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1 Introduction 

The Algorithm Theoretical Baseline Document (ATBD) provides a detailed description of the 
algorithms that are used within the ESA CCI Soil Moisture production system. The ESA CCI SM 
production system was initially developed within CCI Phases 1 & 2 and is continuously being 
updated within CCI+ to reflect the current state of the science driving the system. The aim of 
this document is to describe the algorithm development process for each of the ESA CCI SM 
products, as well as provide an executive summary setting them within framework for the CCI 
project and the ESA CCI SM production system.  

The structure of this document reflects the distinct domains of the ATBD. Sections 3 and 4 
provide a brief overview of the problem and of the ESA CCI SM production system respectively. 
Section 5 contains a brief description of soil moisture products from active microwave sensors 
used in in the ESA CCI Soil Moisture and points to the organisations responsible for their 
retrieval. Section 6 describes succinctly the VUA-NASA Land Parameter Retrieval Method 
(LPRM) for estimating soil moisture from passive microwave sensors, and section 7 provides 
a description of the methodology adopted for merging the active and passive soil moisture 
products. 

1.1 Purpose of the Document  

The ATBD is intended to provide a detailed description of the scientific background and 
theoretical justification for the algorithms used to produce the ESA CCI soil moisture data sets. 
Furthermore, it describes the scientific advances and algorithmic improvements which are 
made within the CCI project. This document is complemented by (Dorigo et al., 2017) and 
Gruber et al. (2019) which provides detailed information on the product including a quality 
assessment which shows the evolution of the product between versions. 

1.2 Targeted Audience 

This document targets mainly: 

1. Remote sensing experts interested in the retrieval and error characterisation of soil 
moisture from active and passive microwave data sets. 

2. Users of the remotely sensed soil moisture data sets who want to obtain a more in-
depth understanding of the algorithms and sources of error.  
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2 Change log 

2.1 Current version 09.0 

This document forms deliverable 2.1 of CCI+ and provides an update for the ESA CCI SM 09.0 
product expected to be publicly released in the Q1/2024. Changes between version 09.0 
algorithm and the previously used v08.1 algorithm consist of: 

 Passive 
o Medium-resolution passive-microwave product. 

A medium-resolution product with a resolution of 0.1 degrees (corresponding 
to roughly 10 km) has been produced for 2017 onwards using data from the 
SMAP and AMSR-2 radiometers. This product exploits the oversampling of the 
footprints to obtain more spatial detail. Therefore, it uses SMAP level 1B 
brightness temperatures at footprint level.  

o New approach to combine multiple SMOS incidence angles. 
SMOS measures brightness temperatures from various incidence angles. In 
version v09.0 we merge these angles with two different approaches. The first 
approach, already used for previous versions, combines the angles at the 
brightness temperature level: first compute soil moisture for the brightness 
temperatures from each incidence angle and then merge the soil moisture 
estimates using CDF matching. We add a second approach where we re-scale 
the brightness temperatures to SMAP observations using a least-squares 
approach. This procedure gives one set of brightness temperatures. Then we 
compute soil moisture from this single merged set of brightness temperatures. 

 Active  
o Updates to the active products are dependent on the (external) H-SAF project  

 Merged 
o Provision of an end-to-end uncertainty budget 
o An error characterized root-zone (volumetric) soil moisture (RZSM) product is 

generated from COMBINED for the full period 1978-2023. The RZSM estimate 
is provided with the method of Pasik et al. (2023). 

o Update of the rescaling methodology 

Version 09.0 provides data from 1978 (PASSIVE and COMBINED products) and 1991 (ACTIVE 
product) to the end of December 2023. 

2.1.1 ATBD Document 

 Updated for version 09.0. Tables and figures revised where applicable. 
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2.2 Pre v09.0 

The dataset and corresponding ATBD versions are summarised in Table 1. Further information 
can be found in the changelog provided with the data and the relevant documentation. 
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Table 1: Summary ESA CCI SM Versions Released to the Public 

Dataset 

Version 

Release date Major Changes Since Previous Versions ATBD 

Version 

V08.1 2023-08-01 The sensor specific error characterization has been adjusted to include a seasonal characterisation 
of the errors instead of a general value. This is done to better capture varying conditions between 
the seasons. Break detection and correction have been integrated into the PASSIVE, ACTIVE and 
COMBINED products instead of a separate product. 

