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1 Introduction

This document provides an overview of the theoretical framework underlying the algorithm employed in
computing long discharge time series data (Q) using different approaches.

Section two of this document will focus on discussing the available ancillary data essential for
implementing these two approaches. Following that, the third section will delve into defining calibration
and validation periods for each station as defined in [RD-1] and updated when WSE time series have been
computed [RD-2].

Subsequently, section four will elaborate on the methodology used to derive discharge from altimeters.
This section will incorporate the discussion of three different methods based on data availability.
Additionally, it will explain the three approaches derived for these methods: the Bayesian approach when
overlap time is present between discharge data and water surface elevation, the quantile approach when
it is not and specific approach especially for arctic basins.

The fifth section will describe the procedure to derive river discharge from river width. Using the so-called
Non-Parametric Quantile Mapping (NPQM) technique, a data-driven approach that statistically relates the
distribution of observed discharge to satellite-based river width measurements, enabling discharge
reconstruction even in the absence of simultaneous observations. The NPQM algorithm uses Monte Carlo
simulations to generate multiple realizations of discharge and width time series, accounts for
measurement uncertainties, and derives a non-parametric mapping function by pairing quantiles of
discharge and width without assuming any specific functional form.

The sixth section will describe the procedure to derive river discharge from multispectral images. First, a
description on the extraction of reflectance indices is provided along with a multi-mission approach to
generate a single time series. Successively, the river discharge estimation is presented based on the
similar approaches used for the altimeters (rating curves and quantile approach).

Finally, in section seven, the multi-sensor river discharge approach is presented. Several merging
procedures have been considered in previous phase of the project. The selected approach consist of
using river discharge at Level-3, which requires the combination of multiple river discharge products
independently obtained by the different sensors. The details approach of this product will be provided in
the next release of the document (version 2.1).

2 Available ancillary data

An initial analysis of the available data was conducted in WP2 [RD-1] to select stations where the
estimation of long-term flow would be particularly valuable and feasible. Since WP2 [RD-1], and
specifically during the generation of water height time series using altimetry (WP3.1 [RD-2]), this list of
stations has been revised for various reasons, as detailed in the ATBD of WP3.1 [RD-2]. For the remainder
of the project, we will investigate a total of 54 stations distributed across 18 different basins (see here:
https://climate.esa.int/fr/projects/river-discharge/ and [RD3]). From this updated list, we procured
combined time series of water heights dating back to at least 2002, as well as time series from associated
missions. In addition to these water height data, observed flow data from various global databases were
incorporated:
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- GRDC: The Global Runoff Data Base (GRDB) maintained by the Global Runoff Data Centre
(GRDC) has been the primary dataset used in large-scale hydrological studies, with more than 9000
stations available to the research community (GRDC, 2015). The GRDC is an international archive of data
up to 200 years old and fosters multinational and global long-term hydrological studies. Originally
established three decades ago, the aim of the GRDC is to help earth scientists analyse global climate
trends and assess environmental impacts and risks. https://www.bafg.de/GRDC/

- AlPo: The Iltalian hydrological monitoring network is managed at regional level by different
agencies. For the Po basin, the Agenzia Interregionale del Fiume Po (AlPo) is responsible for the
coordination of the hydraulic activity, the management and improvement of river navigation
infrastructures, environmental and river protection and the coordination of the flood service. For the
management of extreme events, AlPo is involved in forecasting and monitoring. Specifically, the website
of the agency (https://www.agenziapo.it/content/monitoraggio-idrografico-0) shows real-time and
historical measurements that can be freely downloaded by any users.

- SCHAPI: In France, in situ gages operated by regional public agencies (i.e. DREALs, Directions
Régionales de I'Environnement, de 'Aménagement et du Logement) are collected by the SCHAPI (Service
Central d'Hydrométéorologie et d'Appui a la Prévision des Inondations). SCHAPI releases these data
publicly via the online “HydroPortail” national database (https://hydro.eaufrance.fr). These public
agencies are responsible to observe and forecast floods, and to alert the population in case of dangerous
events (https://www.vigicrues.gouv.fr/).

-SO-HYBAM: The HYBAM observatory is a unique facility that has been in operation since 2003,
with a specialized focus on the monitoring of rivers and water resources in the Amazon region. HYBAM
serves as a research support service, conducting extensive and long-term hydrological, sedimentary, and
geochemical measurements to gain insights into the origin and evolution of water and transported
materials (such as sediments, organic matter, nutrients, etc.) in Amazonian rivers, spanning from the
Andes to the Atlantic Ocean. HYBAM collaborates with partners from all countries within the basin and
extends its network by including four additional. stations located along rivers that also flow into the
tropical Atlantic Ocean: the Orinoco, Congo, Maroni, and Oyapock rivers (https://hybam.obs-
mip.fr/fr/donnees/).

-HYDAT: Hydrometric data are collected and compiled by Water Survey of Canada’s eight regional
offices. The information is housed in two centrally managed databases: HYDEX and HYDAT. HYDEX is the
relational database that contains inventory information on the various streamflow, water level, and
sediment stations (both active and discontinued) in Canada. This database contains information about
the stations themselves such as location, equipment, and type(s) of data collected. HYDAT is a relational
database that contains the actual computed data for the stations listed in HYDEX. These data include
daily and monthly means of flow, water levels and sediment concentrations (for sediment sites). For some
sites, peaks and extremes are also recorded. The historical discharge data were extracted from the
Environment and Climate Change Canada Historical Hydrometric Data web site
https://wateroffice.ec.gc.ca/mainmenu/historical data index e.html

- ArcitcGRO: The Arctic Great Rivers Observatory (ArcticGRO) is a collaborative research initiative
dedicated to studying and monitoring the hydrology and discharge of some of the largest rivers in the
Arctic region. By collecting and analyzing comprehensive data from these rivers, ArcticGRO contributes
essential insights into the complex processes and changes occurring in the Arctic's freshwater systems,
which are of significant importance in understanding climate change and its effects on the polar
environment. The historical discharge data from the ArcticGRO database are available on their official
website: https://arcticgreatrivers.org/discharge/.

-RivDIS: The Global River Discharge (RivDIS) data set contains monthly discharge measurements
for 1018 stations located throughout the world. The period of record varies widely from station to station,
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with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles
Voérosmarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the
University of New Hampshire (Vorésmarty, 1998). River discharge is typically measured using a rating
curve that relates local water level height to discharge. This rating curve is used to estimate discharge
from the observed water level. The rating curves are periodically rechecked and recalibrated through on-
site measurement of discharge and river stage.

-USGS: The U.S. Geological Survey's (USGS) supports the acquisition, processing, and long-term
storage of water data. Water Data for the Nation serves as the publicly available portal to a geographically
seamless set of much of the water data maintained within NWIS. Nationally, USGS surface-water data
includes more than 850,000 station years of time-series data that describe stream levels, streamflow
(discharge), reservoir and lake levels, surface-water quality, and rainfall. The data are collected by
automatic recorders and manual field measurements at installations across the Nation. Data are
collected by field personnel or relayed through telephones or satellites to offices where it is stored and
processed. The data are processed automatically in near real time, and in many cases, current data are
available online within minutes. Streamflow data can be download in the National Water Information
System (NWIS) web interface at the following link: http://waterdata.usgs.gov/nwis.

