effective temperature (Chang and Li, 2005; Davis et 
al., 2009; Sourdeval et al., 2013). 

1.2.3 In Situ Drifter SST 

The in situ dataset is composed of measurements from the International Comprehensive 
Ocean-Atmosphere Dataset (ICOADS) version 2.5.1 (Woodruff et al., 2011), and the Met 
Office Hadley Centre (MOHC) Ensemble dataset version 4.2.0 (EN4, Good et al., 2013). 
Measurements from drifting buoys constitute the main source of observations. Drifting 
buoys measure the temperature, typically hourly, from a sensor at about 20 cm depth in 
calm waters and the uncertainty from sensor calibration is inferred to about 0.2 °C 
(O’Carroll et al., 2008). MOHC provides quality control flags and track flags (Atkinson et al., 
2014). 

1.2.4 Observations from AMSR-E 

JAXA’s AMSR-E instrument was launched in May 2002 on NASA’s Aqua satellite. The 
AMSR-E instrument is a conical scanning microwave imaging radiometer that measures 
both vertical and horizontal linear polarizations at 6.9, 10.7, 18.7, 23.8, 36.5, and 89.0 GHz 
channels using an antenna diameter of 1.6 m. For a detailed description of the AMSR-E 
instrument, see e.g. Wentz and Meissner, 2000. In this study we use the spatially 
resampled L2A swath data product AMSR-E V12 (Ashcroft and Wentz, 2013) produced by 
Remote Sensing Systems (RSS) and distributed by NASA’s National Snow and Ice Data 
Center (NSIDC; https://nsidc.org/data/ae_l2a). The RSS L2A product includes brightness 
temperatures for all AMSR-E channels re-sampled to the resolution of other channels and 
the location where the reflection vector intersects the geostationary sphere, used for 
development of RFI flagging. Sun glint angles are also calculated as a part of the RSS L2A 
AMSR-E V12 files. For this analysis, we use the re-sampling to 6.9 GHz resolution for the 5 
lowest frequencies. This implies that all observations have a resolution footprint of 75 x 43 
km, but come in the data set with a spatial grid resolution of 10 km. 

1.2.5 OE & RE SST Retrievals using AMSR-E Data 

The retrieval of SST is achieved using two different algorithms. The first algorithm uses the 
Optimal Estimation (OE) technique to retrieve subskin SST from AMSR-E observations 
(Nielsen-Englyst et al., 2017). The OE method retrieves the minimum posterior error 
variance estimate of the ocean and atmosphere (the state vector) by inverting a forward 
model based on a slightly updated version of the physical surface emissivity and a radiative 
transfer model described in Wentz et al. 2000. The OE algorithm only uses the 10 lowest 
AMSR-E channels; 6.9, 10.7, 18.7, 23.6, and 36.5 GHz (horizontal and vertical 
polarization). The forward model predicts the top-of-atmosphere microwave brightness 
temperatures that should be measured by the individual channels given knowledge of the 
relevant geophysical parameters of the ocean and atmosphere. Four geophysical 
parameters are considered to be the leading terms controlling the observed microwave 
brightness temperatures and these are referred to as the state vector: wind speed (WS), 
integrated columnar atmospheric water vapour content (TCWV), total cloud liquid water 
(TCLW) and sea surface temperature (SST). In OE, a priori information about the expected 
mean and covariance of the geophysical parameters can be used to put restrictions on the 
variances of the retrieved geophysical parameters. In this case, the prior information is 
NWP fields. OE can be considered to be an adjustment of the a priori state vector based on 

https://nsidc.org/data/ae_l2a
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the difference between simulated and observed brightness temperatures. The method 
takes appropriate account of errors by combining the a priori state vector and the 
information content in the observed brightness temperatures. Nielsen-Englyst et al., 2018 
found that the performance of the SST retrievals is closely related to OE’s ability to 
reproduce the observed brightness temperatures. This information was used to estimate 
the uncertainty of the individual SST retrievals based on a scaled root mean square 
difference of the observed minus simulated brightness temperatures (RMSETB), using a 
scaling factor of 0.55. 

The second algorithm used to retrieve SST is a two-step multiple linear regression (RE) 
model with localized algorithms (Alerskans et al., 2018). In the first step of the regression 
retrieval algorithm, an initial SST is obtained through the use of localized latitude and 
satellite orbit algorithms. The data is divided into latitude and orbit bins, defined for latitudes 
in the interval -90 to 90°, with a bin size of 2°, and for descending (0) or ascending (1) 
satellite orbit. Hence, the first step consists of 182 localized latitude and orbit retrieval 
algorithms, each using a different set of regression coefficients. The initial estimate of SST 
is then used in the second step of the regression retrieval algorithm, where a final SST is 
obtained through the use of localized SST and wind speed algorithms. For this step, the 
data is divided into SST and wind speed bins, defined for SSTs in the interval -2 to 34°C, 
with a bin size of 2°C, and for wind speeds in the interval 0 to 20 ms-1, with a bin size of 2 
ms-1. The second step therefore consists of 209 localized SST and wind speed algorithms. 
The same SST algorithm formulation is used for both steps and it uses 12 AMSR-E 
brightness temperature channels; 6.9, 10.7, 18.7, 23.6, 36.5 and 89.0 GHz (dual 
polarization), incidence angle, wind speed and the relative angle between satellite azimuth 
angle and wind direction to retrieve SST. A corresponding SST uncertainty is estimated for 
each retrieval. Within the ESA CCI SST project, the total uncertainty can be divided into 
three components; a random uncorrelated component, a local systematic component and a 
global systematic component. Both the local systematic uncertainty and the random 
uncertainty are estimated using a regression model, which uses retrieved SST, wind speed, 
solar zenith angle and latitude to retrieve the two SST uncertainty components. In this case, 
the global systematic effects are deemed to be less than 0.1oC and can be neglected. 
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2. ESA-CCI MULTI-SENSOR MATCHUP DATASET (MMD) 

The concept of MMD has been used within the ESA CCI SST project as datasets used for 
SST algorithm development and validation (Block et al., 2018; Nielsen-Englyst et al., 2018). 
The satellite versus in situ matches are constrained by a maximally allowed geodesic 
distance and a maximal time difference. The same approach was applied to generate the 
MMD15 which is used in this study here. The MMD15 contains the in situ observations from 
drifting buoys matched with the orbital Level 2 observations from AMSR-E (primary) and the 
CALIOP and MODIS as the secondary datasets (Block, 2018). 

