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1 Introduction 

This document provides an overview of the theoretical framework underlying the algorithm employed in 

computing long discharge time series data (Q) using different approaches. 

Section two of this document will focus on discussing the available ancillary data essential for 

implementing these two approaches. Following that, the third section will delve into defining calibration 

and validation periods for each station as defined in [RD-1] and updated when WSE time series have been 

computed [RD-2]. 

Subsequently, section four will elaborate on the methodology used to derive discharge from altimeters. 

This section will incorporate the discussion of three different methods based on data availability. 

Additionally, it will explain the three approaches derived for these methods: the Bayesian approach when 

overlap time is present between discharge data and water surface elevation, the quantile approach when 

it is not and specific approach especially for arctic basins. 

The fifth section will describe the procedure to derive river discharge from river width. Using the so-called 

Non-Parametric Quantile Mapping (NPQM) technique, a data-driven approach that statistically relates the 

distribution of observed discharge to satellite-based river width measurements, enabling discharge 

reconstruction even in the absence of simultaneous observations. The NPQM algorithm uses Monte Carlo 

simulations to generate multiple realizations of discharge and width time series, accounts for 

measurement uncertainties, and derives a non-parametric mapping function by pairing quantiles of 

discharge and width without assuming any specific functional form.  

The sixth section will describe the procedure to derive river discharge from multispectral images. First, a 

description on the extraction of reflectance indices is provided along with a multi-mission approach to 

generate a single time series. Successively, the river discharge estimation is presented based on the 

similar approaches used for the altimeters (rating curves and quantile approach). 

Finally, in section seven, the multi-sensor river discharge approach is presented. Several merging 

procedures have been considered in previous phase of the project. The selected approach consist of 

using river discharge at Level-3, which requires the combination of multiple river discharge products 

independently obtained by the different sensors.  The details approach of this product will be provided in 

the next release of the document (version 2.1). 

 

2 Available ancillary data 

An initial analysis of the available data was conducted in WP2 [RD-1] to select stations where the 

estimation of long-term flow would be particularly valuable and feasible. Since WP2 [RD-1], and 

specifically during the generation of water height time series using altimetry (WP3.1 [RD-2]), this list of 

stations has been revised for various reasons, as detailed in the ATBD of WP3.1 [RD-2]. For the remainder 

of the project, we will investigate a total of 54 stations distributed across 18 different basins (see here: 

https://climate.esa.int/fr/projects/river-discharge/ and [RD3]). From this updated list, we procured 

combined time series of water heights dating back to at least 2002, as well as time series from associated 

missions. In addition to these water height data, observed flow data from various global databases were 

incorporated: 

https://climate.esa.int/fr/projects/river-discharge/
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⋅ GRDC: The Global Runoff Data Base (GRDB) maintained by the Global Runoff Data Centre 

(GRDC) has been the primary dataset used in large-scale hydrological studies, with more than 9000 

stations available to the research community (GRDC, 2015). The GRDC is an international archive of data 

up to 200 years old and fosters multinational and global long-term hydrological studies. Originally 

established three decades ago, the aim of the GRDC is to help earth scientists analyse global climate 

trends and assess environmental impacts and risks. https://www.bafg.de/GRDC/ 

⋅ AIPo: The Italian hydrological monitoring network is managed at regional level by different 

agencies. For the Po basin, the Agenzia Interregionale del Fiume Po (AIPo) is responsible for the 

coordination of the hydraulic activity, the management and improvement of river navigation 

infrastructures, environmental and river protection and the coordination of the flood service. For the 

management of extreme events, AIPo is involved in forecasting and monitoring. Specifically, the website 

of the agency (https://www.agenziapo.it/content/monitoraggio-idrografico-0) shows real-time and 

historical measurements that can be freely downloaded by any users. 

⋅ SCHAPI: In France, in situ gages operated by regional public agencies (i.e. DREALs, Directions 

Régionales de l'Environnement, de l'Aménagement et du Logement) are collected by the SCHAPI (Service 

Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). SCHAPI releases these data 

publicly via the online “HydroPortail” national database (https://hydro.eaufrance.fr). These public 

agencies are responsible to observe and forecast floods, and to alert the population in case of dangerous 

events (https://www.vigicrues.gouv.fr/). 

⋅ SO-HYBAM: The HYBAM observatory is a unique facility that has been in operation since 2003, 

with a specialized focus on the monitoring of rivers and water resources in the Amazon region. HYBAM 

serves as a research support service, conducting extensive and long-term hydrological, sedimentary, and 

geochemical measurements to gain insights into the origin and evolution of water and transported 

materials (such as sediments, organic matter, nutrients, etc.) in Amazonian rivers, spanning from the 

Andes to the Atlantic Ocean. HYBAM collaborates with partners from all countries within the basin and 

extends its network by including four additional. stations located along rivers that also flow into the 

tropical Atlantic Ocean: the Orinoco, Congo, Maroni, and Oyapock rivers (https://hybam.obs-

mip.fr/fr/donnees/). 

⋅ HYDAT: Hydrometric data are collected and compiled by Water Survey of Canada’s eight regional 

offices. The information is housed in two centrally managed databases: HYDEX and HYDAT. HYDEX is the 

relational database that contains inventory information on the various streamflow, water level, and 

sediment stations (both active and discontinued) in Canada. This database contains information about 

the stations themselves such as location, equipment, and type(s) of data collected. HYDAT is a relational 

database that contains the actual computed data for the stations listed in HYDEX. These data include 

daily and monthly means of flow, water levels and sediment concentrations (for sediment sites). For some 

sites, peaks and extremes are also recorded. The historical discharge data were extracted from the 

Environment and Climate Change Canada Historical Hydrometric Data web site 

https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html 

⋅ ArcitcGRO: The Arctic Great Rivers Observatory (ArcticGRO) is a collaborative research initiative 

dedicated to studying and monitoring the hydrology and discharge of some of the largest rivers in the 

Arctic region. By collecting and analyzing comprehensive data from these rivers, ArcticGRO contributes 

essential insights into the complex processes and changes occurring in the Arctic's freshwater systems, 

which are of significant importance in understanding climate change and its effects on the polar 

environment. The historical discharge data from the ArcticGRO database are available on their official 

website: https://arcticgreatrivers.org/discharge/.  

⋅ RivDIS: The Global River Discharge (RivDIS) data set contains monthly discharge measurements 

for 1018 stations located throughout the world. The period of record varies widely from station to station, 

https://www.bafg.de/GRDC/
https://www.agenziapo.it/content/monitoraggio-idrografico-0
https://hydro.eaufrance.fr/
https://www.vigicrues.gouv.fr/
https://hybam.obs-mip.fr/fr/donnees/
https://hybam.obs-mip.fr/fr/donnees/
https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html
https://arcticgreatrivers.org/discharge/
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with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles 

Vörösmarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the 

University of New Hampshire (Vörösmarty, 1998). River discharge is typically measured using a rating 

curve that relates local water level height to discharge. This rating curve is used to estimate discharge 

from the observed water level. The rating curves are periodically rechecked and recalibrated through on-

site measurement of discharge and river stage.  