All available data for each station and from all available sources have been merged to constitute observed
in-situ discharge (Figure 1).

® so-hybam ©® schapi ® USGS @® RivDIS ® mgb @ AlPo ® HYDAT @ ArcticGRO © grdc
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Figure 1: Available discharge data for all stations from different sources
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3 Calibration - Validation periods

The methodology used to derive discharge from altimetry WSE will highly depend on ancillary data
available and especially discharge time series used for calibration.

The selection of the calibration and validation period for altimeter calibration curves, correlating
discharge and water surface elevation, is critically important for result precision. In our approach, we have
chosen, in agreement with WP3.1 and WP3.1.2 teams, a method involving the use of the period from the
earliest date where simultaneous in situ discharge and merged water surface elevation from the altimeter
data (from WP3.1) are available to the latest date when these two data sets overlap (Figure 2). This period
is divided into three sections. The first section, in chronological order, is allocated for the validation period,
during which altimeter data is compared to reference data to assess model performance. The subsequent
two sections are dedicated to the calibration period (Table 1). Using data from these latter two-thirds
enables us to take advantage of the most recent satellite constellations and the least biased a priori data,
thus ensuring optimal altimeter calibration. This methodological choice is designed to secure the
reliability and precision of altimeter measurements across diverse hydrological conditions.

Q and WSE Data Availability Timeline Ccommon dates between WSE & Q data
L] »  common dates [Q & WSE]
= WSE
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Figure 2: Available data for in situ discharge from various sources (blue) and merged water surface
elevation from altimeter (green) from each station. The period where the two data sets overlap is
represented in red with the number of overlap’s days.
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Basins Stations Calib sDT Calib eDT days Valid sDT Valid eDT days

AMAZON MANACAPURU 2002-01-05 2020-01-28 548 1992-12-24 2002-01-04 199
AMAZON OBIDOS 2002-01-08 2020-01-24 599 1992-12-30 2002-01-07 203
AMAZON SAO-FELIPE 2002-01-19 2020-01-28 529 1993-01-13 2002-01-18 88
CHAD AM-TIMAN - - - - - -
CHAD GUELENGDENG - - - - - -
CHAD LAl - - - - - -
CHAD NDJAMENA - - - - - -
COLVILLE UMIAT 2005-05-30 2010-10-10 50 2002-09-22 2005-05-29 22
CONGO BANGUI 2008-01-29 2020-01-28 377 2002-01-28 2008-01-28 142
CONGO CHEMBE-FERRY 2003-05-05 2005-10-20 42 2002-02-09 2003-05-04 18
CONGO KINSHASA 2008-05-05 2020-01-28 235 2002-06-22 2008-05-04 60
DANUBE BAJA - - - - - -
DANUBE BOGOJEVO 2004-09-26 2009-12-30 124 2002-02-07 2004-09-25 35
DANUBE CEATAL 2005-01-08 2010-12-22 161 2002-01-16 2005-01-07 83
DANUBE LUNGOCI 2005-01-16 2010-12-24 164 2002-01-27 2005-01-15 65
GANGES-BRAHMAPUTRA BAHADURABAD - - - - - -
GANGES-BRAHMAPUTRA HARDINGE-BRIDGE - - - - - -
GANGES-BRAHMAPUTRA YANGCUN - - - - - -
GARONNE LA-REOLE 2017-02-07 2023-06-09 214 2013-12-07 2017-02-06 52
GARONNE LAMAGISTERE 2009-06-30 2023-06-10 495 2002-07-10 2009-06-29 63
GARONNE MARMANDE 2009-03-06 2023-06-10 347 2002-01-17 2009-03-05 68
GARONNE TONNEINS 2017-02-02 2023-06-10 230 2013-11-29 2017-02-01 104
INDUS CHASHMA - - - - - -
INDUS GUDDU - - - - - -
INDUS KOTRI - - - - - -
INDUS TARBELA - - - - - -
IRRAWADDY HKAMTI 2006-12-18 2015-12-24 302 2002-06-14 2006-12-17 60
IRRAWADDY PYAY 2001-01-02 2010-12-29 320 1996-01-04 2001-01-01 155
IRRAWADDY SAGAING 2006-09-20 2015-12-19 315 2002-02-03 2006-09-19 95
LENA KYUSUR 2000-12-11 2011-10-18 63 1995-07-09 2000-12-10 35
LIMPOPO BEITBRUG 2018-06-04 2022-08-07 175 2016-05-01 2018-06-03 50
LIMPOPO FINALE 2022-03-25 2022-06-18 11 2022-02-09 2022-03-24 7
LIMPOPO SICACATE - - - - -

MACKENZIE ARCTIC-RED 2000-06-25 2010-09-14 83 1995-05-16 2000-06-24 11
MACKENZIE NORMAN-WELLS 2008-04-24 2019-12-24 432 2002-06-24 2008-04-23 37
MARONI DEGRAD-ROCHE * 2016-03-10 2016-03-09 0 2016-03-09 2016-03-09 1
MARONI LANGA-TABIKI 2003-03-23 2023-09-10 563 1992-12-26 2003-03-22 194
MARONI TAPA 2021-01-02 2022-12-23 73 2020-01-07 2021-01-01 36
MISSISSIPPI NEAR-BROOKINGS 2008-12-17 2022-10-02 522 2002-01-24 2008-12-16 141
MISSISSIPPI VALLEY-CITY 2009-04-12 2022-10-26 492 2002-07-05 2009-04-11 91
MISSISSIPPI VICKSBURG 2009-03-19 2022-09-20 564 2002-06-17 2009-03-18 135
NIGER ANSONGO 1997-08-22 2001-04-12 24 1995-10-26 1997-08-21 14
NIGER KOULIKORO 1999-01-21 2006-01-30 54 1995-07-17 1999-01-20 34
NIGER LOKOJA - - - - - -
NIGER MAKURDI * 2002-08-06 2002-10-14 3 2002-07-01 2002-08-05 4
NIGER MALANVILLE * 1998-08-28 2000-08-20 5 1997-08-31 1998-08-27 5
NIGER NIAMEY 2019-06-13 2022-12-23 128 2017-09-06 2019-06-12 63
0B SALEKHARD 2002-11-24 2017-12-10 1194 1995-05-16 2002-11-23 124
PO BORGOFORTE 2008-09-11 2021-12-23 541 2002-01-19 2008-09-10 170
PO PIACENZA 2004-04-23 2021-12-19 210 1995-06-24 2004-04-22 84
PO PONTELAGOSCURO 2002-08-18 2021-12-02 571 1992-12-24 2002-08-17 207
ZAMBEZ| KABOMPO-PONTOON * 2003-07-27 2005-10-20 16 2002-06-13 2003-07-26 8
ZAMBEZ| KASAKA 2002-12-21 2004-10-25 35 2002-01-17 2002-12-20 27
ZAMBEZI MATUNDO-CAIS - - - - - -

Table 1: Summary of the calibration and validation periods for each station, along with the number of days
available for both calibration and validation. Stations marked with an asterisk (*) indicate cases where there
is too little overlap between discharge and water surface elevation data to separate into calibration and
validation periods. In these instances, all available data will be used for calibration or another method to
derive discharge from altimetry will be use.
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In instances where there are fewer than 20 common dates between discharge and water surface
elevation data, all available data will be utilized for the calibration process, and validation will be
conducted by comparing it with alternative data sources, such as in-situ water surface elevation
measurements or simulated discharge data generated from modelling.