The Multi-sensor Matchup System software reads in all the in situ observations and finds 
the corresponding matching satellite observations throughout the full dataset. Matches 
between the in situ measurement and the primary sensor were only included within a 
maximal geodesic distance of 20 km and a time difference of maximally 4 h. Furthermore, a 
maximal distance of 3.54 km (i.e. √2 times 2.5 km, half pixel-width) and a time window of 
270 minutes were defined to constrain the matches between the primary and secondary 
sensors. The spatial distance ensures that the in situ measurement is located within the 
satellite footprints (see Table 1-2). The temporal distance balances the need for accurate 
collocated data with the need for a sufficient number of useable matches. 

The collocated AMSR-E data include a 21 by 21 pixel window with the matchup location in 
the centre as well as all variables of the corresponding in situ measurement. The ERA-
Interim NWP data, with a spatial resolution of about 80 km, were referenced to each AMSR-
E pixel and each in situ measurement and spatially interpolated to the data raster. This 
ancillary information includes a subset of the available ERA-Interim variables, covering a 
time range of -60 h to +36 h around the matchup time. Processing of the matchup dataset 
has been performed on the Climate and Environmental Monitoring from Space Facility 
(CEMS) computing facility at the Centre for Environmental Data Analysis (CEDA). The pixel 
windows of data extraction for the cloud data are given in Table 2-1. Both MODIS and 
CALIOP data are at the same resolution of 5 km along the laser ground-track and a size of 
21 pixels are equivalent to a distance of approx. 1 degree. 

 

Table 2-1: Pixel window size of data extraction. x is cross-track and y is along-track. 

 AMSR-E MODIS VFM CLAY 

Extraction window (x by y) 21 by 21 21 by 21 1 by 21 1 by 21 

Two different databases were designed; one with MODIS cloud data included in the 
matchup and one without MODIS cloud data included. In the case where MODIS data were 
included, the MMD consists of data from in situ drifters, AMSR-E, MODIS and CALIOP 
VFM and CLAY from 2008 and 2009. We will refer to this MMD as the CALIOP-MODIS 
matchup. In the other case, the MMD does not include MODIS cloud data and covers a 5-
year period from 2007-2011. We will refer to this MMD as the CALIOP matchup. 

2.1 Derived MMD15 Variables 

The footprint size of the AMSR-E 6.9 GHz resolution is 75 x 43 km whereas the footprint 
size of both the MODIS product and the CALIOP Lidar (i.e. CALIOP) products are 5 x 5 km 
and 5 km, respectively. The difference in footprint sizes needs to be taken into account 
when performing the analysis of the effect of clouds and aerosols on the PMW retrievals. 
Therefore, averages and standard deviations are calculated for a selected number of 
variables for a pixel extract of 15 x 9 pixels (75 x 45 km) for MODIS MYD06 variables and 
15 pixels (75 km) for CALIOP variables. In addition, the number of pixels in the pixel extract 
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with a value in the valid range for the variable in question is calculated. The derived 
MMD15 variables are listed in Table 2-2. 

When calculating the horizontal averages (𝜇) and standard deviations (𝜎), two different 
methods are used depending on the variable. In the first approach, averages and standard 
deviations are calculated over the whole pixel extract, whereas in the second approach, 
averages and standard deviations are calculated over the number of pixels in the pixel 
extract with a value in the valid range for the variable in question. As an example of a pixel-
extract average, consider the MYD06 variable Cloud Fraction. The average is calculated 
by: 

𝜇𝐸𝑋𝑇 =
𝑠𝑢𝑚𝐻(Cloud Fraction)

𝑁𝐸𝑥𝑡𝑟𝑎𝑐𝑡
 

where 𝑠𝑢𝑚𝐻 represents the horizontal sum across the pixel extract and 𝑁𝐸𝑥𝑡𝑟𝑎𝑐𝑡 = 135 and 
denotes the total number of pixels in the pixel extract. As an example of a pixel average, 
consider the CLAY variable Layer Top Altitude, from which the derived MMD15 variable 
Cloud Top Height (CTH) is calculated (see Table 1-3). The CTH average is calculated by: 

𝜇𝑃𝐼𝑋 =
𝑠𝑢𝑚𝐻(Cloud Top Height)

𝑁𝑃𝑖𝑥𝑒𝑙
 

where 𝑠𝑢𝑚𝐻 represents the horizontal sum across the pixel extract and 𝑁𝑃𝑖𝑥𝑒𝑙 denotes the 
number of pixels in the pixel extract with a valid cloud top height value. 

 
Table 2-2: Key MMD15 derived variables together with the already-existing MMD 

variables from which they were calculated and which specific flags/conditions were 
used to calculate them. The number of pixels for the CALIOP variables is defined per 
pixel, meaning that even if e.g. one pixel contains two clouds in two different layers 

the count would still be one for that pixel. 