D2.4 V1.1, 
Issue 1.0 
(CCN3) 

V07.1 2022-05-21 Inclusion of data from the new LPRMv7.0 (C-,X-,Ku-band) and LPRMv6.2 (L-band) datasets. 
Addition of data from FengYun-3C and 3D. Inclusion of data from the active sensor ASCAT-C. 
Improved inter-calibration of the active sensors. Use of an intra-annual scaling methodology to 
account for the seasonal variance in the sensor biases. 

7.1 

V06.1 2021-04-19 Inclusion of updated LPRMv6.1 data which includes improvements to inter-calibration and flagging 
as well as data being available for GPM and FY-3B. Inclusion of updated ASCAT datasets which 
includes improvements to the vegetation correction and snow / frozen conditions flagging. Updates 
to algorithm include implementation of cross-flagging, use of gap-filling the error characterisation 
per land cover class and extension of the TMI dataset to 2015. 

6.1 

v05.3 2021-02-08 Extension of the dataset until 2020-12-31. LPRMv6 data for SMAP generated from updated 
brightness temperatures (SPL3SMPv7). 

5.3 

v05.2 2020-09-08 Inclusion of SMAP data from April 2015, improved CDF-matching and updated inter-sensor scaling 
regime of AMSR2. 

5.2 

v04.7 2020-03-12 No algorithm changes since v04.4. Temporal extension to 2019-12-31.  4.7 
v04.5 2019-09-30 No algorithm changes since v04.4. Temporal extension 2018-12-31. ATBD documentation 

previously maintained separately for each of the ESA CCI SM datasets merged into a single 
document. Removal of the Active ATBD. 

4.5 

v04.4 2018-11-12 No algorithm changes since v04.1. GLDAS 2.1 now used. Flagging of high VOD for SMOS and 
AMSR2 method changed. Temporal extension to 2018-06-30. 

4.4 

v04.2 2018-01-12 The combined product is now generated by merging all active and passive L2 products directly, 
rather than merging the generated active and passive products. Spatial gaps in TC-based SNR 
estimates now filled using a polynomial SNR-VOD regression. sm_uncertainties now available 

4.2 
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Dataset 

Version 

Release date Major Changes Since Previous Versions ATBD 

Version 

globally for all sensors except SMMR. The p-value based mask to exclude unreliable input data sets 
in the COMBINED product has been modified and is also applied to the passive product. 

Masking of unreliable retrievals is undertaken prior to merging. 

v03.3 2017-11-13 Temporal extension of ACTIVE, PASSIVE and COMBINED datasets to 2016-12-31. 3.3 

v03.2 2017-02-14 Introduction of new weighted-average based merging scheme. Miras SMOS (LPRM) now integrated 
into the data products. Blending weights provided as ancillary data files. 
Blending made more conservative concerning the inclusion of single low-accuracy observations (on 
the cost of temporal coverage). Integration of Metop-B ASCAT. Error estimates which are used for 
relative weight estimation now provided alongside with the merged soil moisture observations. 
SMOS temporal coverage extended. Uncertainty estimates for soil moisture now provided from 
1991-08-05 onwards (ACTIVE),  and from 1987-07-10 onwards (PASSIVE, and COMBINED). Two new 
quality flags introduced.  

3.2 

v02.3 2016-02-08 Temporal extension to 2015-12-31. Valid_range in netCDF files now set to the packed data range. - 

v02.2 2015-12-17 Temporal coverage extended (Nov-1978 to Dec-2014). Improvement in the flagging of the active 
data where extreme high and low values are filtered. 
Email address added to metadata. 
In ancillary files latitudes now goes from positive to negative values. 
Change of product name to ESA CCI SM. Soil moisture values (flagged with values other than 0) are 
now set to NaN. 

- 

v02.0 2014-07-10 Combined product only including passive sensors (SMMR, SSM/I, TMI, AMSR-E; active: AMI-WS, 
ASCAT) with time span: 1978-11-01 to 2010-12-31. NetCDF-3 classic CF1.5 compliant. 