4 Derive discharge from altimeters (RD-alti)

4.1 Context

Just as in-situ stage measurements can be used to gauge river discharge, altimetry-derived water surface
elevation (WSE) can serve as an alternative means of estimating river discharge when discharge time
series data is available.

Before selecting the appropriate method, the input WSE data type must be identified:

e WSE-merged (multi-mission altimetry time series): In this case, only the calibration period is
retained to compute the rating curve.

o WSE mono-mission (separate altimetry missions): Each mission is processed independently using
all available data.

Based on the data sample define by the WSE data type, two main approaches have been used for deriving
discharge time series from altimetry observations and supplementary data, depending on the available
temporal overlap between discharge and altimetry water surface elevation (WSE) time series.

o Method 1: Temporal overlap data (preferred approach) - When sufficient overlapping observations
exist, a rating curve is derived by applying the Bayesian method to the paired WSE and discharge
data.

e Method 2: No temporal overlap data (alternative approach) - When overlap is insufficient or
absent, a rating curve is derived by applying the Bayesian method to the quantiles of the full WSE
and discharge datasets, assuming stability of the rating curve over time.

To better reflect river-specific conditions and improve the applicability oof rating curves, three main
hydrological cases have been distinguished, each associated with adapted versions of these
methodologies:

e Case 1 - General cases: where we can directly compute the rating curve between the available
WSE and Q

o Case 2 - Rivers with intermittent ice cover: Filtering ice-affected data points by excluding
observations during frozen periods based on temperature thresholds.

e (Case 3 - Arctic rivers: Arctic and complex hydraulic conditions requiring multiple rating curves for
different flow and ice-cover states
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4.2 Bayesian-based Rating Curve (RC) estimation

The derivation of rating curves from altimetric water surface elevation (WSE) and in situ or simulated
discharge (Q) relies on a Bayesian framework, which allows for robust parameter estimation while

accounting for uncertainty (Figure 3).

¥ v
Input Data for WSEmerged-based RD Input Data for WSEmono-based RD

WSE merged-mission (altimetry) WSE mono-mission (altimetry)
Q (insitu / Sim) Q (insitu / Sim)

Slope (SWOT) Slope (SWOT)
Temperature (ERAb) Temperature (ERAS)
Calibration period . Mission-Specific period
« The last 2/3 of the common WSE-Q period « AllWSE-Q data are used separately for
are used each satellite missioln
|
+ 4
Method 1 Method 2
WSE-Q time overlap exist (> Threshold) No WSE-Q time overlap (< Threshold)

! | l l \

Quantile-based matching:

Case 1: General Case 2: Intermittently Case 3: Arctic Rivers
rivers Frozen Rivers = Multiple regima * SortWSE &Q
+ Use all data = Fllter data with rating curve - Nor_mallze vglues .
T°C< 0 5 [bifed * Derive quantile funciton
| | |
i
( Quantile-based matching:
»  Probabilistic model : Q = a:S*?(h-z0)° or Q = a-(h-z0)°
. Prior distribution : a € [0; 3000] - b €[1;5] - z0 € [min(WSE)-50; min(WSE)
k. Parameters estimation through Markov Chain Monte Carlo (MCMC) sampling and the Metropolis-Hasting sampler “MH" algorithm

Figure 3: Rating curve computation methodology

4.2.1 Bayesian approach

The Bayesian method is a robust statistical approach used for constructing a rating curve, frequently
applied in hydrology when the goal is to estimate unknown parameters from observed data, while
considering their associated uncertainty (Gelman et al., 2013). The core of the method relies on Bayes’
theorem: (Eq.1):

P(6/D) = P(D)-P(D/B)-P(6) Eq.1

Here:

e P(B|D) is the posterior probability distribution of the model parameters 6, which are the
parameters of the rating curve we aim to estimate.

e P(D|0O)is the likelihood of observing the data D, given a specific set of parameters 6, usually based
on a probabilistic model.

e P(0) is the prior probability distribution of the parameters, which incorporates existing knowledge
or assumptions.

e P(D) is the marginal likelihood of the data, serving as a normalizing constant to ensure the
posterior is a valid probability distribution.

According to this, the estimation of the rating curve using the Bayesian method involves several steps:
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4.2.1.1 Rating curve model specification:

The first step consists in defining a probabilistic model that relates observed water surface elevations
(WSE) to discharge (Q) through a commonly used power-law relationship:
Q0 = a-(WSE-z0)* Eq.2

e ais a scaling coefficient controlling the magnitude of the discharge,

e b is an exponent shaping the Q-WSE relationship, reflecting channel geometry and flow regime
characteristics (e.g., roughness, cross-section),

e 7, is the offset or base elevation, generally representing the river bed elevation or the WSE level
at which flow begins.

In phase 2 of this study, the rating curve is enhanced by incorporating dynamic water surface slope
measurements 5, derived from the Surface Water and Ocean Topography (SWOT) mission over few cases
as a proof of concept and relevance. The inclusion of slope data is motivated by hydraulic theory,
particularly the Manning equation, where discharge depends on both hydraulic radius and slope. The
enhanced rating curve equation is formulated as:

0 = a-8l?-(WSE-z0)*» Eq.3

where:

e Sis the water surface slope, estimated from SWOT observations, which varies spatially and
temporally (trough a climate mean).
e The other parameters retain their physical meaning as before.

This formulation explicitly integrates river slope variability, allowing for a more physically representative
and accurate estimation of discharge. It accounts for changes in hydraulic driving forces and improves
the adaptability of the rating curve across different river systems and flow regimes.

4.2.1.2 Prior distribution:

The Bayesian framework requires assigning prior probability distributions to each parameter, which can
be either informative (based on prior studies or expert knowledge) or uninformative (non-committal). For
this study, the following normal prior distributions were adopted, reflecting typical ranges observed in
diverse hydrological contexts:
e a(scaling factor):
- Must be non-negative
- Typical mean value: 800, standard deviation: 300, resulting in a plausible range: [O -
1700]
e Db (exponent):
- Must be positive
- Commonly ranges between 0 and 3 (Chow et al., 1988)
- Mean: 1.5, standard deviation: 0.5, allowing flexibility for most river geometries and
hydraulic conditions
e 7, (offset or river bed elevation):
- Estimated as the minimum WSE minus 5 meters (to ensure discharge begins near the
riverbed)
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- Standard deviation: 5 meters, accommodating variation in channel depth across
different rivers (up to ~30 m of flow depth)
e S (slope):
- Treated as observed input data from SWOT; uncertainties in slope measurements can
be incorporated into the likelihood model or modeled as error terms.
These prior distributions are crucial, particularly when dealing with limited or noisy datasets, as they
influence the convergence and stability of the estimation process.

4.2.1.3 Posterior estimation and uncertainty quantification:

The final step is the estimation of the posterior distributions of the parameters using Markov Chain Monte
Carlo (MCMC) sampling techniques. These distributions provide both point estimates (e.g., posterior
means or medians) and credible intervals (e.g., 95% intervals) for each parameter, offering a probabilistic
interpretation of the rating curve and its uncertainty.