⋅ USGS: The U.S. Geological Survey's (USGS) supports the acquisition, processing, and long-term 

storage of water data. Water Data for the Nation serves as the publicly available portal to a geographically 

seamless set of much of the water data maintained within NWIS. Nationally, USGS surface-water data 

includes more than 850,000 station years of time-series data that describe stream levels, streamflow 

(discharge), reservoir and lake levels, surface-water quality, and rainfall. The data are collected by 

automatic recorders and manual field measurements at installations across the Nation. Data are 

collected by field personnel or relayed through telephones or satellites to offices where it is stored and 

processed. The data are processed automatically in near real time, and in many cases, current data are 

available online within minutes. Streamflow data can be download in the National Water Information 

System (NWIS) web interface at the following link: http://waterdata.usgs.gov/nwis. 

All available data for each station and from all available sources have been merged to constitute observed 

in-situ discharge (Figure 1). 

 

 

Figure 1: Available discharge data for all stations from different sources 

 

  

http://waterdata.usgs.gov/nwis
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3 Calibration – Validation periods 

The methodology used to derive discharge from altimetry WSE will highly depend on ancillary data 

available and especially discharge time series used for calibration. 

The selection of the calibration and validation period for altimeter calibration curves, correlating 

discharge and water surface elevation, is critically important for result precision. In our approach, we have 

chosen, in agreement with WP3.1 and WP3.1.2 teams, a method involving the use of the period from the 

earliest date where simultaneous in situ discharge and merged water surface elevation from the altimeter 

data (from WP3.1) are available to the latest date when these two data sets overlap (Figure 2). This period 

is divided into three sections. The first section, in chronological order, is allocated for the validation period, 

during which altimeter data is compared to reference data to assess model performance. The subsequent 

two sections are dedicated to the calibration period (Table 1). Using data from these latter two-thirds 

enables us to take advantage of the most recent satellite constellations and the least biased a priori data, 

thus ensuring optimal altimeter calibration. This methodological choice is designed to secure the 

reliability and precision of altimeter measurements across diverse hydrological conditions. 

 

Figure 2: Available data for in situ discharge from various sources (blue) and merged water surface 

elevation from altimeter (green) from each station. The period where the two data sets overlap is 

represented in red with the number of overlap’s days. 
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Basins Stations Calib sDT Calib eDT days Valid sDT Valid eDT days 