MMD variable Derived MMD 
variables Comment Flagging 

MYD06 Cloud Fraction  
• 𝜇𝐸𝑋𝑇  
• 𝜎𝐸𝑋𝑇 
• 𝑁𝑃𝑖𝑥𝑒𝑙 

Fill value = 0 None 

MYD06 Cloud Optical 
Thickness 

• 𝜇𝐸𝑋𝑇  
• 𝜎𝐸𝑋𝑇 
• 𝑁𝑝𝑖𝑥𝑒𝑙 

Fill value = 0 

• MYD06 Cloud Optical 
Thickness  ≤ 100; and 

• MYD06 Cloud Optical 
Thickness Uncertainty 
≤ 200 

MYD06 Cloud Phase 
Infrared  

No. of pixels with 
clear sky Range: [0-135] • MYD06 Cloud Phase 

Infrared = 0                         

MYD06 Cloud Phase 
Infrared 

No. of pixels with 
water clouds Range: [0-135] • MYD06 Cloud Phase 

Infrared = 1            

MYD06 Cloud Phase 
Infrared 

No. of pixels with 
ice clouds Range: [0-135] 

• MYD06 Cloud Phase 
Infrared = 2 (ice) or = 3 
(mixed ice) 
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MMD variable Derived MMD 
variables Comment Flagging 

CALIOP VFM Center 
Feature Classification 
Flags (CFCF) Type 

No. of pixels with 
aerosols 

Range: [0-15] 
One count per pixel 

• CALIOP VFM CFCF 
Type = 3 (aerosol) 

CALIOP CLAY  
Feature Classification 
Flags (FCF) Type 

No. of pixels with 
clear sky 

Range: [0-15] 
One count per pixel 

• maxV(CALIOP CLAY FCF Typ
1 (clear sky conditions)  

 CALIOP CLAY  
Feature Classification 
Flags (FCF) Type 

No. of pixels with 
clouds 

Range: [0-15] 
One count per pixel 

• CALIOP CLAY FCF 
Type = 2 (cloud) 

CALIOP CLAY  
Feature Classification 
Flags (FCF) Subtype 

No. of pixels with 
deep convective 
clouds 

Range: [0-15] 
One count per pixel 

• CALIOP CLAY FCF 
Subtype = 7 (deep 
convection) 

CALIOP CLAY  
Feature Classification 
Flags (FCF) Type 

No. of pixels with 
ice clouds 

Range: [0-15] 
One count per pixel 

• CALIOP CLAY FCF 
Type = 2 (cloud); and 

• CALIOP CLAY FCF Ice 
Water Phase = 1 (ice) or 
= 3  (mixed ice) 

CALIOP CLAY  
Feature Classification 
Flags (FCF) Type 

No. of pixels with 
opaque clouds 

Range: [0-15] 
One count per pixel 

• CALIOP CLAY FCF 
Type = 2 (cloud); and 

• CALIOP CLAY Opacity 
Flag = 1 

CALIOP CLAY  
Feature Classification 
Flags (FCF) Type 

No. of pixels with 
transparent clouds 

Range: [0-15] 
One count per pixel 

• 𝑁𝑐𝑙𝑜𝑢𝑑𝑠 − 𝑁𝑜𝑝𝑎𝑞𝑢𝑒 𝑐𝑙𝑜𝑢𝑑𝑠 

CALIOP CLAY  Ice 
Water Path (IWP) 

Total ice water 
content (TIWP) 
• 𝜇𝐸𝑋𝑇  
• 𝜎𝐸𝑋𝑇 
• 𝑁𝑝𝑖𝑥𝑒𝑙 

TIWP = 𝑠𝑢𝑚𝑉(IWP) 
 
Fill value = 0 
 
Range 𝑁𝑝𝑖𝑥𝑒𝑙: [0-15] 

• CALIOP CLAY IWP ≥ 0, 
• CALIOP CLAY IWP 

Uncertainty  ≤ 99.9, 
• CALIOP CLAY FCF 

Type  = 2 (cloud); and 
• CALIOP CLAY FCF Ice 

Water Phase  = 1 (ice) 
or = 3  (mixed ice) 

CALIOP CLAY  Ice 
Water Path (IWP) 

TIWP without deep 
convection 
• 𝜇𝐸𝑋𝑇  
• 𝜎𝐸𝑋𝑇 
• 𝑁𝑝𝑖𝑥𝑒𝑙 

TIWP = 𝑠𝑢𝑚𝑉(IWP) 
 
Fill value = 0 
 
Range 𝑁𝑝𝑖𝑥𝑒𝑙: [0-15] 

Same flags as for TIWP 
• CALIOP CLAY FCF 

Subtype ≠ 7 (deep 
convection) 

CALIOP CLAY Layer 
Top Altitude (LTA) 

Cloud Top Height 
(CTH) 
• 𝜇𝑃𝐼𝑋 
• 𝜎𝑃𝐼𝑋 
• 𝑁𝑝𝑖𝑥𝑒𝑙 

CTH = maxV(LTA) 
 
Range 𝑁𝑝𝑖𝑥𝑒𝑙: [0-15] 

• CALIOP CLAY LTA > 0; 
and 

• CALIOP CLAY FCF 
Type  = 2 (cloud)  
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MMD variable Derived MMD 
variables Comment Flagging 

CALIOP CLAY Layer 
Top Altitude (LTA) 

CTH Opaque 
• 𝜇𝑃𝐼𝑋 
• 𝜎𝑃𝐼𝑋 
• 𝑁𝑝𝑖𝑥𝑒𝑙 [0-15] 

CTH Opaque = 
maxV�LTAopaque� 
 
Range 𝑁𝑝𝑖𝑥𝑒𝑙: [0-15] 

Same flags as for CTH and 
• CALIOP CLAY Opacity 

Flag = 1 

CALIOP CLAY Layer 
Top Altitude (LTA) 

CTH Opaque 
without deep 
convection 
• 𝜇𝑃𝐼𝑋 
• 𝜎𝑃𝐼𝑋 
• 𝑁𝑝𝑖𝑥𝑒𝑙 

CTH Opaque no 
Deep Convection = 
maxV�LTAop, no DC� 

Same flags as for CTH 
Opaque and 

• CALIOP CLAY FCF Subtype 
≠ 7 (deep convection) 

 

2.2 Data Filtering 

The quality of satellite observations, in situ measurements and auxiliary information is very 
important for the accuracy and performance of the retrieval algorithm. If erroneous data are 
included, it will lead to an erroneous SST retrieval. Hence, the data need to be quality-
controlled and filtered for various surface and atmospheric effects. 