Active, passive and combined products made available. Dataset time span: 1978-11-01 to 2013-12-
13 (passive and combined) and 1991-08-05 to 2013-12-13 (active). Using new land mask based on 
GSHHG 2.2.2. WindSat and preliminary AMSR2 included. ERS2 included in AMI-WS dataset. Active 

- 
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Dataset 

Version 

Release date Major Changes Since Previous Versions ATBD 

Version 

data resampled with Hamming window function. Improved rescaling algorithm. Data gaps in 2003-
02-16 to 2006-12-31 filled with AMSR-E data. 

Provision of ancillary datasets (land mask, porosity map, soil texture data, AMSR-E VUA-NASA 
Vegetation Optical Depth averaged over the period 2002-2011, global topographic complexity and 
Global Wetland fraction. 

All datasets updated to include days where no observations are available. 
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3 Scope of ESA CCI Soil Moisture 

3.1 Soil Moisture Becoming an ECV 

Soil moisture is arguably one of the most important parameters for the understanding of 
physical, chemical and biological land surface processes (Legates et al., 2011). Therefore, it is 
essential for many geoscientific applications to know how much water is stored in the soil, and 
how it varies in space and time.  

For many years, soil moisture was considered to be only an "emergent ECV" because the 
retrieval of soil moisture was deemed too difficult with existing satellite sensors. Therefore, 
in recognition of the strong need for global soil moisture data sets, the European Space Agency 
(ESA) and the National Aeronautics and Space Administration (NASA) each decided to develop 
a dedicated satellite mission operating at 1.4 GHz (L-band). The first mission is the Soil 
Moisture and Ocean Salinity (SMOS) satellite that was launched in November 2009 by ESA 
(Kerr et al., 2010). The second one is NASA's Soil Moisture Active Passive (SMAP) mission that 
was launched in January 2015 (Entekhabi et al., 2010a). But, as already noted by (Wagner et 
al., 2007): “Besides these innovations in space technology, an initially less-visible revolution 
has taken place in algorithmic research. This revolution became possible thanks to the 
increasing availability of computer power, disk space, and powerful programming languages 
at affordable costs. This has allowed more students and researchers to develop and test 
scientific algorithms on regional to global scales than in the past. This has led to a greater 
diversity of methods and consequently more successful retrieval algorithms.” 

In line with the above-described developments, several global and continental-scale soil-
moisture datasets have been published and shared openly with the international community 
within the last 20 years. The very first remotely sensed global soil moisture dataset was 
published by the Vienna University of Technology (TU Wien) in 2002 and was based on nine 
years (1992-2000) of ERS C-band (5.6 GHz) scatterometer measurements (Scipal et al., 2002; 
Wagner et al., 2003). NASA released its first global soil moisture data retrieved from 
microwave radiometer measurements using the algorithms developed by Njoku et al. (2003) 
in the following year. Since then several other soil moisture data products mostly based on 
microwave radiometers (AMSR E, Windsat, etc.) have become freely available, notably the 
multi-sensor soil moisture datasets produced by Vrije Universiteit Amsterdam (VUA) in 
cooperation with NASA (Owe et al., 2008), and the WindSat soil moisture dataset produced 
by the US Naval Research Laboratory (Li et al., 2010). 

The first operational near-real-time soil moisture service was launched by EUMETSAT in 2008 
based on the METOP Advanced Scatterometer (ASCAT) and algorithms and software 
prototypes developed by TU Wien (Bartalis et al., 2007). Finally, SMOS Level 2 soil moisture 
data started to become available in 2010, with first validation results published in Albergel et 
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al. (2012). Data from NASA’s Soil Moisture Active Passive (SMAP) became available in the 
course of 2015, but unfortunately, only after 3 months of operation its radar failed thus 
impeding the continuation of the foreseen downscaled product.  

Having a number of independent satellite soil moisture data sets does not mean that it is 
straight-forward to create long-term consistent time series suitable for climate change 
studies. In fact, for the assessment of climate change effects on soil moisture even subtle long-
term trends must be detected reliably. This means that any potential influences of mission 
specifications, sensor degradation, drifts in calibration, and algorithmic changes must be 
carefully corrected for. Also, it must be guaranteed that the soil moisture data retrieved from 
the different active and passive microwave instruments are physically consistent.  