For this study, the No-U-Turn Sampler (NUTS) algorithm (Hoffman et al., 2014) was selected due to its
efficiency in high-dimensional spaces and its adaptive step-size tuning. This advanced variant of the
Hamiltonian Monte Carlo (HMC) method ensures faster convergence and better exploration of the
parameter space compared to traditional algorithms like Metropolis-Hastings (Robert et al., 2004).

4.2.2 WSE data type

4.2.2.1 WSE merged-mission:

When the water surface elevation (WSE) time series is constructed by merging data from multiple
altimetry missions, the rating curve computation is restricted to the calibration period, defined as the last
two-thirds parts of the time window where both WSE and discharge data are available (see previous
section for details). This period is selected to ensure greater stability in the rating relationship and to
avoid early data with potentially lower quality or non-stationary behavior.

If enough paired WSE-Q observations are available within this calibration period, Method 1 (see section
4.2.3) is applied. If not, Method 2 (see section 4.2.4) is used as a fallback.

This approach ensures that the resulting rating curve is based on a coherent, hydraulically consistent
subset of the data, improving the reliability of the discharge estimates during the selected period.

4.2.2.2 WSE mono-mission:

In contrast, when WSE data are treated mission by mission, as implemented in Phase 2 of the project, all
available common data between each altimetry mission and the discharge series are used, without
restricting to a specific calibration window. This approach acknowledges the sensor-specific nature of
each mission and allows for the full exploitation of available paired observations.

For each mission (e.g., Topex/Poseidon, Jason-2, Envisat, Sentinel-3), a separate rating curve is derived.
Depending on data availability, either direct pairing (Method 1) or quantile matching (Method 2) is applied
individually per mission.

This mission-specific strategy offers several advantages:

o Reduced inter-mission bias, by accounting for the unique characteristics of each sensor;
e Improved temporal resolution, by leveraging the full extent of available WSE-Q pairs for each
mission;

D.3 River Discharge ATBD.

Reference: RD_CCI-0006-ATBD - Issue 2.0 - 31/07/2025
Open/Public © 2019 CLS. All rights reserved. Proprietary and Confidential.




16/31

e Explicit uncertainty quantification, with posterior distributions computed separately for each
mission.

This refined treatment enhances both the accuracy and continuity of discharge estimates across the
altimetric record.

4.2.3 Method 1 - Bayesian estimation using overlapping dataset -
preferred approach

When a temporal overlap exists between the altimetric water surface elevation (WSE) time series and
discharge data (either in situ or simulated), a Bayesian approach can be applied to the paired WSE-Q
observations to derive a rating curve. This method is applicable regardless of whether the WSE data
comes from a single altimetry mission (WSE mono-mission) or a merged multi-mission time series (WSE-
merged), provided that enough synchronous data pairs are available.

To define the sufficient number of synchronous observations needed to compute the rating curve, we
base the requirement on the ability to represent seasonal coverage. Specifically, we require data
spanning at least 10 distinct months, with each month containing at least 3 points. This criterion ensures
that the rating curve is based on a dataset with adequate temporal coverage and density to reliably
capture seasonal variability.

The rating curve parameters (commonly denoted as a, b, and z0) are estimated using Markov Chain
Monte Carlo (MCMC) sampling, allowing the derivation of predictive discharge values along with
associated confidence intervals. This approach assumes the WSE measurement location is hydraulically
consistent with the discharge reference (e.g., colocated or in a reach with stable morphology), and that
river conditions remain relatively stationary during the calibration period.

This method has been widely adopted in recent literature (e.g., Garambois et al., 2017; Domeneghetti et
al., 2014; Paris et al., 2022) and is well suited to rivers without major non-stationarities such as ice cover
or abrupt morphological changes.

However, in real-world applications, river dynamics may not always support the direct application of this
method due to seasonal ice effects or non-uniform flow behaviors. To address these situations, we define
three specific cases for the construction of the rating curve:

4.2.3.1 Case 1 - General rivers

In this case, a standard Bayesian rating curve is computed directly from all available overlapping WSE-Q
pairs. No filtering of the time series is needed, and the full dataset is assumed representative of the
hydraulic behavior. This case applies to rivers without significant freeze/thaw effects or strong
interannual variability in seasonal patterns.

4.2.3.2 Case 2 - Partial ice cover rivers

In some river systems, particularly in temperate cold climates, ice cover appears only intermittently,
typically during winter months (e.g., December to March), and varies from year to year. This irregular
freezing can create outliers or distortions in the WSE-Q relationship during those periods.

To mitigate this, the overlapping dataset is filtered using a temperature threshold: WSE-Q pairs

associated with monthly mean air temperatures below 0°C are excluded. For instance, at the Near-
Brookings station, the river was frozen in some winters, producing anomalies in the WSE-Q scatter plot.
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By applying ERAS monthly temperature data, periods of likely ice presence were identified and removed,
resulting in a more consistent rating curve.

This filtering allows the construction of a more representative and robust rating curve, avoiding the
influence of anomalous hydraulic states induced by ice, while maintaining a unified Bayesian framework.

Rating Curve with Best-Fit and Confidence Interval Rating Curve with Best-Fit and Confidence Interval
2008-12-17 to 2022-09-22 12 2009-04-05 to 2022-09-22 1
95% ClI ™ 500 4 95% Cl
Observed Data F11 ® Observed Data 10
—— Best-Fit Curve —— Best-Fit Curve
200 - - : 10 Lo
400
a = 12.008 [8.988, 14.783] ® 9 a=7110[2.536, 11.512] Lg
b = 1.195 [1.005, 1.3ﬁ]... b = 2.531[2.156, 2.974]
150 z0 = 448.231 [448.038, 448.330] -8 . z0 = 448.388 [448.070, 448.680]
0 £ -7
a b @ 300
E o @ 7 £
T o £ o 6 &
= ° s = 5
= e & 6 = =3 =
=4 1 o » =
g 100 £ £ 2001 5
o =]
5
4
4
50 H 100 4
3 3
900 ] ® 2 g
0 L o eule ea. o # 04-= -5 08
T T T T T 1 1
449 450 451 452 453 44‘9.0 44:15 45E)A0 45;3.5 45r1.0 45;[.5
wse (m) wse (m)

Figure 4: Rating curve for the Near-Brookings station (Mississippi basin) before (left) and after (right)
excluding data points associated with temperature variations (below 0°C).

4.2.3.3 Case 3 - Artic rivers

In Arctic regions, the relationship between water surface elevation (WSE) and discharge is often non-
uniform due to seasonal ice cover, ice breakup, and complex flow dynamics near river confluences. In
such contexts, a single rating curve may be inadequate. Instead, a set of rating curves, each tailored to a
specific hydrological regime—such as flood rise, recession, or ice-covered periods—is employed. This
approach requires prior knowledge of the river's seasonal behavior and the applicability range of each
curve.

The impact of river ice on flow hydraulics can be detected using remote sensing and altimetry
observations acquired simultaneously with WSE retrievals (Zakharova et al., 2021). Previous studies have
demonstrated that using distinct rating curves for different flow conditions improves discharge estimation
accuracy (Zakharova et al., 2020). Classical power-law equations are used for flood rise and recession
periods, while low-degree polynomials may better capture the hydraulic behavior during the ice-covered
period.