Data were flagged as erroneous if the AMSR-E pixel or scan quality were set to fail or if the 
brightness temperature fell outside the normal range (0-320 K).  In addition, data were 
flagged if the in situ data seemed to be erroneous and had not passed the quality control. 
Data were also flagged if the in situ or NWP SST was less than -2 °C or greater than 34 °C 
or if NWP wind speed was greater than 20 m s-1. Together, these quality controls represent 
a gross error check. In addition to the gross error check, flagging were performed to 
account for various surface and atmospheric effects that could compromise the SST 
retrieval. Data were flagged for land contamination based on the AMSR-E land/ocean flag 
and for sea ice contamination based on the NWP sea ice fraction. Furthermore, data were 
flagged for sun glitter contamination if the sun glint angle was less than 25°. Data were 
flagged for RFI contamination using Table 1-2 by Gentemann and Hilburn (2015) together 
with observation location and geostationary reflection longitude and latitude. As a last 
quality control for the in situ data, a 3-σ filter was used on the NWP and in situ SST 
difference to remove erroneous in situ observations. 

Flagging was also performed for the PMW SST retrievals. If the retrieved SST were outside 
the accepted range (-2 to 34 °C), the data were flagged as erroneous. For the OE 
retrievals, an additional filter was added on the RMSE for the observed minus simulated 
brightness temperatures, RMSETB, which is an indicator of how well the OE algorithm is 
able to reproduce the observed brightness temperatures. Nielsen-Englyst et al. 2018 found 
that the performance of the SST retrieval is closely related to the RMSETB value. Here, data 
were flagged as erroneous if RMSETB >5, which is larger than in Nielsen-Englyst et al., to 
allow for atmospheric effects to be included in the matchup dataset. Finally, the number of 
matchups per degree of latitude was restricted to 100 and 500 matchups for the CALIOP-
MODIS and CALIOP datasets, respectively, to ensure that the analysis results are based 
upon a latitudinal representative dataset. 
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Table 2-3: Number of matchups and percentage of matchups removed by each data 
filtering step for the OE analysis. 1The percentage of gross error checked matchups 
removed by applying each filter individually. 2The percentage of matchups removed 
by applying the filter is calculated from the number of matchups that passed the “All 
above checks” option. 3The percentage of matchups removed by the filter is from the 
number of matchups that passed the “All checks” filtering. 

 CALIOP-MODIS CALIOP 

Flagging N % removed N % removed 

None (all matchups) 58,326  52,720  

Gross error check 51,066 12.4 48,948 7.2 

Land mask1 38,781 24.1 41,129 16.0 

Sea ice mask1 32,681 36.0 39,697 18.9 

Sun glitter1 51,066 0.0 48,942 0.012 

RFI1 50,139 1.8 46,873 4.2 

All above checks 28,606 51.0 35,144 33.3 

3σ filter on NWP minus in 
situ SST difference2 28,310 1.0 34,586 1.6 

RMSETB
2 28,300 0.02 34,536 0.1 

All checks 28,300 51.5 34,536 34.5 

Even out data by latitude3 8,629 69.5 29,154 15.6 

Total 8,629 85.2 29,154 44.7 
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2.1 Data Overview 

The number of matchups after each step in the data filtering procedure and the percentage 
of matchups the filter removes is shown in Table 2-3. The final number of matchups used 
for the analysis with the CALIOP dataset is 29,154 for the OE algorithm and 29,201 for the 
RE algorithm whereas for the analysis with the CALIOP-MODIS dataset it is 8,629 for both 
the OE and RE algorithms (Table 2-3). Figure 2-1 shows the geographical and latitudinal 
distribution of filtered matchups for the two datasets used for the OE analysis. The 
distributions of matchups, used for the RE analysis, are not shown because they are similar 
to the distributions for the OE analysis. The distribution of matchups by year for the 
CALIOP and CALIOP-MODIS datasets is shown in Figure 2.2. In the CALIOP-MODIS 
dataset, year 2009 consists of approximately 1,000 more matchups than year 2008 and in 
the CALIOP dataset, year 2010 consists of roughly 8,350 matchups whereas the other 
years consist of approximately 5,000-6,000 matchups each. 

 

 

Figure 2-1: Geographical distribution of the number of satellite vs in situ matchups 
gridded in 2x2 deg (left panels) and the latitudinal distribution (right panels) before 
and after the matchups have been evened out by latitude for the OE algorithm 
analysis (red in left panel indicate the removed data): the CALIOP matchups (top) 
and CALIOP-MODIS matchups (bottom). 
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Figure 2-2: Distribution of satellite vs. in situ matchups by year: a. the CALIOP-
MODIS matchup dataset (2008-2009) and b. the CALIOP matchup dataset (2007-2011). 

  

 



 
SST CCI Phase-II SST_CCI-WP100-DMI-201 
Quantification of atmospheric influence on Passive Microwave Observations Issue 1 

  Page 13 

3. ATMOSPHERIC INFLUENCE ON THE OE AND RE RETRIEVALS 

The performance of the OE and RE retrieved SSTs compared to in situ SSTs is 
shown in Table 3-1 for the two datasets. In general, the retrieved SSTs are slightly colder 
than the in situ SSTs with standard deviations ranging from 0.56 to 0.66 °C (highest for the 
RE algorithm).  