AMAZON 

AMAZON 

AMAZON 

----------------------------------------- 

CHAD 

CHAD 

CHAD 

CHAD 

----------------------------------------- 

COLVILLE 

----------------------------------------- 

CONGO 

CONGO 

CONGO 

----------------------------------------- 

DANUBE 

DANUBE 

DANUBE 

DANUBE 

----------------------------------------- 

GANGES-BRAHMAPUTRA 

GANGES-BRAHMAPUTRA 

GANGES-BRAHMAPUTRA 

----------------------------------------- 

GARONNE 

GARONNE 

GARONNE 

GARONNE 

----------------------------------------- 

INDUS 

INDUS 

INDUS 

INDUS 

----------------------------------------- 

IRRAWADDY 

IRRAWADDY 

IRRAWADDY 

----------------------------------------- 

LENA 

----------------------------------------- 

LIMPOPO 

LIMPOPO 

LIMPOPO 

----------------------------------------- 

MACKENZIE 

MACKENZIE 

----------------------------------------- 

MARONI 

MARONI 

MARONI 

----------------------------------------- 

MISSISSIPPI 

MISSISSIPPI 

MISSISSIPPI 

----------------------------------------- 

NIGER 

NIGER 

NIGER 

NIGER 

NIGER 

NIGER 

----------------------------------------- 

OB 

----------------------------------------- 

PO 

PO 

PO 

----------------------------------------- 

ZAMBEZI 

ZAMBEZI 

ZAMBEZI 

MANACAPURU 

OBIDOS 

SAO-FELIPE 

----------------------------------------- 

AM-TIMAN 

GUELENGDENG 

LAI 

NDJAMENA 

----------------------------------------- 

UMIAT 

----------------------------------------- 

BANGUI 

CHEMBE-FERRY 

KINSHASA 

----------------------------------------- 

BAJA 

BOGOJEVO 

CEATAL 

LUNGOCI 

---------------------------------------- 

BAHADURABAD 

HARDINGE-BRIDGE 

YANGCUN 

----------------------------------------- 

LA-REOLE 

LAMAGISTERE 

MARMANDE 

TONNEINS 

----------------------------------------- 

CHASHMA 

GUDDU 

KOTRI 

TARBELA 

----------------------------------------- 

HKAMTI 

PYAY 

SAGAING 

----------------------------------------- 

KYUSUR 

----------------------------------------- 

BEITBRUG 

FINALE 

SICACATE 

----------------------------------------- 

ARCTIC-RED 

NORMAN-WELLS 

----------------------------------------- 

DEGRAD-ROCHE * 

LANGA-TABIKI 

TAPA 

----------------------------------------- 

NEAR-BROOKINGS 

VALLEY-CITY 

VICKSBURG 

----------------------------------------- 

ANSONGO 

KOULIKORO 

LOKOJA 

MAKURDI * 

MALANVILLE * 

NIAMEY 

----------------------------------------- 

SALEKHARD 

----------------------------------------- 

BORGOFORTE 

PIACENZA 

PONTELAGOSCURO 

----------------------------------------- 

KABOMPO-PONTOON * 

KASAKA 

MATUNDO-CAIS 

2002-01-05 

2002-01-08 

2002-01-19 

------------------------ 

- 

- 

- 

- 

------------------------ 

2005-05-30 

------------------------ 

2008-01-29 

2003-05-05 

2008-05-05 

------------------------ 

- 

2004-09-26 

2005-01-08 

2005-01-16 

------------------------ 

- 

- 

- 

------------------------ 

2017-02-07 

2009-06-30 

2009-03-06 

2017-02-02 

------------------------ 

- 

- 

- 

- 

------------------------ 

2006-12-18 

2001-01-02 

2006-09-20 

------------------------ 

2000-12-11 

------------------------ 

2018-06-04 

2022-03-25 

- 

------------------------ 

2000-06-25 

2008-04-24 

------------------------ 

2016-03-10 

2003-03-23 

2021-01-02 

------------------------ 

2008-12-17 

2009-04-12 

2009-03-19 

------------------------ 

1997-08-22 

1999-01-21 

- 

2002-08-06 

1998-08-28 

2019-06-13 

------------------------ 

2002-11-24 

------------------------ 

2008-09-11 

2004-04-23 

2002-08-18 

------------------------ 

2003-07-27 

2002-12-21 

- 

2020-01-28 

2020-01-24 

2020-01-28 

------------------------- 

- 

- 

- 

- 

----------------------- 

2010-10-10 

----------------------- 

2020-01-28 

2005-10-20 

2020-01-28 

----------------------- 

- 

2009-12-30 

2010-12-22 

2010-12-24 

----------------------- 

- 

- 

- 

----------------------- 

2023-06-09 

2023-06-10 

2023-06-10 

2023-06-10 

----------------------- 

- 

- 

- 

- 

----------------------- 

2015-12-24 

2010-12-29 

2015-12-19 

----------------------- 

2011-10-18 

----------------------- 

2022-08-07 

2022-06-18 

- 

----------------------- 

2010-09-14 

2019-12-24 

----------------------- 

2016-03-09 

2023-09-10 

2022-12-23 

----------------------- 

2022-10-02 

2022-10-26 

2022-09-20 

----------------------- 

2001-04-12 

2006-01-30 

- 

2002-10-14 

2000-08-20 

2022-12-23 

----------------------- 

2017-12-10 

----------------------- 

2021-12-23 

2021-12-19 

2021-12-02 

----------------------- 

2005-10-20 

2004-10-25 

- 

548 

599 

529 

-------- 

- 

- 

- 

- 

-------- 

50 

-------- 

377 

42 

235 

-------- 

- 

124 

161 

164 

-------- 

- 

- 

- 

-------- 

214 

495 

347 

230 

-------- 

- 

- 

- 

- 

-------- 

302 

320 

315 

-------- 

63 

-------- 

175 

11 

- 

-------- 

83 

432 

-------- 

0 

563 

73 

-------- 

522 

492 

564 

-------- 

24 

54 

- 

3 

5 

128 

-------- 

1194 

-------- 

541 

210 

571 

-------- 

16 

35 

- 

1992-12-24 

1992-12-30 

1993-01-13 

--------------------- 

- 

- 

- 

- 

-------------------- 

2002-09-22 

-------------------- 

2002-01-28 

2002-02-09 

2002-06-22 

-------------------- 

- 

2002-02-07 

2002-01-16 

2002-01-27 

-------------------- 

- 

- 

- 

-------------------- 

2013-12-07 

2002-07-10 

2002-01-17 

2013-11-29 

-------------------- 

- 

- 

- 

- 

-------------------- 

2002-06-14 

1996-01-04 

2002-02-03 

-------------------- 

1995-07-09 

-------------------- 

2016-05-01 

2022-02-09 

- 

-------------------- 

1995-05-16 

2002-06-24 

-------------------- 

2016-03-09 

1992-12-26 

2020-01-07 

-------------------- 

2002-01-24 

2002-07-05 

2002-06-17 

-------------------- 

1995-10-26 

1995-07-17 

- 

2002-07-01 

1997-08-31 

2017-09-06 

-------------------- 

1995-05-16 

-------------------- 

2002-01-19 

1995-06-24 

1992-12-24 

-------------------- 

2002-06-13 

2002-01-17 

- 

2002-01-04 

2002-01-07 

2002-01-18 

-------------------- 

- 

- 

- 

- 

-------------------- 

2005-05-29 

-------------------- 

2008-01-28 

2003-05-04 

2008-05-04 

-------------------- 

- 

2004-09-25 

2005-01-07 

2005-01-15 

-------------------- 

- 

- 

- 

-------------------- 

2017-02-06 

2009-06-29 

2009-03-05 

2017-02-01 

-------------------- 

- 

- 

- 

- 

-------------------- 

2006-12-17 

2001-01-01 

2006-09-19 

-------------------- 

2000-12-10 

-------------------- 

2018-06-03 

2022-03-24 

- 

-------------------- 

2000-06-24 

2008-04-23 

-------------------- 

2016-03-09 

2003-03-22 

2021-01-01 

-------------------- 

2008-12-16 

2009-04-11 

2009-03-18 

-------------------- 

1997-08-21 

1999-01-20 

- 

2002-08-05 

1998-08-27 

2019-06-12 

-------------------- 

2002-11-23 

-------------------- 

2008-09-10 

2004-04-22 

2002-08-17 

-------------------- 

2003-07-26 

2002-12-20 

- 

199 

203 

88 

-------- 

- 

- 

- 

- 

-------- 

22 

-------- 

142 

18 

60 

-------- 

- 

35 

83 

65 

-------- 

- 

- 

- 

-------- 

52 

63 

68 

104 

-------- 

- 

- 

- 

- 

-------- 

60 

155 

95 

-------- 

35 

-------- 

50 

7 

- 

-------- 

11 

37 

-------- 

1 

194 

36 

-------- 

141 

91 

135 

-------- 

14 

34 

- 

4 

5 

63 

-------- 

124 

-------- 

170 

84 

207 

-------- 

8 

27 

- 

Table 1: Summary of the calibration and validation periods for each station, along with the number of days 

available for both calibration and validation. Stations marked with an asterisk (*) indicate cases where there 

is too little overlap between discharge and water surface elevation data to separate into calibration and 

validation periods. In these instances, all available data will be used for calibration or another method to 

derive discharge from altimetry will be use. 

  

https://climate.esa.int/fr/projects/river-discharge/about-the-river-discharge-project/
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In instances where there are fewer than 20 common dates between discharge and water surface 

elevation data, all available data will be utilized for the calibration process, and validation will be 

conducted by comparing it with alternative data sources, such as in-situ water surface elevation 

measurements or simulated discharge data generated from modelling. 

 

4 Derive discharge from altimeters (RD-alti) 

4.1 Context 

Just as in-situ stage measurements can be used to gauge river discharge, altimetry-derived water surface 

elevation (WSE) can serve as an alternative means of estimating river discharge when discharge time 

series data is available.  

Before selecting the appropriate method, the input WSE data type must be identified: 

• WSE-merged (multi-mission altimetry time series): In this case, only the calibration period is 

retained to compute the rating curve. 

• WSE mono-mission (separate altimetry missions): Each mission is processed independently using 

all available data. 

Based on the data sample define by the WSE data type, two main approaches have been used for deriving 

discharge time series from altimetry observations and supplementary data, depending on the available 

temporal overlap between discharge and altimetry water surface elevation (WSE) time series. 

• Method 1: Temporal overlap data (preferred approach) - When sufficient overlapping observations 

exist, a rating curve is derived by applying the Bayesian method to the paired WSE and discharge 

data. 

• Method 2: No temporal overlap data (alternative approach) - When overlap is insufficient or 

absent, a rating curve is derived by applying the Bayesian method to the quantiles of the full WSE 

and discharge datasets, assuming stability of the rating curve over time. 

To better reflect river-specific conditions and improve the applicability oof rating curves, three main 

hydrological cases have been distinguished, each associated with adapted versions of these 

methodologies: 

• Case 1 - General cases: where we can directly compute the rating curve between the available 

WSE and Q 

• Case 2 – Rivers with intermittent ice cover: Filtering ice-affected data points by excluding 

observations during frozen periods based on temperature thresholds. 

• Case 3 – Arctic rivers: Arctic and complex hydraulic conditions requiring multiple rating curves for 

different flow and ice-cover states 
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4.2 Bayesian-based Rating Curve (RC) estimation 

The derivation of rating curves from altimetric water surface elevation (WSE) and in situ or simulated 

discharge (Q) relies on a Bayesian framework, which allows for robust parameter estimation while 

accounting for uncertainty (Figure 3). 

 

Figure 3: Rating curve computation methodology 

 

4.2.1 Bayesian approach 

The Bayesian method is a robust statistical approach used for constructing a rating curve, frequently 

applied in hydrology when the goal is to estimate unknown parameters from observed data, while 

considering their associated uncertainty (Gelman et al., 2013). The core of the method relies on Bayes’ 

theorem: (Eq.1): 

P(θ∣D) = P(D)⋅P(D∣θ)⋅P(θ) Eq.1 

 Here: 

• P(θ∣D) is the posterior probability distribution of the model parameters θ, which are the 

parameters of the rating curve we aim to estimate. 

• P(D∣θ) is the likelihood of observing the data D, given a specific set of parameters θ, usually based 

on a probabilistic model. 

• P(θ) is the prior probability distribution of the parameters, which incorporates existing knowledge 

or assumptions. 

• P(D) is the marginal likelihood of the data, serving as a normalizing constant to ensure the 

posterior is a valid probability distribution. 

According to this, the estimation of the rating curve using the Bayesian method involves several steps: 
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4.2.1.1 Rating curve model specification: 

The first step consists in defining a probabilistic model that relates observed water surface elevations 

(WSE) to discharge (Q) through a commonly used power-law relationship: 

Q = a⋅(WSE-z0)b  Eq.2 

• a is a scaling coefficient controlling the magnitude of the discharge, 

• b is an exponent shaping the Q–WSE relationship, reflecting channel geometry and flow regime 

characteristics (e.g., roughness, cross-section), 

• z₀ is the offset or base elevation, generally representing the river bed elevation or the WSE level 

at which flow begins. 