For example, on the Ob River, an automated method based on altimetry was tested to detect ice-on and
ice-off periods from 2008 to 2019, which enabled the calibration and validation of a winter-specific rating
curve. For years not covered by this product, optical imagery from Landsat and MODIS was used. The
spring flood rise subset was extracted directly from the WSE time series. On four Arctic test sites—located
on the Colville, Mackenzie, and Lena rivers—two rating curves were built using a modified Bayesian
method: one for flood recession, and another combining winter and flood rise periods. In this modified
method, only the parameters “a” and “z,” were estimated probabilistically, while the exponent “b” was
fixed to allow expert adjustment of the curve shape for each hydrological regime.

This regime-based approach enhances discharge estimation in Arctic environments by accounting for
seasonal variability in flow hydraulics and by leveraging multi-source satellite data.
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4.2.4 Method 2 - Bayesian estimation using quantile-based
matching - alternative approach

The quantile-based approach is a statistical modelling technique used to derive a rating curve by
matching quantile functions of water surface elevation (WSE) and discharge time series. Unlike the
Bayesian approach, it does not require a temporal overlap between altimetry observations and in situ
discharge measurements. This makes it especially valuable when satellite data and discharge records
originate from distinct periods. The method has been successfully applied across a range of river basins
in various climatic zones—including the Amazon, Brahmaputra, Danube, Niger, and Ob rivers (Tourian et
al., 2013).

4.2.4.1 Theoretical Framework

This method assumes that river flow behavior is stationary over time and that the bathymetry remains
stable both at the virtual altimetry station and the in-situ gauging station. Under these conditions,
historical in situ discharge data can be validly used to estimate present-day discharges derived from
satellite altimetry.

The foundation of the approach lies in the construction of quantile functions:

Or(p) =inf{Xg €R:p < F(Xp)} Eq.4a

Ow(p) = inf{Xw € R: p < F(Xw)} Eq.4b

where:

o Qr(p), is the quantile function of in situ discharge values Xr
e Qw(p), is the quantile function of altimetric WSE values Xw
e F(-)denotes the cumulative distribution function (CDF),

e and p&(0 1) is the exceedance probability.

The quantile function Q(p)returns the maximum value of the variable that is not exceeded with probability
p. It provides a distribution-free description of the data, enabling the definition of a functional
transformation 7(-) between the two datasets:

Or = T(Ow) Eq.5

This transformation is assumed to be monotonic and non-decreasing (Gilchrist, 2000), a key requirement
that allows for a meaningful functional relationship between WSE and discharge. Since this formulation
does not rely on time-matching between datasets, it is ideal for scenarios without temporal overlap.

4.2.4.2 Practical Implementation

To empirically estimate the quantile functions, each dataset (WSE and Q) is sorted in ascending order.
The rank ki of each value is normalized as:
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CN+1

Pi Eq.6

N is the number of measurements, and piis the empirical probability associated with each sorted value.
This produces two ordered series of quantiles (WSE and Q), which are then paired to create a scatter plot
of discharge quantiles versus WSE quantiles.

The quantile functions can be constructed:

e using mean monthly discharge and WSE (based on historical daily discharge and satellite
observations at altimeter passes), as in Tourian et al. (2013),

e or by matching altimetric WSE values at satellite overpasses with daily discharge values in the
historical dataset, to better reflect short-term flow variability, including extreme events.

This second variant has been explored in this study to overcome the limitations of monthly mean values,
which may obscure significant hydrological fluctuations. By doing so, the derived rating curve incorporates
more of the inherent non-stationarity of river flow, offering a better match between satellite-derived WSE
and hydrological dynamics.

4.2.4.3 Application and Comparison

Both the monthly-based and daily-based quantile pairing approaches are tested in this work to build rating
curves during periods without temporal overlap between WSE and Q datasets. These curves are evaluated
in Work Package 4.2.

In both cases, the quantile space is discretized using an equidistant step of 5%. The resulting quantile -
gquantile scatter plots are used as input for a Bayesian inversion, following the same procedure described
in Section 4.2.1, to derive the final rating curve parameters.

This method is applied both to merged multi-mission altimetry WSE time series and to each individual
altimetry mission, to evaluate the contribution and uncertainty associated with each data source. The
mission-specific analysis may enhance discharge estimation accuracy for missions with better precision
or denser temporal coverage.

4.3 Uncertainties

Uncertainty propagation through mathematical models plays a crucial role in estimating the reliability of
derived results in various scientific fields. In the context of hydrology and discharge estimations, the
propagation of uncertainties in parameter estimation, such as those in the parameters of the discharge
equation, becomes essential for assessing the reliability of the calculated discharge values. Utilizing a
Gaussian error propagation method provides a systematic approach to quantify the uncertainties
associated with parameters a, WSE, b, and zO (and s if available) from the power law function defined in
section 4.2.1 to express the relation between Q and WSE.

This method involves employing statistical principles to propagate uncertainties through the
mathematical relationships between the parameters and the discharge equation. By considering the
Gaussian distribution of errors in these parameters, this approach enables a more comprehensive
evaluation of the overall uncertainty in discharge estimations (e.g., McMahon and Peel, 2019, Tourian et
al., 2017).

D.3 River Discharge ATBD.

Reference: RD_CCI-0006-ATBD - Issue 2.0 - 31/07/2025
Open/Public © 2019 CLS. All rights reserved. Proprietary and Confidential.




20/31

Given the mean values and standard deviations (o) for each parameter, the uncertainty in discharge (6Q)
due to uncertainties in these parameters can be computed as Eq.7 if the slope value is unknow otherwise
as Eq.8:

9Q = \/ (a-(WSE - 20)"- Ga)2 + (a-b- (WSE - z0)*" GWSEf + (a- (WSE — 20)"- In (WSE — z0)- abf c0.7

+ (— a-b- (WSE — z0y>~1. oz0)2

2

2 J— 2
aQ = [aﬁ (WSE - 20y -Ua) + (a- L (wsE- 0y -Us) + (a-\;‘s b (WSE — z0)-1. UWSE)

245 Eq.8

2 2
+(a-J§(WSE—zo)J-"- J'n{WSE—zC'}--’Jb) + (— as-b- (WSE—zO)b—I-azo]

Where, oa, ob, 620, os and cWSE correspond to the standard deviations of parameters a, b, zO, S and WSE
respectively. The standard deviations for a, b, and zO will be determined using the Bayesian approach
through the MCMC algorithms (see section 4.2.1). The standard deviation for the WSE will be, initially,
consistent across all stations and for each mission. This value will later be adjusted through updates
during the validation process. The standard deviation for the slope will be define as the standard deviation
per month over the 2 years of available data.

This formula uses the standard deviations as measures of uncertainty in each parameter and calculates
the overall uncertainty in discharge considering the propagation of these uncertainties through the power
law equation relating discharge and the parameters a, b, z0O, S and WSE.

It is important to notice in one hand, that this equation assume that the uncertainties in the parameters
(a, b, z0) and WSE are independent, and in another hand, that the propagation of uncertainties provides
an estimate based on the assumption of linearization around the mean values of the parameters.