The impact of the different atmospheric parameters on the PMW SST retrievals is 
investigated in this section through the assessment of the SST retrieval performance as a 
function of each of the parameters. The atmospheric variables shown in this section are: 

• Cloud fraction (from MODIS)  

• Total ice water content (TIWP) 

• Opaque cloud top height (OCTH) 

• Number of pixels with deep convection (Npixel_DCC) 

• Number of pixels with aerosols (Npixel_AERO) 

Note that the performance of the SST retrievals was examined for all variables listed in 
Table 3. We have chosen to show here only the results where we see some effects on the 
SST retrievals or if it is a widely used auxiliary data set, such as for the MODIS cloud cover 
data set.  

3.1 MODIS Cloud Data 

For the CALIOP-MODIS dataset, we focused on the relationship between the retrieved 
minus in situ SST differences and the MODIS cloud variables, such as cloud fraction, cloud 
optical thickness and the number of pixels, in the pixel extract containing water clouds or 
ice clouds. Generally, the impact is small and the SST performance does not vary much 
with the value of the cloud variables. As an example, Figure 3-1 shows the retrieved SST 
minus in situ SST as a function of MODIS cloud fraction. Only a relatively small effect 
(0.02K for OE and 0.11K for regression) on the average SST performance is found during 
overcast conditions, i.e. cloud fraction = 0 versus cloud fraction = 1. These differences 
between cloudy and cloud-free performance are not significant to the 95 % confidence 
interval for the OE and the regression retrievals due to the small sample size for cloud free 
conditions and we can therefore not determine any significant impact of the cloud cover 
(seen from MODIS) on the PMW SST performance.   
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Figure 3-1: Retrieved SST minus in situ SST as a function of MODIS cloud fraction 
from 2008-2009: OE SST (left) and RE SST (right). Top panels: solid and dashed lines 
are mean and standard deviation of retrieved SST versus in situ, respectively. Middle 
panels: number of matchups in each bin. Bottom panels: the total number of 
matchups (blue) and the cumulative percentage of matchups (red) for each cloud 
fraction bin. A minimum of 30 matchups in each bin is applied for statistics 
calculation in the top figures.  

 

3.2 CLAY Cloud Features and Cloud Phase 

From the 5-year CALIOP matchup dataset, we extracted subsets of various cloud types 
and defined several new variables to quantify the cloud features in order to investigate 
cloud effects on the retrieved minus in situ SST difference (Table 2-2). Total ice water 
content (TIWP) and opaque cloud top height (OCTH) were identified as the two key 
variables. In order to assess their influence on the SST retrievals, we extracted two subsets 
from the CALIOP matchups where we only included matchups with TIWP above 0 g m-2 
and OCTH above 0 km, respectively. In other words, we only considered the matchups 
detected as either ice or mixed ice cloud for the analysis of the influence of TIWP on the 
retrieved SST performance. Therefore the subset used to assess the impact of ice and 
mixed ice clouds consists of 51% of the total matchups for both the RE and OE analysis. 
For the analysis using OCTH, we only considered the matchups detected as opaque clouds 
and hence 66% of the total matchups were extracted for the analysis (Table 3-1). 
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Table 3-1: Comparison of retrieved SSTs against in situ SSTs for various subsets 
from the CALIOP matchups, using the filters derived from the CLAY and VFM cloud 
variables (Table 3). The numbers in the first two rows are used as references for the 
subset assessments and are calculated from all CALIOP-MODIS and CALIOP 
matchups, respectively. Npixel_DCC denotes the number of pixels detected as deep 
convective clouds within one matchup; note that the subset includes all Npixel_DCC 
below the threshold, so that the number of the matchups increases with increasing 
threshold for Npixe_DCC. Npixel_AERO denotes the number of pixels classified as aerosol 
within one matchup. 

Subset  
Mean/K  

OE-
Drifter 

Std/K 
OE-

Drifter 

Mean/K 
RE-Drifter 

Std/K 
RE-Drifter 

N_match (OE/RE) 

CALIOP-
MODIS -0.022 0.588 -0.025 0.661 8,629/8,629 100% 

CALIOP -0.022 0.559 -0.012 0.640 29,154/29,201 100% 

TIWP>0 -0.069 0.621 -0.018 0.687 14,788/14,822 51% 

OCTH>0 -0.042 0.609 -0.017 0.687 19,297/19,337 66% 

Npixel_DCC=0 0.004 0.496 -0.001 0.583 23,994/24,005 82% 

Npixel_DCC<4 0.002 0.503 0.000 0.584 25,416/25,427 87% 

Npixel_DCC<8 0.001 0.511 -0.002 0.591 26,492/26,503 91% 

Npixel_DCC<12 -0.002 0.517 -0.002 0.600 27,453/27,465 94% 

Npixel_AERO=0 -0.135 0.680 -0.054 0.774  6,118/6,148 21% 

Npixel_AERO=15 0.012 0.441 -0.017 0.520 7,784/7,790 27% 

Figure 3-2 shows the dependence of the SST performance on the vertically integrated 
TIWP. The retrieved SSTs get increasing colder than in situ SST for higher TIWP values 
using both the OE and RE algorithms. Similar, the standard deviations increase for with 
increasing TIWP. The cumulative percentage of matchups with TIWP below 100 g m-2 is 
approximately 90%. The mean and standard deviation of the SST difference within the 
subsets are -0.069 and 0.621 °C for the OE algorithm and -0.018 and 0.687 °C for the RE 
algorithm (Table 5).  