In phase 2 of this study, the rating curve is enhanced by incorporating dynamic water surface slope 

measurements S, derived from the Surface Water and Ocean Topography (SWOT) mission over few cases 

as a proof of concept and relevance. The inclusion of slope data is motivated by hydraulic theory, 

particularly the Manning equation, where discharge depends on both hydraulic radius and slope. The 

enhanced rating curve equation is formulated as: 

Q = a⋅S1/2⋅(WSE-z0)b  Eq.3 

 

where: 

• S is the water surface slope, estimated from SWOT observations, which varies spatially and 

temporally (trough a climate mean). 

• The other parameters retain their physical meaning as before. 

This formulation explicitly integrates river slope variability, allowing for a more physically representative 

and accurate estimation of discharge. It accounts for changes in hydraulic driving forces and improves 

the adaptability of the rating curve across different river systems and flow regimes. 

4.2.1.2 Prior distribution: 

The Bayesian framework requires assigning prior probability distributions to each parameter, which can 

be either informative (based on prior studies or expert knowledge) or uninformative (non-committal). For 

this study, the following normal prior distributions were adopted, reflecting typical ranges observed in 

diverse hydrological contexts: 

• a (scaling factor): 

  - Must be non-negative 

  - Typical mean value: 800, standard deviation: 300, resulting in a plausible range: [0 – 

1700] 

• b (exponent): 

  - Must be positive 

  - Commonly ranges between 0 and 3 (Chow et al., 1988) 

  - Mean: 1.5, standard deviation: 0.5, allowing flexibility for most river geometries and 

hydraulic conditions 

• z₀ (offset or river bed elevation): 

  - Estimated as the minimum WSE minus 5 meters (to ensure discharge begins near the 

riverbed) 
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  - Standard deviation: 5 meters, accommodating variation in channel depth across 

different rivers (up to ~30 m of flow depth) 

• S (slope): 

  - Treated as observed input data from SWOT; uncertainties in slope measurements can 

be incorporated into the likelihood model or modeled as error terms. 

These prior distributions are crucial, particularly when dealing with limited or noisy datasets, as they 

influence the convergence and stability of the estimation process. 

4.2.1.3 Posterior estimation and uncertainty quantification: 

The final step is the estimation of the posterior distributions of the parameters using Markov Chain Monte 

Carlo (MCMC) sampling techniques. These distributions provide both point estimates (e.g., posterior 

means or medians) and credible intervals (e.g., 95% intervals) for each parameter, offering a probabilistic 

interpretation of the rating curve and its uncertainty. 

For this study, the No-U-Turn Sampler (NUTS) algorithm (Hoffman et al., 2014) was selected due to its 

efficiency in high-dimensional spaces and its adaptive step-size tuning. This advanced variant of the 

Hamiltonian Monte Carlo (HMC) method ensures faster convergence and better exploration of the 

parameter space compared to traditional algorithms like Metropolis-Hastings (Robert et al., 2004). 

4.2.2  WSE data type 

4.2.2.1 WSE merged-mission: 

When the water surface elevation (WSE) time series is constructed by merging data from multiple 

altimetry missions, the rating curve computation is restricted to the calibration period, defined as the last 

two-thirds parts of the time window where both WSE and discharge data are available (see previous 

section for details). This period is selected to ensure greater stability in the rating relationship and to 

avoid early data with potentially lower quality or non-stationary behavior. 

If enough paired WSE–Q observations are available within this calibration period, Method 1 (see section 

4.2.3) is applied. If not, Method 2 (see section 4.2.4) is used as a fallback. 

This approach ensures that the resulting rating curve is based on a coherent, hydraulically consistent 

subset of the data, improving the reliability of the discharge estimates during the selected period. 

4.2.2.2 WSE mono-mission: 

In contrast, when WSE data are treated mission by mission, as implemented in Phase 2 of the project, all 

available common data between each altimetry mission and the discharge series are used, without 

restricting to a specific calibration window. This approach acknowledges the sensor-specific nature of 

each mission and allows for the full exploitation of available paired observations. 

For each mission (e.g., Topex/Poseidon, Jason-2, Envisat, Sentinel-3), a separate rating curve is derived. 

Depending on data availability, either direct pairing (Method 1) or quantile matching (Method 2) is applied 

individually per mission. 

This mission-specific strategy offers several advantages: 

• Reduced inter-mission bias, by accounting for the unique characteristics of each sensor; 

• Improved temporal resolution, by leveraging the full extent of available WSE–Q pairs for each 

mission; 
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• Explicit uncertainty quantification, with posterior distributions computed separately for each 

mission. 

This refined treatment enhances both the accuracy and continuity of discharge estimates across the 

altimetric record.  

4.2.3  Method 1 – Bayesian estimation using overlapping dataset – 

preferred approach 

When a temporal overlap exists between the altimetric water surface elevation (WSE) time series and 

discharge data (either in situ or simulated), a Bayesian approach can be applied to the paired WSE–Q 

observations to derive a rating curve. This method is applicable regardless of whether the WSE data 

comes from a single altimetry mission (WSE mono-mission) or a merged multi-mission time series (WSE-

merged), provided that enough synchronous data pairs are available. 

To define the sufficient number of synchronous observations needed to compute the rating curve, we 

base the requirement on the ability to represent seasonal coverage. Specifically, we require data 

spanning at least 10 distinct months, with each month containing at least 3 points. This criterion ensures 

that the rating curve is based on a dataset with adequate temporal coverage and density to reliably 

capture seasonal variability. 

The rating curve parameters (commonly denoted as a, b, and z0) are estimated using Markov Chain 

Monte Carlo (MCMC) sampling, allowing the derivation of predictive discharge values along with 

associated confidence intervals. This approach assumes the WSE measurement location is hydraulically 

consistent with the discharge reference (e.g., colocated or in a reach with stable morphology), and that 

river conditions remain relatively stationary during the calibration period. 

This method has been widely adopted in recent literature (e.g., Garambois et al., 2017; Domeneghetti et 

al., 2014; Paris et al., 2022) and is well suited to rivers without major non-stationarities such as ice cover 

or abrupt morphological changes. 

However, in real-world applications, river dynamics may not always support the direct application of this 

method due to seasonal ice effects or non-uniform flow behaviors. To address these situations, we define 

three specific cases for the construction of the rating curve: 

4.2.3.1 Case 1 – General rivers 

In this case, a standard Bayesian rating curve is computed directly from all available overlapping WSE–Q 

pairs. No filtering of the time series is needed, and the full dataset is assumed representative of the 

hydraulic behavior. This case applies to rivers without significant freeze/thaw effects or strong 

interannual variability in seasonal patterns. 

4.2.3.2 Case 2 – Partial ice cover rivers 

In some river systems, particularly in temperate cold climates, ice cover appears only intermittently, 

typically during winter months (e.g., December to March), and varies from year to year. This irregular 

freezing can create outliers or distortions in the WSE–Q relationship during those periods. 

To mitigate this, the overlapping dataset is filtered using a temperature threshold: WSE–Q pairs 

associated with monthly mean air temperatures below 0°C are excluded. For instance, at the Near-

Brookings station, the river was frozen in some winters, producing anomalies in the WSE–Q scatter plot. 
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By applying ERA5 monthly temperature data, periods of likely ice presence were identified and removed, 

resulting in a more consistent rating curve. 