3.2 Selected Satellite Sensors 

Microwave remote sensing measurements of bare soil surfaces are very sensitive to the water 
content in the surface layer due to the pronounced increase in the soil dielectric constant with 
increasing water content (Ulaby et al. 1982). This is the fundamental reason why microwave 
techniques offer the opportunity to measure soil moisture in a relatively direct manner. For 
soil moisture studies the most important bands are: L-band (frequency f = 1 – 2 GHz, 
wavelength  = 30 – 15 cm), C-band (f = 4 – 8 GHz,  = 7.5 – 3.8 cm), and X-band (f = 8 – 12 
GHz,  = 3.8 – 2.5 cm).  

In microwave remote sensing, one distinguishes active and passive techniques. Active 
microwave sensors (scatterometers) transmit an electromagnetic pulse and measure the 
energy scattered back from the Earth’s surface. For passive sensors (radiometers), the energy 
source is the target itself, and the sensor is merely a passive receiver (Ulaby et al. 1982). 
Radiometers measure the intensity of the emission of the Earth’s surface that is related to the 
physical temperature of the emitting layer and the emissivity of the surface.  

Despite the different measurement processes, active and passive methods are closely linked 
through Kirchhoff’s law which, applied to the problem of remote sensing of the Earth’s 
surface, states that the emissivity is one minus the hemisphere integrated reflectivity 
(Schanda 1986). Therefore, both active and passive techniques deal, in principle, with the 
same physical phenomena, though the importance of different parameters on the measured 
signal may vary depending on the sensor characteristics. 

Given that an ECV data record should be as long and complete as possible, it has to be based 
on both active and passive microwave observations. The ESA CCI SM product uses both C-
band scatterometers (e.g. ERS-1/2 scatterometer, METOP Advanced Scatterometers (ASCAT)) 
and multi-frequency radiometers (e.g., SMMR, SSM/I, TMI, AMSR-E, Windsat, AMSR2, SMOS, 
SMAP, GPM and FengYun-3B). The coverage of these sensors is shown in Figure 1.  
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Figure 1: Active and passive microwave sensors used for the generation of the ESA CCI soil moisture 
v09.0 data sets. 

3.3 Baseline Requirements 

As part of the CCI Soil Moisture project, a detailed assessment of the user requirements is 
carried out at regular intervals and reported in the User Requirement Document (URD) (Dorigo 
et al, 2022). Based on the URD and the requirements as specified in the SoW (ESA, 2018), and 
drawing from the experiences of the use of the currently available satellite soil moisture data 
sets, a number of baseline requirements are specified in the following sections. 

3.3.1 Scientific Requirements 

Because several decade-long soil moisture data records have been released within the last 
decade the generic user requirements for ESA CCI soil moisture data records are already 
reasonably well understood. According to authors’ experience from the cooperation with 
users of the TU Wien and VUA-NASA soil moisture data sets (de Jeu et al., 2008; Wagner et 
al., 2007), the most important of these are as listed below.  

Note that these are suggested requirements and the ESA CCI SM product does not necessarily 
fulfil each requirement in full. Please see the URD (Dorigo et al., 2022) for further details. 

1. Soil moisture is preferably expressed in volumetric soil moisture units (m3m-3). If soil 
moisture is expressed in a different unit, the conversion rule must be specified. 
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2. From an application point of view, the ESA CCI SM data should preferably represent 
the soil moisture content in deeper soil layers (up to 1 m), not just the thin (0.5-5 cm) 
remotely sensed surface soil layer. Nevertheless, expert users typically prefer to work 
with data that are as close to the sensor measurements as possible, making the 
conversion of the remotely sensed surface soil moisture measurements to profile 
estimates themselves. 

3. When merging datasets coming from different sensors and satellites the highest 
possible degree of physical consistency shall be pursued. 

4. Due to the long autocorrelation length of the atmosphere-driven soil moisture field 
(Entin et al., 2000) a spatial resolution of ≤50 km is sufficient for climate studies. 

5. The temporal sampling interval depends on the chosen soil layer. For deeper soil layers 
(1 m) a sampling rate of 1 week is in general enough, but for the thin remotely sensed 
soil layer it is ≤1 day. 

6. Having a good quantitative understanding of the spatio-temporal error field is more 
important than working under the assumption of arbitrarily selected accuracy 
thresholds (e.g. like the often cited 0.04 m3m-3). 