Figure 3-3 shows that the SST retrieval quality also depends on the OCTH, in particular for 
opaque cloud top altitudes higher than 6 km. The cumulative percentage of matchups with 
an OCTH lower than 6 km is approximately 80%. Comparing the mean and standard 
deviation of the retrieved SST versus in situ SST within the two subsets (see Table 3-1), it 
can be seen that the OE SST is more sensitive to TIWP than OCTH, whereas the RE SST 
does not differ between the two subsets. We have also investigated the dependence of the 
SST difference on the CLAY cloud top height (CTH) but found no relationship between the 
SST difference and CTH for neither of the two algorithms (not shown). 
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Figure 3-2: Retrieved SST minus in situ SST as a function of TIWP (g m-2) from 2007-
2011: OE SST (left) and RE SST (right). Top panels: solid and dashed lines are mean 
and standard deviation of retrieved SST versus in situ, respectively. Middle panels: 
number of matchups in each bin. Bottom panels: the total number of matchups (blue) 
and the cumulative percentage of matchups (red) in each TIWP bin (for 50 g m-2). A 
minimum of 30 matchups in each bin is applied for statistics calculation in the top 
figures. Note that this is a subset of the CALIOP matchups, which only includes the 
matchups detected as either ice or mixed ice cloud with TIWP > 0 g m-2. A relation 
between TIWP and cloud liquid water from NWP are shown in Figure 4.1. 
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Figure 3-3: Retrieved SST minus in situ SST as a function of OCTH (km) from 2007-
2011: OE SST (left) and RE SST (right). Top panels: solid and dashed lines are mean 
and standard deviation of retrieved SST versus in situ, respectively. Middle panels: 
number of matchups in each bin. Bottom panels: the total number of matchups (blue) 
and the cumulative percentage of matchups (red) in each OCTH bin (for 2 km). A 
minimum of 30 matchups in each bin is applied for statistics calculation in the top 
figures. Note that this is a subset of the CALIOP matchups, which only includes the 
matchups detected as opaque cloud with CTH>0 km. 

To investigate the effect of rain on the SST retrievals, we extracted the number of pixels 
containing deep convective clouds (DCCs). The subset without DCCs, which consists of 
82% of the total matchups (Npixel_DCC=0 in Table 3-1), was found to have the smallest 
standard deviation of the retrieved minus in situ SST differences for both retrieval 
algorithms. By including matchups which contain more DCCs, the variance of the SST 
differences increased slightly from 0.496 (Npixel_DCC=0) to 0.559 °C (all matches) for the OE 
analysis and from 0.583 (Npixel_DCC=0) to 0.640 °C (all matches) for the RE analysis. Only 
18% of the total matchups contain DCCs (i.e. Npixel_DCC>0), which corresponds to 5,160 and 
5,196 matchups for the OE and RE analysis, respectively (Figure 3-4). Limited by such 
small sample sizes, it is not possible to derive a relation between the number of pixels with 
DCC and the retrieved SST. However, more than 1,000 matchups within these DCC 
subsets are detected as fully covered by DCC (i.e. Npixel_DCC=15), and they show relatively 
large uncertainties compared to the case with matchups detected as covered by 25% of 
DCC or less (i.e. Npixel_DCC<4), as can be seen in Figure 3-4.  

To assess if there were any sampling effects, we investigated the geographical and 
latitudinal distribution of matchups with Npixel_DCC>0 (Figure 3-5 and Figure 3-6). Figure 3-5 
shows that Npixel_DCC=15 is the predominant case in all five zonal regions: in the southern 
hemisphere (30°S to 90°S), the matchups fully covered by DCC (Npixel_DCC=15) constitutes 
25-30% of the total local matchups, whereas between 30°N-60°N, over 20% of the total 
local matchups are fully covered by DCCs. Therefore, we can conclude that the increased 
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SST versus in situ differences related to matchups containing DCC, as seen in Figure 3-3, 
is a general feature and that there is no sampling effect in our analysis. 

 

 

Figure 3-4: Retrieved SST minus in situ SST as a function of number of pixels 
containing deep convective clouds (Npixel_DCC, ranging from 1 to 15) from 2007-2011: 
OE SST (left) and RE SST (right). Top panels: solid and dashed lines are mean and 
standard deviation of retrieved SST versus in situ, respectively. Middle panels: 
Number of matchups in each bin. Bottom panels: the total number of matchups 
(blue) and the cumulative percentage of matchups (red) in each bin (for 1 pixel). A 
minimum of 30 matchups in each bin is applied for statistics calculation in the top 
figures. Note that 82% of the total matchups are found to have no DCCs (i.e. 
Npixel_DCC=0) and hence excluded from this figure. 
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Figure 3-5: Normalised histogram of the number of pixels containing deep 
convective clouds for OE SST for different latitude bands. The RE SST results were 
very similar (not shown).  

 

Figure 3-6: Distribution of the number of pixels, ranging from 1 to 15, containing 
deep convective clouds averaged for 2x2o bins for OE SST. The RE SST results are 
very similar (not shown). 
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In order to assess how the SST retrieval quality varies with the occurrence of DCCs, we 
introduce a filter based on the number of pixels in the pixel extract containing deep 
convective clouds. Figure 3-7 shows the dependence of the retrieved SST minus in situ 
SST differences on TIWP and OCTH for five different upper thresholds on the number of 
DCC within the pixel extract. This way we can choose if we want to use a stricter filter and 
exclude more matchups or if we want to relax on the strictness of the filter and thus include 
more matchups so that the number of matchups used in the analysis ranges from a 
minimum of 9,791 to a maximum of 19,337. Figure 3-7 shows that by gradually removing 
the effect of DCC, the dependence of the SST difference on TIWP and OCTH gradually 
decreases. The occurrence of DCC is associated with TIWP >200 g m-2 and OCTH > 6 km.  

 

 

Figure 3-7: Retrieved SST minus in situ SST as a function of TIWP (upper panels) and 
OCTH (lower panels) for different thresholds of deep convective clouds (DCCs) 
included and for OE SST (left) and RE SST (right). The five upper thresholds for the 
maximum number of DCCs in the pixel extract are used: Npixel_DCC ≤ 0, 3, 7, 11 and 15. 
This is equivalent to 0, 25, 50, 75 and 100% of the pixel extract within a PMW footprint 
containing deep convective clouds. 