This filtering allows the construction of a more representative and robust rating curve, avoiding the 

influence of anomalous hydraulic states induced by ice, while maintaining a unified Bayesian framework. 

  

Figure 4: Rating curve for the Near-Brookings station (Mississippi basin) before (left) and after (right) 

excluding data points associated with temperature variations (below 0°C). 

4.2.3.3 Case 3 – Artic rivers 

In Arctic regions, the relationship between water surface elevation (WSE) and discharge is often non-

uniform due to seasonal ice cover, ice breakup, and complex flow dynamics near river confluences. In 

such contexts, a single rating curve may be inadequate. Instead, a set of rating curves, each tailored to a 

specific hydrological regime—such as flood rise, recession, or ice-covered periods—is employed. This 

approach requires prior knowledge of the river’s seasonal behavior and the applicability range of each 

curve. 

The impact of river ice on flow hydraulics can be detected using remote sensing and altimetry 

observations acquired simultaneously with WSE retrievals (Zakharova et al., 2021). Previous studies have 

demonstrated that using distinct rating curves for different flow conditions improves discharge estimation 

accuracy (Zakharova et al., 2020). Classical power-law equations are used for flood rise and recession 

periods, while low-degree polynomials may better capture the hydraulic behavior during the ice-covered 

period. 

For example, on the Ob River, an automated method based on altimetry was tested to detect ice-on and 

ice-off periods from 2008 to 2019, which enabled the calibration and validation of a winter-specific rating 

curve. For years not covered by this product, optical imagery from Landsat and MODIS was used. The 

spring flood rise subset was extracted directly from the WSE time series. On four Arctic test sites—located 

on the Colville, Mackenzie, and Lena rivers—two rating curves were built using a modified Bayesian 

method: one for flood recession, and another combining winter and flood rise periods. In this modified 

method, only the parameters “a” and “z₀” were estimated probabilistically, while the exponent “b” was 

fixed to allow expert adjustment of the curve shape for each hydrological regime. 

This regime-based approach enhances discharge estimation in Arctic environments by accounting for 

seasonal variability in flow hydraulics and by leveraging multi-source satellite data. 
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4.2.4  Method 2 – Bayesian estimation using quantile-based 

matching – alternative approach 

The quantile-based approach is a statistical modelling technique used to derive a rating curve by 

matching quantile functions of water surface elevation (WSE) and discharge time series. Unlike the 

Bayesian approach, it does not require a temporal overlap between altimetry observations and in situ 

discharge measurements. This makes it especially valuable when satellite data and discharge records 

originate from distinct periods. The method has been successfully applied across a range of river basins 

in various climatic zones—including the Amazon, Brahmaputra, Danube, Niger, and Ob rivers (Tourian et 

al., 2013). 

4.2.4.1 Theoretical Framework 

This method assumes that river flow behavior is stationary over time and that the bathymetry remains 

stable both at the virtual altimetry station and the in-situ gauging station. Under these conditions, 

historical in situ discharge data can be validly used to estimate present-day discharges derived from 

satellite altimetry. 

The foundation of the approach lies in the construction of quantile functions: 

 

 
Eq.4a 

 
Eq.4b 

where: 

• QR(p), is the quantile function of in situ discharge values XR 

• QW(p), is the quantile function of altimetric WSE values XW 

• F(⋅) denotes the cumulative distribution function (CDF), 

• and p∈(0,1) is the exceedance probability. 

The quantile function Q(p) returns the maximum value of the variable that is not exceeded with probability 

p. It provides a distribution-free description of the data, enabling the definition of a functional 

transformation T(⋅) between the two datasets: 

 
Eq.5 

This transformation is assumed to be monotonic and non-decreasing (Gilchrist, 2000), a key requirement 

that allows for a meaningful functional relationship between WSE and discharge. Since this formulation 

does not rely on time-matching between datasets, it is ideal for scenarios without temporal overlap. 

4.2.4.2 Practical Implementation 

To empirically estimate the quantile functions, each dataset (WSE and Q) is sorted in ascending order. 

The rank ki  of each value is normalized as: 
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Eq.6 

N is the number of measurements, and pi is the empirical probability associated with each sorted value. 

This produces two ordered series of quantiles (WSE and Q), which are then paired to create a scatter plot 

of discharge quantiles versus WSE quantiles. 

The quantile functions can be constructed: 

• using mean monthly discharge and WSE (based on historical daily discharge and satellite 

observations at altimeter passes), as in Tourian et al. (2013), 

• or by matching altimetric WSE values at satellite overpasses with daily discharge values in the 

historical dataset, to better reflect short-term flow variability, including extreme events. 

This second variant has been explored in this study to overcome the limitations of monthly mean values, 

which may obscure significant hydrological fluctuations. By doing so, the derived rating curve incorporates 

more of the inherent non-stationarity of river flow, offering a better match between satellite-derived WSE 

and hydrological dynamics. 

4.2.4.3 Application and Comparison 

Both the monthly-based and daily-based quantile pairing approaches are tested in this work to build rating 

curves during periods without temporal overlap between WSE and Q datasets. These curves are evaluated 

in Work Package 4.2. 

In both cases, the quantile space is discretized using an equidistant step of 5%. The resulting quantile–

quantile scatter plots are used as input for a Bayesian inversion, following the same procedure described 

in Section 4.2.1, to derive the final rating curve parameters. 

This method is applied both to merged multi-mission altimetry WSE time series and to each individual 

altimetry mission, to evaluate the contribution and uncertainty associated with each data source. The 

mission-specific analysis may enhance discharge estimation accuracy for missions with better precision 

or denser temporal coverage. 

4.3 Uncertainties 

Uncertainty propagation through mathematical models plays a crucial role in estimating the reliability of 

derived results in various scientific fields. In the context of hydrology and discharge estimations, the 

propagation of uncertainties in parameter estimation, such as those in the parameters of the discharge 

equation, becomes essential for assessing the reliability of the calculated discharge values. Utilizing a 

Gaussian error propagation method provides a systematic approach to quantify the uncertainties 

associated with parameters a, WSE, b, and z0 (and s if available) from the power law function defined in 

section 4.2.1 to express the relation between Q and WSE.  

This method involves employing statistical principles to propagate uncertainties through the 

mathematical relationships between the parameters and the discharge equation. By considering the 

Gaussian distribution of errors in these parameters, this approach enables a more comprehensive 

evaluation of the overall uncertainty in discharge estimations (e.g., McMahon and Peel, 2019, Tourian et 

al., 2017). 
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Given the mean values and standard deviations (σ) for each parameter, the uncertainty in discharge (δQ) 

due to uncertainties in these parameters can be computed as Eq.7 if the slope value is unknow otherwise 

as Eq.8: 

 

Eq.7 

 

Eq.8 

Where, σa, σb, σz0, σs and σWSE correspond to the standard deviations of parameters a, b, z0, S and WSE 

respectively. The standard deviations for a, b, and z0 will be determined using the Bayesian approach 

through the MCMC algorithms (see section 4.2.1). The standard deviation for the WSE will be, initially, 

consistent across all stations and for each mission. This value will later be adjusted through updates 

during the validation process. The standard deviation for the slope will be define as the standard deviation 

per month over the 2 years of available data. 

This formula uses the standard deviations as measures of uncertainty in each parameter and calculates 

the overall uncertainty in discharge considering the propagation of these uncertainties through the power 

law equation relating discharge and the parameters a, b, z0, S and WSE. 