5 Derive discharge from river-width (RD-width)

5.1 River width estimation using optical satellite imagery

Following the methodology introduced by EImi and Tourian (2023), this algorithm estimates river width
from time-series satellite imagery (Landsat 8/9 and Sentinel-2) using water indices, topographic
constraints, and a graph-based image segmentation framework that incorporates spatial smoothness
and temporal dependency. A river reach is first selected from the SWOT River Database (SWORD) and
buffered based on its mean width and standard deviation to define an analysis zone. Only pixels satisfying
slope, elevation, and water occurrence thresholds (from FABDEM (Forest And Buildings removed
Copernicus DEM) and Global Surface Water Explorer (GSW) (Pekel et al. 2017)) datasets) are retained for
analysis. After applying rigorous cloud masking and computing water indices such as Normalized
Difference Water Index (NDWI), the image time series is smoothed and normalized within each step. As
in ElImi and Tourian (2023), the water index is combined with a long-term water occurrence map via a
sigmoid function to enhance temporal consistency. The result is a probability map representing the
likelihood of water presence at each pixel and time step.

Segmentation is then performed using a maximum-flow/minimum-cut algorithm that operates on a graph
constructed over each probability map. Each pixel is treated as a node connected to source and sink
terminals (representing water and non-water classes), with edge capacities determined by the pixel-wise
water probability.
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Let L denote the set of pixels in the buffered river region and assign a binary label f,, € {0,1} to each
pixelp € L, where fp = 1 represents water and fp = 0 represents non-water. The goal is to find a labeling
that minimizes the energy:

E(f)=>_Dp(fp) + X D Viglfor fo) £Q.0

peEL (p.g)EN

where:
-Dp(fp)is the data term (unry potential), encoding the likelihood that pixel p belongs to class f,.
- V{p’q}(fp, fq) is the smoothness term (pairwise potential), enforcing spatial coherence.

- A > 0 is the regularization term.

- N is the number of 4-connected pixel neighbors around the border

The term Dp(fp)is the cost function defined in the temporal domain, which can be obtained from the
monthly or long-term water occurrence map from GSW that delivers the probability of water in a certain
pixel P,. So:

P, if f, =1 (label: water)

D _ Eq. 10
o(fp) {1 — P, iff,=0 (label: non-water) !

On the other hand, the smoothness term 1, 4 (fp,fq) penalizes discontinuities between neighboring pixels
based on water index similarity:

Vp.q(fp'fq) = 0iff, = fq'EXp(_llp - Iql/g) iffp # Iq
Eq. 11

To solve the energy minimization problem defined by the binary labeling function fp, we employ the Max-
Flow/Min-Cut algorithm. The formulation is cast as a graph cut problem, where each pixel corresponds to
a node in a directed graph, and two additional nodes represent the source (water) and sink (non-water).
The edge weights are derived from the data and smoothness terms: terminal links (T-links) encode the
data cost D,(f,), while neighborhood links (N-links) encode the pairwise smoothness cost V, (£, f;)-
The Max-Flow algorithm (implemented using the PyMaxflow library) computes the minimum s-t cut that
separates the graph into water and non-water regions, yielding the optimal binary segmentation f* that
minimizes the total energy. This approach guarantees a globally optimal solution for binary segmentation
under submodular energy terms.

5.2 River discharge estimation using river width

A complementary approach to traditional discharge estimation using hydraulic or hydrological models is
the use of satellite-derived river width time series as a proxy for in-situ discharge observations. We apply
a non-parametric, data-driven technique called Non-Parametric Quantile Mapping (NPQM) (EImi et al.
2021) to estimate river discharge from width time series extracted from optical satellite imagery (section
5.1). The approach allows for discharge estimation at river reaches near selected gauges, even in the
absence of simultaneous observations. By building a statistical relationship between the distribution of
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observed river discharge and EO-based river width, this method can reconstruct discharge time series
that are consistent with long-term flow characteristics.

The flowchart below outlines the core steps of the NPQM algorithm for estimating discharge from river
width:

e First, the algorithm generates multiple realizations (simulations) of both the in-situ discharge and
satellite-derived river width time series using Monte Carlo simulation. These simulations account
for the uncertainties in the original measurements.

e Then, for each realization, it builds a set of mapping functions by pairing all possible combinations
of discharge and width quantile values (see Eq.4a, Eq.4b, and Eq.5, note that in Eq.4b instead of
wse, we use river width).

o Once the mapping functions are created, the algorithm calculates the mean river width- discharge
mapping function for each percentile, as well as the associated uncertainty. The non-parametric
mapping function is obtained without assuming a specific functional form.

e To assess the accuracy of the mapping, the model compares the estimated discharge values with
observed discharge values. A "3-sigma test" is used, which checks whether the differences
between estimated and observed discharges fall within three standard deviations—capturing
about 99.7% of the values in a normally distributed dataset. If simultaneous discharge and width
data are available, they are used directly; otherwise, the comparison is made using data that fall
within the same quantile range.

e Based on the outcome of the 3-sigma test, the algorithm adjusts the uncertainty of the
measurements to maintain consistency in an iterative process.

e The algorithm then checks whether the Root Mean Squared Error (RMSE) has changed
significantly compared to the previous iteration. If not, the model stops. If it has, the process
adjusts the uncertainty and repeats from the first step.

At the beginning of the process, a default uncertainty of 10% of the signal is assumed for both discharge
and width time series, due to the limited availability of formal uncertainty estimates. As the iterations
proceed, this uncertainty is refined based on the model's performance. Once the model has converged,
it can be used to estimate discharge values—with associated uncertainties—based solely on the input
river width time series. Further information on the uncertainty treatment and validation of the NPQM
method is available in EImi et al. (2021, 2024), where the algorithm is applied and analysed in depth
using both water level and width datasets.

Time series of Stack of river width 4 N\ Mean quantile mapping
river width time series — Quantile matching of - function
Monte Carlo simulation river discharge and
Time series of in situ Stack of in situ river river width stacks
—p- —

river discharge discharge time series \_ J
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Figure 5: Flowchart of the stochastic quantile mapping function algorithm (adapted from Elmi et at., 2021,
and Saemian et al., 2024)
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6 Derive discharge from multispectral images (RD-

multispec)
6.1 Context

The method for estimating river discharge from multispectral images is based on the studies of Tarpanelli
et al. (2013), Filippucci et al. (2022) and Filippucci et al. (2025), in which the differences between the
passive response of the reflectance signal from the soil and that from the water are used to identify a
change in the land area near the river channel that is shown to be strongly correlated with river discharge.
An increase in river discharge produces an increase in wetted area, and the area near the river changes
its reflectance response, which decreases. For an area near the river that is not affected by water,
reflectance remains almost constant (except for changes in vegetation cover). Its relationship with the
reflectance of the wetted area is used to more accurately determine the estimate of changes in hydrologic
forcing, compared to the wetted area alone. Consequently, in the case of flooding, the reflectance ratio
between the dry pixel (called the calibration pixel, C) and the wet pixel (called the measurement pixel, M)
is sensitive to the increase of water in the wet pixel and, therefore, is directly related to the increase of
river discharge. With respect to the first study by Tarpanelli et al. (2013) where the reflectance ratio C/M
has been extracted from a temporal series of seven years of almost daily images of MODIS over four
stations along the Po River, the analysis by Filippucci et al. (2022) demonstrated that the role of
sediments and vegetation in the formulation was important to correct the reflectance ratio C/M during
flood events. This was possible with the use of finer resolution images from Sentinel-2 and the new
approach was tested over two Italian rivers, Po and Tiber. In Filippucci et al. (2025), the selection of
reflectance indices based on local hydrological conditions is carried out evaluating the best procedure to
obtain river discharge proxies according to the specific flow regimes and climatic conditions across 54
sites worldwide.