 

3.3 VFM Aerosol 

The impact from aerosols on the SST retrievals is shown in Figure 3-8. It is evident that 
there is no apparent negative influence from aerosols on the quality of the SST retrievals. 
Conversely, the best performance of both retrievals is actually found for conditions where 
aerosols are detected in all the CALIOP observations within a PMW satellite footprint, 
whereas the largest bias and standard deviations are found for aerosol-free pixels.  A 
closer investigation of these results revealed, however, that this dependency is most likely 
a sampling artefact. Most of the aerosol contaminated matchups are found in warm tropical 
waters with SSTs above 25°C, whereas the majority of the aerosol-free matchups are 
located around 70°N where the SSTs are around 5°C. It is well known (and also shown in 
Nielsen-Englyst et al., 2018) that PMW SST retrievals perform better for warm waters than 
for cold waters. The aerosol dependency seen in Figure 3-8 is thus not because of aerosols 
but due to the aerosols being present in regions of warmer water, where the SST retrievals 
show the best performance. Details are listed in Table 3-1. 
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Figure 3-8: Retrieved SST minus in situ SST as a function of number of pixels 
containing aerosols (Npixel_AERO) from 2007-2011: OE SST (left) and RE SST (right). 
Top panels: solid and dashed lines are mean and standard deviation of retrieved SST 
versus in situ, respectively. Middle panels: number of matchups in each bin. Bottom 
panels: the total number of matchups (blue) and the cumulative percentage of 
matchups (red) in each bin (for 1 pixel). A minimum of 30 matchups in each bin is 
applied for statistics calculation in the top figures. Note that the binning of the 
number of pixels starts from 0, representing aerosol-free matchups, which accounts 
for 21% of the total matchups. 
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4. RECOMMENDATIONS FOR SCREENING OF THE RETRIEVAL 
ALGORITHM 

In this section, we aim at identifying the potential of using AMSR-E observations, retrieved 
variables or NWP fields to identify observations contaminated by atmospheric effects to 
improve the quality of the SST retrievals. Our analysis in the previous sections showed that 
whereas the SST retrieval algorithms generally are fairly stable with respect to e.g. cloud 
cover from MODIS, the analysis against CALIOP observed variables showed that 
atmospheric effects related to e.g. DCC has a negative impact on the quality of the SST 
retrievals.  

The CALIOP observations are close to nadir observations and it is therefore not feasible to 
use these observations to perform a quality control of all the AMSR-E retrievals in a swath. 
In this section we will therefore examine the potential for using auxiliary information to 
identify and exclude the retrievals where atmospheric effects deteriorate the PMW SST 
retrievals.  

4.1 Relation to NWP Parameters 

This section investigates if NWP extracted variables from ERA Interim can be related to the 
observed atmospheric parameters that influence the PMW SST retrievals. Figure 4-1 shows 
the relation between the total column cloud ice water (TCIW) and TCLW from NWP and the 
observed TIWP and Npixel_DCC. It is evident that while there might be a small relation 
between NWP TCIW and observed TIWP, there is little relation between the NWP TCIW vs. 
Npixel_DCC  and when NWP TCLW is compared against observed TIWP and Npixel_DCC.  
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Figure 4-1: NWP Total column cloud ice water (TCIW) (top) and NWP TCLW (bottom) 
as a function of observed TIWP (left) and number of pixels containing deep 
convective cloud (Npixel_DCC) (right) from 2007-2011. On the left y-axis: solid lines and 
error bars represent mean and standard deviation of each bin, respectively. The right 
y-axis shows normalized percentage of matchups. A minimum of 30 matchups in 
each bin is applied for statistics calculation. 

The results mean that, even though we have demonstrated that high content of TCLW and 
TCIW influences the quality of the SST retrievals, it is hard to use the NWP for screening 
the retrievals. This is probably related to the fact that the quality of the NWP TCLW and 
TCIW variables extracted here is not good enough for this kind of analysis.  

4.2 Relation between retrieved OE TCLW and TIWP and Npixel_DCC  

TCLW is retrieved simultaneously with the SST in the OE algorithm and can thus potentially 
be used to identify retrievals affected by severe rain. Here, we examine the relation 
between the OE retrieved TCLW and the observed TIWP and number of pixels with DCC, 
Npixel_DCC. The results in Figure 4-2 show a good correlation between the OE TCLW and 
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TIWP for values less than 150 g m-2. Similarly, there is a relation between the OE derived 
TCLW and the Npixel_DCC. Note, however, that the variability for both cases is quite large.  

 

Figure 4-2: OE retrieved total cloud liquid water (TCLW) as a function of TIWP (left) 
and number of pixels containing deep convective cloud (Npixel_DCC) (right) from 2007-
2011. On the left y-axis: solid lines and error bars represent mean and standard 
deviation of each bin, respectively. The right y-axis shows normalized histogram of 
bins. A minimum of 30 matchups in each bin is applied for statistics calculation. 

 

4.3 Uncertainty on SST Retrievals 

Both the OE and the RE retrievals have an uncertainty associated with each SST. Figure 
4-3 shows how the retrieval uncertainty relates to the deep convective clouds, as observed 
from the CALIOP instrument. It is evident from the figure that there is a relation between the 
OE SST uncertainty and the Npixel_DCC, where the uncertainty increases with the increasing 
number of pixels containing DCC. In opposition to this, the uncertainty estimates from the 
RE retrieval show no relation to the number of pixels affected by DCC conditions.  
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Figure 4-3: SST uncertainty estimates from the retrievals as a function of number of 
pixels containing deep convective clouds (Npixel_DCC, ranging from 1 to 15) from 2007-
2011: OE SSTs (left) and RE SST (right). Top panels: solid and dashed lines are 
average and standard deviation of uncertainties, respectively. Middle panels: number 
of matchups in each bin. Bottom panels: the total number of matchups (blue) and the 
cumulative percentage of matchups (red) in each bin (for 1 pixel). A minimum of 30 
matchups in each bin is applied for statistics calculation in the top figures. 