7. Some soil moisture applications require a good accuracy (low bias), but for most 
applications it is in fact more important to achieve a good precision (Entekhabi et al., 
2010b; Koster et al., 2009). 

8. For climate change studies the drift in the bias and dynamic range of the soil moisture 
retrievals should be as small as possible. 

3.3.2 System Requirements 

The generation of an ESA CCI SM data set is not a one-off activity, but is in fact a long-term 
process where the ESA CCI SM product is continually improved step by step with the active 
involvement of a broad scientific community. A robust modular processing system has been 
developed so that: 

 the system supports algorithm development and is most open to broad scientific 
participatory inputs 

 algorithms can be improved while minimising reprocessing costs 
 upgrades of any of its parts are facilitated without repercussions elsewhere 
 the system can be moved to different operators if required 

The design and operations of the system is also as lightweight as possible in order to: 

 re-process ESA CCI SM data records on a frequent basis to account for Level 1 
calibration- and Level 2 algorithmic updates 

 update the ESA CCI SM datasets rapidly in case new Level 2 data sets become available 
 test alternative error characterisation, matching and merging approaches 
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 keep operations and maintenance costs low  

Please consult Kidd et al. (2013) for further details on the soil moisture ESA CCI SM production 
system, detailing its components, their functions, and interfaces. 
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4 ESA CCI SM Production Approach 

4.1 Potential and drawbacks of merging Level 1 Microwave Observations 

Probably the most straight-forward approach to generating an ESA CCI soil moisture data set 
would be to feed the Level 1 backscatter- and brightness temperature observations of all 
different active and passive microwave remote sensing instruments into one Level 2 soil 
moisture retrieval system, delivering as direct output a harmonised and consistent active-
passive based ESA CCI surface soil moisture data set covering the complete period from 1978 
to the present. As ideal as this approach may seem from a scientific point of view, there are 
some major practical problems: 

 The technical specifications of the diverse active and passive microwave sensors 
suitable to soil moisture retrieval (ASCAT, AMSR-E, SMOS, SMAP, etc.) are so different 
that it appears hardly feasible to design a one-fits-all physical retrieval algorithm. 

 The complexity of the retrieval algorithm and the requirements for high-quality 
ancillary data to constrain the retrieval process can be expected to increase drastically 
for a multi-sensor compared to a single-sensor Level 2 retrieval approach. This bears a 
certain risk of errors becoming less easily traceable. Also, the overall software system 
may not be scalable in terms of processing time and disk space. 

 For much of the historic time period (1978-2007) the spatio-temporal overlap of 
suitable active and passive microwave measurements is minimal. 

 Because the surface soil moisture content may vary within minutes to hours, 
combining measurements taken at different times of the day in multi-sensor approach 
may produce large errors. For example, that the measurements of ASCAT (9:30 and 
21:30 local time), AMSR-E (1:30 and 13:30) and SMOS (6:00 and 18:00) are currently 
well spread over the complete day. 

Each of these problems is serious enough to not consider an ESA CCI SM Production System 
based on the fusion of Level 1 microwave observations. Considered together one can conclude 
that such an ESA CCI SM Production system would neither be modular nor lightweight, which 
makes this approach technically intractable. Therefore, in the next section the fusion of Level 
2 soil moisture retrievals is discussed. 

4.2 Fusion of Level 2 Soil Moisture Retrievals 

Prior to the establishment of the ESA CCI SM product, the possibility of generating a long-term 
soil moisture data set based on Level 2 soil moisture retrievals was already demonstrated 
within the WACMOS project funded by the European Space Agency (Su et al., 2010). The Level 
2 fusion process of this early product involved first fusing all active, then passive datasets then 
merging those fused products to create a combined product.  

In this approach the three important steps in the fusion process were: 
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1. error characterisation (Su et al., 2010) 
2. matching to account for data set specific biases (Drusch et al., 2005; Reichle et al., 

2004) 
3. merging the bias-corrected datasets (Liu et al., 2011).  