It is important to notice in one hand, that this equation assume that the uncertainties in the parameters 

(a, b, z0) and WSE are independent, and in another hand, that the propagation of uncertainties provides 

an estimate based on the assumption of linearization around the mean values of the parameters. 

 

5 Derive discharge from river-width (RD-width) 

5.1  River width estimation using optical satellite imagery 

Following the methodology introduced by Elmi and Tourian (2023), this algorithm estimates river width 

from time-series satellite imagery (Landsat 8/9 and Sentinel-2) using water indices, topographic 

constraints, and a graph-based image segmentation framework that incorporates spatial smoothness 

and temporal dependency. A river reach is first selected from the SWOT River Database (SWORD) and 

buffered based on its mean width and standard deviation to define an analysis zone. Only pixels satisfying 

slope, elevation, and water occurrence thresholds (from FABDEM (Forest And Buildings removed 

Copernicus DEM) and Global Surface Water Explorer (GSW) (Pekel et al. 2017)) datasets) are retained for 

analysis. After applying rigorous cloud masking and computing water indices such as Normalized 

Difference Water Index (NDWI), the image time series is smoothed and normalized within each step. As 

in Elmi and Tourian (2023), the water index is combined with a long-term water occurrence map via a 

sigmoid function to enhance temporal consistency. The result is a probability map representing the 

likelihood of water presence at each pixel and time step. 

Segmentation is then performed using a maximum-flow/minimum-cut algorithm that operates on a graph 

constructed over each probability map. Each pixel is treated as a node connected to source and sink 

terminals (representing water and non-water classes), with edge capacities determined by the pixel-wise 

water probability. 
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Let ℒ  denote the set of pixels in the buffered river region and assign a binary label 𝑓𝑝 ∈ {0,1} to each 

pixel 𝑝  ∈ ℒ , where 𝑓𝑝 = 1 represents water and 𝑓𝑝 = 0 represents non-water. The goal is to find a labeling 

that minimizes the energy: 

 

Eq.9 

where: 

-𝐷𝑝(𝑓𝑝)is the data term (unry potential), encoding the likelihood that pixel p belongs to class 𝑓𝑝. 

- 𝑉{𝑝,𝑞}(𝑓𝑝,  𝑓𝑞) is the smoothness term (pairwise potential), enforcing spatial coherence. 

- λ > 0 is the regularization term. 

- ℕ is the number of 4-connected pixel neighbors around the border 

The term 𝐷𝑝(𝑓𝑝)is the cost function defined in the temporal domain, which can be obtained from the 

monthly or long-term water occurrence map from GSW that delivers the probability of water in a certain 

pixel 𝑃𝑝. So: 

 

Eq. 10 

  

On the other hand, the smoothness term 𝑉𝑝,𝑞(𝑓𝑝, 𝑓𝑞) penalizes discontinuities between neighboring pixels 

based on water index similarity: 

𝑉𝑝,𝑞(𝑓𝑝, 𝑓𝑞) = 0𝑖𝑓𝑓𝑝 = 𝑓𝑞 , exp(−|𝐼𝑝 − 𝐼𝑞|/𝜎) 𝑖𝑓𝑓𝑝 ≠ 𝑓𝑞       

             Eq. 11 

To solve the energy minimization problem defined by the binary labeling function 𝑓𝑝, we employ the Max-

Flow/Min-Cut algorithm. The formulation is cast as a graph cut problem, where each pixel corresponds to 

a node in a directed graph, and two additional nodes represent the source (water) and sink (non-water). 

The edge weights are derived from the data and smoothness terms: terminal links (T-links) encode the 

data cost 𝐷𝑝(𝑓𝑝), while neighborhood links (N-links) encode the pairwise smoothness cost 𝑉𝑝,𝑞(𝑓𝑝, 𝑓𝑞). 

The Max-Flow algorithm (implemented using the PyMaxflow library) computes the minimum s–t cut that 

separates the graph into water and non-water regions, yielding the optimal binary segmentation f* that 

minimizes the total energy. This approach guarantees a globally optimal solution for binary segmentation 

under submodular energy terms. 

5.2 River discharge estimation using river width 

A complementary approach to traditional discharge estimation using hydraulic or hydrological models is 

the use of satellite-derived river width time series as a proxy for in-situ discharge observations. We apply 

a non-parametric, data-driven technique called Non-Parametric Quantile Mapping (NPQM) (Elmi et al. 

2021) to estimate river discharge from width time series extracted from optical satellite imagery (section 

5.1). The approach allows for discharge estimation at river reaches near selected gauges, even in the 

absence of simultaneous observations. By building a statistical relationship between the distribution of 
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observed river discharge and EO-based river width, this method can reconstruct discharge time series 

that are consistent with long-term flow characteristics.   

The flowchart below outlines the core steps of the NPQM algorithm for estimating discharge from river 

width: 

• First, the algorithm generates multiple realizations (simulations) of both the in-situ discharge and 

satellite-derived river width time series using Monte Carlo simulation. These simulations account 

for the uncertainties in the original measurements. 

• Then, for each realization, it builds a set of mapping functions by pairing all possible combinations 

of discharge and width quantile values (see Eq.4a, Eq.4b, and Eq.5, note that in Eq.4b instead of 

wse, we use river width).  

• Once the mapping functions are created, the algorithm calculates the mean river width- discharge 

mapping function for each percentile, as well as the associated uncertainty. The non-parametric 

mapping function is obtained without assuming a specific functional form. 

• To assess the accuracy of the mapping, the model compares the estimated discharge values with 

observed discharge values. A "3-sigma test" is used, which checks whether the differences 

between estimated and observed discharges fall within three standard deviations—capturing 

about 99.7% of the values in a normally distributed dataset. If simultaneous discharge and width 

data are available, they are used directly; otherwise, the comparison is made using data that fall 

within the same quantile range.   

• Based on the outcome of the 3-sigma test, the algorithm adjusts the uncertainty of the 

measurements to maintain consistency in an iterative process. 

• The algorithm then checks whether the Root Mean Squared Error (RMSE) has changed 

significantly compared to the previous iteration. If not, the model stops. If it has, the process 

adjusts the uncertainty and repeats from the first step. 

At the beginning of the process, a default uncertainty of 10% of the signal is assumed for both discharge 

and width time series, due to the limited availability of formal uncertainty estimates. As the iterations 

proceed, this uncertainty is refined based on the model's performance. Once the model has converged, 

it can be used to estimate discharge values—with associated uncertainties—based solely on the input 

river width time series. Further information on the uncertainty treatment and validation of the NPQM 

method is available in Elmi et al. (2021, 2024), where the algorithm is applied and analysed in depth 

using both water level and width datasets. 

 

Figure 5: Flowchart of the stochastic quantile mapping function algorithm (adapted from Elmi et at., 2021, 

and Saemian et al., 2024) 
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6 Derive discharge from multispectral images (RD-

multispec) 

6.1  Context 

The method for estimating river discharge from multispectral images is based on the studies of Tarpanelli 

et al. (2013), Filippucci et al. (2022) and Filippucci et al. (2025), in which the differences between the 

passive response of the reflectance signal from the soil and that from the water are used to identify a 

change in the land area near the river channel that is shown to be strongly correlated with river discharge. 