6.2 Reflectance indices definition

In the project, we tested several algorithms for the estimation of the reflectance index. Such algorithms
come from the combination of pixels: C for calibration, W for the sediments, V for the vegetation, M for
measurements of the variation. The main steps for the application of the procedure are listed below:

- The study area is predetermined as a square of fixed side (e.g. 0.04 degree for Sentinel-2 data,
0.06 degree for Landsat data and 0.15 degree for MODIS data) around the selected station.

- The collection of the desired data in the chosen area is then obtained for the available period.

- Cloud products are considered to mask the cloud presence in the single images. After this
masking, the total number of valid pixels in each image is computed. If the fraction of valid pixel
was less than 0.2, the full image was discarded. Similarly, the fraction of valid reflectance value
was calculated for each pixel during the study period: if this value was below 5%, the pixel was
deemed invalid and removed by the analysis, to avoid its selection in the mask calculation.

- Snow or ice presence is masked through other products available in the collection of data. The
fraction of snow pixels is calculated for each available image and the resulting time series is
averaged for each day of the year, to obtain a standard year probability of snow presence. A
windowed moving average filter of 14 days was then applied to reduce the noises.

- Water area pixels are obtained using JRC Global Surface Water Mapping Layers for coarse
resolution sensors (MODIS and Sentinel-3) and the application of a threshold to the 5t percentile
of NDVI timeseries for the remnant products. For each image, if the fraction of valid pixels in the
water area was less than 0.2, the full image was discarded.

- The different categories of pixels (vegetation, bare soil and field) are classified through masks
derived by NDVI index, coefficient of variation (NIR standard deviation divided by NIR average),
mean and standard deviation.
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- The final step consists in the selection of the periodically wet area. When observed data
concurrent to satellite overpass are available, four algorithms of the reflectance indices are
calculated to be compared with the in situ river discharge: the pixels with highest Spearman’s
correlation are selected as M. When observations are not available, two uncalibrated procedures
are adopted, one based on the correlation between the pixels within the water area and the
different categories, and one based on the JRC Global Surface Water Mapping “Occurrence”
information.

Different formulations of the proxy are adopted according to the characteristics of each river reach (e.g.
application of vegetation and sediment correction; use of multiple water mask selection algorithms) and
satellite pixels may be aggregated for stations where the river width is considerably larger than the
satellite spatial resolution (especially when we use Landsat and Sentinel-2).

Moreover, because the analysis involved long temporal period, we need to consider the natural evolution
of the river morphology. This means that in some areas a static temporal analysis that considers the same
pixels for the entire period is not sufficient to describe the dynamic of the river. In such cases it is
necessary to perform the analysis for brief periods. Therefore, the procedure was applied two years in two
years, maintaining one year in common between a period and the following one, in order to avoid big
changes in the transition period. The pixel categories masks were obtained combining the ones of the
single periods. The procedure, called “multi-year”, is used along with the “full period” for evaluating the
benefit to separate the period with respect to the static investigation.

Based on what we describe above, the total number of algorithms to be considered in the analysis is 24
to be applied to the 11 satellite products.

6.3 Multi-mission reflectance time series

A total of 24 calibrated reflectance indices were obtained for each station considering all formulations
(CM, CMW1, CMW?2), aggregation kernels (one small and one large), vegetation correction and calibration
type (full or multiyear). A first analysis is then necessary to identify the best algorithm for the definition of
river discharge. This discrimination is carried out based on a stepwise maximization of the Spearman
correlation coefficient, to consider the non-linearity between the reflectance index and the river discharge.
Because the procedure includes several combinations, we proceed to distinguish for each satellite
products the following sub-cycles:

1- the best temporal method between full period and multi-year;

2- the best spatial resampling of the images with the aggregation;

3- the best formulation between the simple C/M or the ingestion of the sediments with CMW;
4- the best formulation with the inclusion of the vegetation

This stepwise procedure allowed to obtain two results: first, the best calibrated procedure was obtained
for each station, second, the analysis of the results combined with the stations characteristics allowed to
obtain a heuristic procedure to obtain a valid algorithm for each station in the uncalibrated procedure.

The application of the above methodology to the 10 datasets investigated in this project allows to obtain
10 different timeseries related to river discharge in 54 and 26 stations using the uncalibrated and
calibrated procedure, respectively. The indexes were then merged together to obtain a single consistent
signal from multispectral sensors (one for the calibrated and one for the uncalibrated methodology). This
procedure is complicated by the fact that most of the sensors have different spatial resolution, coverage
period and revisit time. A summary of the different dataset characteristics is shown below.
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Spatial Revisit

Platform Product Reflectance Platform Startyear End year ] .
resolution  time
Landsat 5 [2,C2, T1 TOA GEE 1984 2013 30 m 16d
Landsat 7 2,C2, T1 TOA GEE 1999 2022 30 m 16d
Landsat 8 2,C2, T1 TOA GEE 2013 - 30 m 16d
Landsat 9 L2,C2, T1 TOA GEE 2021 - 30 m 16d
MODIS TERRA MOD09GQ TOA GEE 1999 - 230m id
MODIS AQUA MYDOSGQ, TOA GEE 2002 - 230m 1d
Sentinel 2 52-11C TOA GEE 2015 - 10 m 5d(10)
Sentinel 2 52-11C TOA SH 2015 - 10 m 5d(10)
Sentinel 2 + Landsat 8-9 - TOA SH 2015 - 30m 3-4d
Sentinel 3 0LCI 53-1L1B TOA SH 2016 - 300m ~1d
MERIS - - EC 2002 2012 300m 1d

Table 2: Description of the datasets for multispectral images. It includes selected product, reflectance type,
platform used to analyze the data (GEE is Google Earth Engine, SH is Sentinel-HUB, EC is Earth Console),
period of data availability, spatial resolution and revisit time.

Some datasets share data from one or more sensors (e.g. S Sentinel- 2 in Google Earth Engine (GEE) and
Sentinel-2 in Sentinel Hub (SH)). To avoid using more than one time the same data, three different
combinations were considered for the merging:

Landsat 5-7-8-9; Sentinel 2 (GEE) - 3; MODIS TERRA and AQUA; MERIS
Landsat 5-7-8-9; Sentinel 2 (SH) - 3; MODIS TERRA and AQUA; MERIS
Landsat 5-7-8-9; Sentinel 2 (GEE) - 3; MODIS TERRA and AQUA; MERIS

It should be also noticed that some sensors may be not able to obtain reliable river discharge information
over specific rivers due to insufficient spatial resolution (when river width << sensor’s spatial resolution),
fail of the uncalibrated procedure (impossibility to obtain C or W due to sensor’s spatial resolution or
specific characteristic of the river) or other reasons. Therefore, it is important to exclude bad performing
data from the merging to avoid worsening the performance. For the calibrated stations, all the datasets
with Spearman correlation with observations < 0.4 will be therefore excluded by the merging. For the
uncalibrated procedure, where also stations with non-concurrent data were considered, this strategy is
not applicable. Therefore, first the CM index will be averaged to obtain a monthly timeseries, then the CM
of each single month (January, February...) will be averaged together to obtain a monthly standard-year
CM index. The Spearman correlation between this index and the corresponding monthly standard-year
observed data ( considering also non-concurrent periods) will be calculated and considered as a good
estimator of the actual Spearman correlation of the calibrated timeseries (). A categorical score analysis
was then carried out to obtain the best monthly Spearman correlation threshold () able to reproduce the
condition in which the calibrated Spearman correlation in less than 0.4: for each potential threshold it
was calculated the Probability of Detection (POD), False Alarm Ratio (FAR) and Threat Score (TS),
considering;:

A Eq.12a
POD =77¢
B
— Eq.12b
FAR A+ B
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A Eq.12c

IS=a%8+c
With:
S.<0.4 S. > 0.4
Sy < S, A B
Sm > S C D

The results of this analysis will be exploited to obtain the correct St to be applied in the uncalibrated
procedure, also ensuring the selection of at least one daily timeseries (MODIS AQUA, TERRA or S3) or 3
different products. If this condition is not obtained, all the products of the selected combination will be
selected for the merging.