The major advantage of this approach is that it allows combining surface soil moisture data 
derived from different microwave remote sensing instruments with substantially different 
instrument characteristics. It is only required that the retrieved Level 2 surface soil moisture 
data pass pre-defined quality criteria. In this way it is guaranteed that no sensor is a priori 
excluded by this approach. It is thus straight-forward to further enhance the ESA CCI SM data 
set with Level 2 data from other existing and any new sensors. 

In this approach, the ESA CCI SM Production System does not include the different Level 2 
processors. In other words, the different Level 2 baseline data can be provided by the expert 
teams and organisations for the different sensor types (scatterometers, multi-frequency 
radiometers, SMOS, SMAP, etc.) and the ESA CCI SM Production System itself only has to deal 
with the fusion process, as described above. This design is modular and lightweight, meeting 
the requirements as discussed in Section 3.3.2. 

The most serious concern related to this fusion approach is that Level 1 data processed with 
different Level 2 algorithms may not represent the same physical quantity. Fortunately, as an 
increasing number of validation and inter-comparison studies show (Albergel et al., 2012; 
Brocca et al., 2011; Gruhier et al., 2010; Rüdiger et al., 2009), the temporal soil moisture 
retrieval skills of many of the input datasets (including SMOS, ASCAT and AMSR-E) are often 
well comparable and of good quality in regions with sparse to moderate vegetation cover.  

Therefore, after bias correction and, if necessary, a conversion of units, the different Level 2 
soil moisture data sets can be merged. Nevertheless, to maximise physical consistency it is 
advisable to process all active microwave data sets with one algorithm, and all passive 
microwave data with another algorithm. For the ESA CCI SM product, the TU Wien change 
detection method is used for all active datasets and the LPRM algorithm is applied to all 
passive datasets. 

However, as different algorithms are used for the active and passive soil moisture retrievals, 
the resulting data is not directly comparable. To account for these differences, the ESA CCI SM 
product delivers three products: ACTIVE – based only on scatterometer data, PASSIVE – based 
only on radiometer data and COMBINED which uses both. It is up to the user to decide which 
of these merged soil moisture data sets is best suited for their application.  

The basic fusion concept developed within WACMOS and CCI still holds today, even though 
noticeable modifications were made over the years. The current status of the merging 
methodology is described in Section 7.   
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5 Soil Moisture Retrieval from Active Sensors 

Active microwave soil moisture products (see Figure 1 for details) utilised in the generation of 
the ESA CCI SM ACTIVE and COMBINED datasets are obtained from external operational 
sources as follows: 

 ERS-1 AMI surface soil moisture products have been generated at TU Wien (TU WIEN, 
2013). 

 ERS-2 AMI surface soil moisture data sets stem from reprocessing activities which have 
been carried out within ESA’s SCIRoCCo project (Crapolicchio et al., 2016). The ERS-2 
data set used in all ESA CCI SM versions is the ERS.SSM.H.TS 25 km soil moisture time 
series product (ESA, 2017). 

 Metop ASCAT surface soil moisture data sets stem from the EUMETSAT Satellite 
Application Facility on Support to Operational Hydrology and Water Management (H-
SAF, http://h-saf.eumetsat.int/). ESA CCI SM 09.0 uses the H-SAF H119/H120 Metop 
ASCAT SSM CDR v7 (H-SAF, 2022). Each version of the ESA CCI SM dataset uses the 
most recent and updated Metop ASCAT CDR made available by H-SAF. 



 

Algorithm Theoretical Baseline 
Document (ATBD) 

Product Version 09.0 
Date 18-03-2024 

 

  25 

6 Soil Moisture Retrieval from Passive Sensors 

Contrary to the active microwave soil moisture products, which are obtained from external 
operational sources, soil moisture products from passive microwave sensors are produced 
within the CCI project itself. They are derived from level 1 brightness temperature 
observations using the Land Parameter Retrieval Model (LPRM; van der Schalie et al., 2015, 
2017, 2018).  

6.1 Principles of the Land Parameter Retrieval Model 

Brightness temperatures can be derived from passive microwave sensors with different 
radiometric characteristics. The observed brightness temperatures are converted to soil 
moisture values with the Land Parameter Retrieval Model (LPRM; Van der Schalie et al., 2017). 
This model is based on a microwave radiative transfer model that links soil moisture to the 
observed brightness temperatures. A unique aspect of LPRM is the simultaneous retrieval of 
vegetation optical depth (VOD) in combination with soil moisture and surface temperature.  