An increase in river discharge produces an increase in wetted area, and the area near the river changes 

its reflectance response, which decreases. For an area near the river that is not affected by water, 

reflectance remains almost constant (except for changes in vegetation cover). Its relationship with the 

reflectance of the wetted area is used to more accurately determine the estimate of changes in hydrologic 

forcing, compared to the wetted area alone. Consequently, in the case of flooding, the reflectance ratio 

between the dry pixel (called the calibration pixel, C) and the wet pixel (called the measurement pixel, M) 

is sensitive to the increase of water in the wet pixel and, therefore, is directly related to the increase of 

river discharge. With respect to the first study by Tarpanelli et al. (2013) where the reflectance ratio C/M 

has been extracted from a temporal series of seven years of almost daily images of MODIS over four 

stations along the Po River, the analysis by Filippucci et al. (2022) demonstrated that the role of 

sediments and vegetation in the formulation was important to correct the reflectance ratio C/M during 

flood events. This was possible with the use of finer resolution images from Sentinel-2 and the new 

approach was tested over two Italian rivers, Po and Tiber. In Filippucci et al. (2025), the selection of 

reflectance indices based on local hydrological conditions is carried out evaluating the best procedure to 

obtain river discharge proxies according to the specific flow regimes and climatic conditions across 54 

sites worldwide.  

6.2 Reflectance indices definition 

In the project, we tested several algorithms for the estimation of the reflectance index. Such algorithms 

come from the combination of pixels: C for calibration, W for the sediments, V for the vegetation, M for 

measurements of the variation. The main steps for the application of the procedure are listed below: 

- The study area is predetermined as a square of fixed side (e.g. 0.04 degree for Sentinel-2 data, 

0.06 degree for Landsat data and 0.15 degree for MODIS data) around the selected station.  

- The collection of the desired data in the chosen area is then obtained for the available period.  

- Cloud products are considered to mask the cloud presence in the single images. After this 

masking, the total number of valid pixels in each image is computed. If the fraction of valid pixel 

was less than 0.2, the full image was discarded. Similarly, the fraction of valid reflectance value 

was calculated for each pixel during the study period: if this value was below 5%, the pixel was 

deemed invalid and removed by the analysis, to avoid its selection in the mask calculation. 

- Snow or ice presence is masked through other products available in the collection of data. The 

fraction of snow pixels is calculated for each available image and the resulting time series is 

averaged for each day of the year, to obtain a standard year probability of snow presence. A 

windowed moving average filter of 14 days was then applied to reduce the noises.  

- Water area pixels are obtained using JRC Global Surface Water Mapping Layers for coarse 

resolution sensors (MODIS and Sentinel-3) and the application of a threshold to the 5th percentile 

of NDVI timeseries for the remnant products. For each image, if the fraction of valid pixels in the 

water area was less than 0.2, the full image was discarded. 

- The different categories of pixels (vegetation, bare soil and field) are classified through masks 

derived by NDVI index, coefficient of variation (NIR standard deviation divided by NIR average), 

mean and standard deviation. 
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- The final step consists in the selection of the periodically wet area. When observed data 

concurrent to satellite overpass are available, four algorithms of the reflectance indices are 

calculated to be compared with the in situ river discharge: the pixels with highest Spearman’s 

correlation are selected as M. When observations are not available, two uncalibrated procedures 

are adopted, one based on the correlation between the pixels within the water area and the 

different categories, and one based on the JRC Global Surface Water Mapping “Occurrence” 

information. 

 

Different formulations of the proxy are adopted according to the characteristics of each river reach (e.g. 

application of vegetation and sediment correction; use of multiple water mask selection algorithms) and 

satellite pixels may be aggregated for stations where the river width is considerably larger than the 

satellite spatial resolution (especially when we use Landsat and Sentinel-2). 

Moreover, because the analysis involved long temporal period, we need to consider the natural evolution 

of the river morphology. This means that in some areas a static temporal analysis that considers the same 

pixels for the entire period is not sufficient to describe the dynamic of the river. In such cases it is 

necessary to perform the analysis for brief periods. Therefore, the procedure was applied two years in two 

years, maintaining one year in common between a period and the following one, in order to avoid big 

changes in the transition period. The pixel categories masks were obtained combining the ones of the 

single periods. The procedure, called “multi-year”, is used along with the “full period” for evaluating the 

benefit to separate the period with respect to the static investigation. 

Based on what we describe above, the total number of algorithms to be considered in the analysis is 24 

to be applied to the 11 satellite products. 

6.3 Multi-mission reflectance time series 

A total of 24 calibrated reflectance indices were obtained for each station considering all formulations 

(CM, CMW1, CMW2), aggregation kernels (one small and one large), vegetation correction and calibration 

type (full or multiyear). A first analysis is then necessary to identify the best algorithm for the definition of 

river discharge. This discrimination is carried out based on a stepwise maximization of the Spearman 

correlation coefficient, to consider the non-linearity between the reflectance index and the river discharge. 

Because the procedure includes several combinations, we proceed to distinguish for each satellite 

products the following sub-cycles: 

1- the best temporal method between full period and multi-year; 

2- the best spatial resampling of the images with the aggregation;  

3- the best formulation between the simple C/M or the ingestion of the sediments with CMW; 

4- the best formulation with the inclusion of the vegetation 

This stepwise procedure allowed to obtain two results: first, the best calibrated procedure was obtained 

for each station, second, the analysis of the results combined with the stations characteristics allowed to 

obtain a heuristic procedure to obtain a valid algorithm for each station in the uncalibrated procedure.  

The application of the above methodology to the 10 datasets investigated in this project allows to obtain 

10 different timeseries related to river discharge in 54 and 26 stations using the uncalibrated and 

calibrated procedure, respectively. The indexes were then merged together to obtain a single consistent 

signal from multispectral sensors (one for the calibrated and one for the uncalibrated methodology). This 

procedure is complicated by the fact that most of the sensors have different spatial resolution, coverage 

period and revisit time. A summary of the different dataset characteristics is shown below. 
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Table 2: Description of the datasets for multispectral images. It includes selected product, reflectance type, 

platform used to analyze the data (GEE is Google Earth Engine, SH is Sentinel-HUB, EC is Earth Console), 

period of data availability, spatial resolution and revisit time. 

Some datasets share data from one or more sensors (e.g. S Sentinel- 2 in Google Earth Engine (GEE) and 

Sentinel-2 in Sentinel Hub (SH)). To avoid using more than one time the same data, three different 

combinations were considered for the merging:  

Landsat 5-7-8-9; Sentinel 2 (GEE) – 3; MODIS TERRA and AQUA; MERIS 

Landsat 5-7-8-9; Sentinel 2 (SH) – 3; MODIS TERRA and AQUA; MERIS 

Landsat 5-7-8-9; Sentinel 2 (GEE) – 3; MODIS TERRA and AQUA; MERIS 

It should be also noticed that some sensors may be not able to obtain reliable river discharge information 

over specific rivers due to insufficient spatial resolution (when river width << sensor’s spatial resolution), 

fail of the uncalibrated procedure (impossibility to obtain C or W due to sensor’s spatial resolution or 

specific characteristic of the river) or other reasons. Therefore, it is important to exclude bad performing 

data from the merging to avoid worsening the performance. For the calibrated stations, all the datasets 

with Spearman correlation with observations < 0.4 will be therefore excluded by the merging. For the 

uncalibrated procedure, where also stations with non-concurrent data were considered, this strategy is 

not applicable. Therefore, first the CM index will be averaged to obtain a monthly timeseries, then the CM 

of each single month (January, February…) will be averaged together to obtain a monthly standard-year 

CM index. The Spearman correlation between this index and the corresponding monthly standard-year 

observed data ( considering also non-concurrent periods) will be calculated and considered as a good 

estimator of the actual Spearman correlation of the calibrated timeseries (). A categorical score analysis 

was then carried out to obtain the best monthly Spearman correlation threshold () able to reproduce the 

condition in which the calibrated Spearman correlation in less than 0.4: for each potential threshold it 

was calculated the Probability of Detection (POD), False Alarm Ratio (FAR) and Threat Score (TS), 

considering: 

 

 

Eq.12a 

 

Eq.12b 
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Eq.12c 

With: 

 
  

 
A B 

 
C D 

The results of this analysis will be exploited to obtain the correct St to be applied in the uncalibrated 

procedure, also ensuring the selection of at least one daily timeseries (MODIS AQUA, TERRA or S3) or 3 

different products. If this condition is not obtained, all the products of the selected combination will be 

selected for the merging. 