Once the products to be merged have been selected, the first operation to be done is rescale all the
satellite data to a reference scale. The product with the highest amount of available data is chosen as
reference. All the products are hence scaled to this one. First the number of overlapping data is
calculated. If this is greater than 5, the minimum and 75th percentile of the selected product and the
reference one is calculated, and the product is rescaled according to (Eq.9):

m
p? =p7I5—_m-(p75r—mr)+mr Eq.13

Where Pi is the i-th element of the selected product, Psi is the same element scaled to the reference, p75
and m are the minimum and the 75th percentile of the selected product, respectively, calculated during
the overlapping days, and p75r and mr are the same for the reference product. In case less than 5
overlapping days between the reference and the selected datasets are available, the minimum and 75th
percentile are calculated for the whole period for both the selected and reference products. It is worth
underlining that it was decided to use the 75th percentile instead of the more common maximum value
to avoid selecting potential outlier due to errors in the cloud masking or presence of cloud shadow.
Potential outliers are then eliminated by removing all the data index greater than 10 or less than 0. The
merging procedure is finally carried out: all the data is interpolated at daily steps. A weight is assigned to
each daily data, proportional to the distance from the sensing date: the weights are assigned according
to the gaussian distribution, fixing w=1 in the sensing date, w=0.5 at three days from the sensing date
(figure 6). All the interpolated data at more than 6 days from the sensing date are fixed to NaN. Then, the
potential presence of contradictory information from the different sensor is accounted for by calculating
the difference between the maximum and minimum value of the index for each day of the analysis
(considering all the products). The distribution of this variability is assumed as gaussian (excluding data
in which only one sensor is available, and the max-min difference is equal to O): the average and the
standard deviation of the max-min difference is calculated and all the dates outside the 3 times standard
deviation range are excluded from the analysis. Finally, the weighted sum is performed by maintaining
only the dates in which one or more products has w=1 (at least one product is obtained in that date). An
exponential filter with T=6 is then applied to remove possible noises.
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Figure 6: Weights of the daily data of each sensor according to the temporal distance by the nearest sensing
day. The weights are distributed with a gaussian function River.

6.4 River discharge estimation from reflectance indices

The estimation of river discharge from reflectance indices is very similar to the rating curve approach
applied for the water levels by altimetry. Indeed, here the relationship is based on the evaluation of a non-
linear regression relationship between the multi-mission time series and the observed river discharge
values. After processing the multispectral images from the multi-mission satellites following the
methodology explained in Section 5.3, the retrieved signals (hereafter denoted as CM signals) are further
utilized to derive river discharge time series along the selected river reaches. To formulate the river
discharge algorithm, we need to calibrate the CM signals against the contemporary in situ river discharge
for any typical river sites. However, along the selected river sites, the in situ observations are often
unavailable during the period in which satellite data are available (2006-2005 for Landsat 5, 2021-2022
for Landsat-9, 2016-2022 for the remnants). Therefore, two different analyses are carried out depending
on the availability of the in situ data: i) calibrated approach (when coincident observation of in situ Q and
CM signals are available) and ii) uncalibrated approach (when only in situ observation non-contemporary
to satellite data are available).

6.4.1 Calibrated Approach

With the coincident data availability of CM and Q, River discharge is estimated through the use of
Empirical Formulation . Notably, the calibrated procedure is performed following the pre-fixed calibration
and validation period.

Best-fit approach

In the case of empirical formulation, four potential distributions (linear, quadratic, power, and
exponential) are selected as potential laws between Q and CM data as follows:

Qew = a (€M) +b Fa-148
Qcy = a (CM)? + b (CM) +c Eq.14b
Qcu = a (CM)b Eq.14c
Qcm = a ()™ Eq.14d
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CM and Q time series are, therefore, trained with the aforementioned formulations. To check the best-fit
solution from the selected distribution, a model evaluation criterion has been set considering Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC), and Pearson correlation coefficient (r). The
best fit of any site has been obtained by lower values of AIC and BIC with a higher value of r; thus, a
composite index (Cl) is formulated to evaluate the overall model scores to determine the best-fit model
for the selected site.

Eqg.15a
AIC=2k - 2In L’
BIC=k*Inn-2InL’ Eq.15b
Cl=r+ (1-AIC) + (1-BIC)

Eq.15¢

where k equals to the number of parameters used in the model; n equals to the sample size, and L’ is the
maximum value of the likelihood function for the model.

6.4.2 Uncalibrated Approach

In the absence of coincident observations of Q and CM time series, the uncalibrated procedure uses the
same framework proposed by Tourian et al. (2013). Here, the available discharge and retrieved CM signal
time series are sorted independently in descending order. Subsequently, the corresponding exceeding
probability of each value in the time series is computed for both Q and CM time series individually by
considering their percentage of the observation periods. Here, for each site, the basic assumption is that
the insitu Q and CM signals have the same exceedance probability. Developing the joint probability
distribution by considering the individual cumulative distribution function (CDF) of Q and CM, the river
discharge could be estimated from the standalone CM signals for any gauging sites. Thus, the CDF curves
are calculated and compared to generate the percentiles associated with the discharges. With the relative
correspondences between percentiles, it is possible to generate river discharge from the reflectance time
series. Following this principle, the uncalibrated approach is performed along the selected gauging sites
to estimate the long-term river discharge time series from the CM signals.

For generating long-term discharge time series using the CM signals, the calibrated procedure is based
on the coincident observations of in situ Q and CM. The absence of CM signals during flood events due
to the presence of cloud cover in the images may affect the model parameterization to capture the high
flow dynamics both in Best Fit and Copula Fit solutions. Although the uncalibrated procedure is
independent of the coincident observations of in situ Q and CM, the availability of the in situ Q data period
is still a key concern. For instance, the hydrograph generated from a short event may not be
representative of the long-term period; thus, derived CDF cannot find the proper solution while deriving
the joint distribution, which also may add significant uncertainties while deriving long-term discharge time
series. In both calibrated and uncalibrated procedures, there are possibilities to lose the flood information
due to the unavailability of CM signals in the presence of cloud cover, which is very often too.
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[ Derive discharge from merged products

The traditional process to estimate river discharge that uses data from altimetry is here advanced with
the contribution of multispectral images and river width to overcome the limits of individual sensors
related to the temporal frequency. The merging procedure is carried out through the L3 Merging
approach.

Details on this approach will be provided in the next version of the document (v2.1).
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