In the same way, we compare the two kinds of SST uncertainty estimates to observed 
TIWP in Figure 4-4. Again, the OE uncertainty is seen to gradually increase with increasing 
TIWP when TIWP is less than 250 g m-2, whereas no response can be seen from the RE 
uncertainty. Figure 4-3 and Figure 4-4 thus demonstrate that the uncertainty estimate from 
the OE SST retrieval is related to the atmospheric impacts from the deep convective cloud 
and ice clouds, which is not the case for the uncertainties from the RE algorithm and hence 
the OE algorithm has an advantage over the RE algorithm. 
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Figure 4-4: SST uncertainty estimates from the retrievals as a function of TIWP from 
2007-2011: OE SSTs (left) and RE SST (right). Top panels: solid and dashed lines are 
average and standard deviation of uncertainties, respectively. Middle panels: number 
of matchups in each bin. Bottom panels: the total number of matchups (blue) and the 
cumulative percentage of matchups (red) in each bin (for 1 pixel). A minimum of 30 
matchups in each bin is applied for statistics calculation in the top figures. 

 

4.4 Ice Impact on Observations 

The direct impact of ice crystals in the atmosphere on the microwave observations is 
expected to be largest for the 89 GHz channels (Mätzler, 2006). The dependency of the 
brightness temperature in the 89V channel on TIWP is shown in Figure 4-5 and shows the 
expected behaviour, where the increasing scattering of the ice crystals in the atmosphere 
will tend to reduce the brightness temperatures as they will obscure the surface. The 
average impact on brightness temperatures is again small compared to the variability, but 
note that the results are shown for surfaces with a large natural variability in temperature.   

 



 
SST CCI Phase-II SST_CCI-WP100-DMI-201 
Quantification of atmospheric influence on Passive Microwave Observations Issue 1 

  Page 27 

  

 

Figure 4-5: AMSR-E brightness temperature of the 89V channel as a function of TIWP 
(left) and number of pixels containing deep convective cloud (Npixel_DCC) (right) from 
2007-2011. On the left y-axis: solid lines and error bars represent mean and standard 
deviation of each bin, respectively. The right y-axis shows normalized histogram of 
bins. A minimum of 30 matchups in each bin is applied for statistics calculation. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 General Concepts 

In this work, the AMSR-E SST L2 product was compared with the L2 cloud product from 
MODIS and CALIOP. The difference in spatial sampling between the three different 
instruments meant that most of the work was based upon summary variables that were 
derived to suit the AMSR-E footprint as good as possible. Due to the nature of the CALIOP 
data with near-nadir only observations, the number of matches in the multi-sensor matchup 
dataset (MMD) is limited, but it appeared that (except for the aerosols) the results were not 
very sensitive to the number of matches or the spatial distributions. 

In general we only found a small impact from cloud properties on AMSR-E SST retrievals, 
where the cloud cover from e.g. MODIS had no effects on the quality of the SST retrievals. 
In addition, no large influence from the presence of aerosols is seen on the quality of the 
SST retrievals. The direct effects from aerosols on the quality of the SST retrieval is actually 
opposite, with better retrievals in presence of aerosols, but this was shown to be a sampling 
effect and not related to the aerosols as observed by CALIOP.  

The absence of cloud cover and aerosol effects on the AMSR-E SST retrievals is very 
encouraging, as this demonstrates that the PMW is an important supplement to IR 
observations and a valuable part of the global Climate Observing System (GCOS), which 
requires an all-weather diurnal and high spatial resolution capability with an SST stability of 
0.1oC (GCOS, 2006). 

There were two key parameters from the CALIOP cloud data that had an impact on the 
quality of the SST retrievals, namely the number of pixels containing deep convective cloud 
(DCC) in pixel extract and total ice water content (TIWP). The observed impact from DCCs 
and TIWP is likely due to the fact that rain and ice are present at the same time in 
conditions with deep convective clouds. The focus in this report has been on quantifying the 
effects and establishing relationships to other information that could be used to screen the 
data.    

In order to identify or filter for the SST retrievals that are impacted by the atmospheric 
effects, it is clear that other cloud products from e.g. MODIS are not suitable for screening 
the data. In addition, the NWP variables of e.g. total cloud liquid water (TCLW) and TCIW 
used in this study are not accurate enough to identify the impacted observations. The NWP 
used in the construction of the MMD is from the ERA Interim analysis times. Using forecast 
fields would probably give a better representation of the TCLW and TCIWs as it is well 
known that NWP humidity fields are not the optimal fields. In addition, better atmospheric 
reanalysis products, such as the ERA5, are emerging that could be investigated in a follow-
up study.  Using retrieved variables of e.g. TCLW from the OE algorithm instead of the 
NWP fields showed, however, a better potential for identifying the observations influenced 
by DCC. 

Whereas the OE and RE retrievals showed fairly similar impact on the SSTs of atmospheric 
effects, such as DCC, the uncertainties had a quite different behaviour. It was clear from 
the results that the OE uncertainty information was much better at capturing and identifying 
the conditions where the observations were affected by DCC.  

As mentioned earlier, it was shown that the SST retrieval performance is related to the ice 
content, measured as TIWP by the CALIOP instrument. According to microwave radiation 
theory (Mätzler, 2006), the major impact from ice on the observations should be seen in the 
89 GHz channels, which play a minor role in the SST retrievals. The observed relation 
between TIWP and SST performance is therefore likely from the fact, that rain and ice are 
present at the same time in conditions with DCC.   
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It can therefore be concluded from this study, that the impact from atmospheric effects on 
the PMW observations is small. This is important, considering the role as supplemental to 
the IR SST record. The largest effect is seen from deep convective clouds, but the OE 
retrieval showed some potential in identifying and screening for these effects. It is therefore 
recommended from this study that more work is done on OE algorithms in order to further 
develop the uncertainty estimates and to quantify the relation with atmospheric effects such 
as deep convective clouds. 
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