Once the products to be merged have been selected, the first operation to be done is rescale all the 

satellite data to a reference scale. The product with the highest amount of available data is chosen as 

reference. All the products are hence scaled to this one. First the number of overlapping data is 

calculated. If this is greater than 5, the minimum and 75th percentile of the selected product and the 

reference one is calculated, and the product is rescaled according to (Eq.9): 

 

Eq.13 

Where Pi is the i-th element of the selected product, Psi is the same element scaled to the reference, p75 

and m are the minimum and the 75th percentile of the selected product, respectively, calculated during 

the overlapping days, and p75r and mr are the same for the reference product. In case less than 5 

overlapping days between the reference and the selected datasets are available, the minimum and 75th 

percentile are calculated for the whole period for both the selected and reference products. It is worth 

underlining that it was decided to use the 75th percentile instead of the more common maximum value 

to avoid selecting potential outlier due to errors in the cloud masking or presence of cloud shadow. 

Potential outliers are then eliminated by removing all the data index greater than 10 or less than 0. The 

merging procedure is finally carried out: all the data is interpolated at daily steps. A weight is assigned to 

each daily data, proportional to the distance from the sensing date: the weights are assigned according 

to the gaussian distribution, fixing w=1 in the sensing date, w=0.5 at three days from the sensing date 

(figure 6). All the interpolated data at more than 6 days from the sensing date are fixed to NaN. Then, the 

potential presence of contradictory information from the different sensor is accounted for by calculating 

the difference between the maximum and minimum value of the index for each day of the analysis 

(considering all the products). The distribution of this variability is assumed as gaussian (excluding data 

in which only one sensor is available, and the max-min difference is equal to 0): the average and the 

standard deviation of the max-min difference is calculated and all the dates outside the 3 times standard 

deviation range are excluded from the analysis. Finally, the weighted sum is performed by maintaining 

only the dates in which one or more products has w=1 (at least one product is obtained in that date). An 

exponential filter with T=6 is then applied to remove possible noises. 
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Figure 6: Weights of the daily data of each sensor according to the temporal distance by the nearest sensing 

day. The weights are distributed with a gaussian function River. 

6.4 River discharge estimation from reflectance indices 

The estimation of river discharge from reflectance indices is very similar to the rating curve approach 

applied for the water levels by altimetry. Indeed, here the relationship is based on the evaluation of a non-

linear regression relationship between the multi-mission time series and the observed river discharge 

values.  After processing the multispectral images from the multi-mission satellites following the 

methodology explained in Section 5.3, the retrieved signals (hereafter denoted as CM signals) are further 

utilized to derive river discharge time series along the selected river reaches. To formulate the river 

discharge algorithm, we need to calibrate the CM signals against the contemporary in situ river discharge 

for any typical river sites. However, along the selected river sites, the in situ observations are often 

unavailable during the period in which satellite data are available (2006-2005 for Landsat 5, 2021-2022 

for Landsat-9, 2016-2022 for the remnants). Therefore, two different analyses are carried out depending 

on the availability of the in situ data: i) calibrated approach (when coincident observation of in situ Q and 

CM signals are available) and ii) uncalibrated approach (when only in situ observation non-contemporary 

to satellite data are available). 

6.4.1 Calibrated Approach 

With the coincident data availability of CM and Q, River discharge is estimated through the use of 

Empirical Formulation . Notably, the calibrated procedure is performed following the pre-fixed calibration 

and validation period. 

Best-fit approach 

In the case of empirical formulation, four potential distributions (linear, quadratic, power, and 

exponential) are selected as potential laws between Q and CM data as follows: 

 

Eq.14a 

 

 
Eq.14b 

 
Eq.14c 

 
Eq.14d 
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CM and Q time series are, therefore, trained with the aforementioned formulations. To check the best-fit 

solution from the selected distribution, a model evaluation criterion has been set considering Akaike 

Information Criteria (AIC), Bayesian Information Criteria (BIC), and Pearson correlation coefficient (r). The 

best fit of any site has been obtained by lower values of AIC and BIC with a higher value of r; thus, a 
composite index (CI) is formulated to evaluate the overall model scores to determine the best-fit model 

for the selected site. 

AIC = 2k – 2ln L’ 

BIC = k*ln n – 2ln L’ 

CI = r + (1-AIC) + (1-BIC) 

Eq.15a 

Eq.15b 

Eq.15c 

where k equals to the number of parameters used in the model; n equals to the sample size, and L’ is the 

maximum value of the likelihood function for the model. 

 

6.4.2 Uncalibrated Approach 

In the absence of coincident observations of Q and CM time series, the uncalibrated procedure uses the 

same framework proposed by Tourian et al. (2013). Here, the available discharge and retrieved CM signal 

time series are sorted independently in descending order. Subsequently, the corresponding exceeding 

probability of each value in the time series is computed for both Q and CM time series individually by 

considering their percentage of the observation periods. Here, for each site, the basic assumption is that 

the insitu Q and CM signals have the same exceedance probability. Developing the joint probability 

distribution by considering the individual cumulative distribution function (CDF) of Q and CM, the river 

discharge could be estimated from the standalone CM signals for any gauging sites. Thus, the CDF curves 

are calculated and compared to generate the percentiles associated with the discharges. With the relative 

correspondences between percentiles, it is possible to generate river discharge from the reflectance time 

series. Following this principle, the uncalibrated approach is performed along the selected gauging sites 

to estimate the long-term river discharge time series from the CM signals.  

For generating long-term discharge time series using the CM signals, the calibrated procedure is based 

on the coincident observations of in situ Q and CM. The absence of CM signals during flood events due 

to the presence of cloud cover in the images may affect the model parameterization to capture the high 

flow dynamics both in Best Fit and Copula Fit solutions. Although the uncalibrated procedure is 

independent of the coincident observations of in situ Q and CM, the availability of the in situ Q data period 

is still a key concern. For instance, the hydrograph generated from a short event may not be 

representative of the long-term period; thus, derived CDF cannot find the proper solution while deriving 

the joint distribution, which also may add significant uncertainties while deriving long-term discharge time 

series. In both calibrated and uncalibrated procedures, there are possibilities to lose the flood information 

due to the unavailability of CM signals in the presence of cloud cover, which is very often too. 
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7 Derive discharge from merged products 

The traditional process to estimate river discharge that uses data from altimetry is here advanced with 

the contribution of multispectral images and river width to overcome the limits of individual sensors 

related to the temporal frequency. The merging procedure is carried out through the L3 Merging 

approach. 

Details on this approach will be provided in the next version of the document (v2.1). 
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