A result of this physical parameterisation is that any differences in frequency and incidence 
angle that exist among different satellite platforms are accounted for within the framework 
of the radiative transfer model based on global constant parameters (de Jeu et al., 2014). This 
important aspect makes LPRM suitable for the development of a long-term consistent soil 
moisture products which can be used in the ESA CCI SM products.  
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Figure 2: Flowchart of the main processes of the Land Parameter Retrieval Model (LPRM). Using a 
forward modelling approach, soil moisture is solved for the value where  modelled brightness 
temperature as derived by the radiative transfer shows the minimum absolute difference as 
compared to the observed brightness temperature. 

6.1.1 Methodology 

The thermal radiation in the microwave region is emitted by all natural surfaces, and is a 
function of both the land surface and the atmosphere. According to LPRM the observed 
brightness temperature (Tb) as measured by a space borne radiometer can be described as:  

  Eqn. 6-1 

Where Γ a and Γ v are the atmosphere and vegetation transmissivity respectively, Tb_s is the 
surface brightness temperature, er is the rough surface emissivity, Tb_extra, the extra-terrestrial 
brightness temperature and Tb_u and Tb_d are the upwelling and downwelling atmospheric 
brightness temperatures. The subscript p denotes either horizontal (H) or vertical (V) 
polarisation.  

The vegetation/atmosphere transmissivity is further defined in terms of the optical depth, v/a, 
and satellite incidence angle, u, such that: 

 
 Eqn. 6-2 
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The upwelling brightness temperature from the atmosphere is estimated as (Bevis et al. 1992): 
 )1(72.02.70,_ aapub TT   

Eqn. 6-3 

 

Were Ta is the atmospheric temperature. In LPRM the downwelling Temperature (Td) is 
assumed to be equal to the upwelling temperature (Tu) and the extra-terrestrial temperature 
is set to 2.7 K (Ulaby et al. 1982). 

The radiation from a land surface (Tbp) is described according to a simple radiative transfer 
(Mo et al. 1982): 

 vvvprvvvprspsb TeTeTT  )1()1)(1()1()1( ,,,_   
Eqn. 6-4 

Where Ts and Tv are the thermodynamic temperatures of the soil and the vegetation,  is the 
single scattering albedo. 

LPRM uses the model of Wang and Choudhury (1981) to describe the rough surface emissivity 
as: 

 
uh
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Where Q is the polarisation mixing factor and h the roughness height. h is calculated using the 
related parameters h1, 𝐴௩  and 𝐵௩ , see Eqn. 6-6, to take into account the effects of soil 
moisture (θ, m3 m-3) and vegetation cover (Van der Schalie et al. (2015, 2017)]) on h. 𝑡௩ഥ  is an 
estimate of the vegetation density based on 𝑡௩ retrieved by calculating a primary LPRM run 
with 𝐴௩ and 𝐵௩ set to 1 and 0, with preferably a smoothing of ± 10 days applied to the 𝑡௩ to 
remove noise from the signal. The minimum h in LPRM is set to h1(𝐵௩𝑡௩ഥ ). 

 ℎ = ℎଵ (𝐴௩(1 − 2𝜃) + 𝐵௩𝑡௩ഥ )    Eqn. 66 

rs is the surface reflectivity and p1 and p2 are opposite polarisation (horizontal or vertical). 
The surface reflectivity are calculated from the Fresnel equations: 
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  Eqn. 6-8 

 

Where rs,H is the horizontal polarized reflectivity, and rs,V is the vertical polarized reflectivity 
and ε the complex dielectric constant of the soil surface (ε =ε’+ε”i). The dielectric constant is 
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an electrical property of matter and is a measure of the response of a medium to an applied 
electric field. The dielectric constant is a complex number, containing a real (ε’) and imaginary 
(ε”) part. The real part determines the propagation characteristics of the energy as it passes 
upward through the soil, while the imaginary part determines the energy losses (Schmugge et 
al. 1986). There is a large contrast in dielectric constant between water and dry soil, and 
several dielectric mixing models have been developed to describe the relationship between 
soil moisture and dielectric constant (Dobson et al. 1985; Mironov et al., 2004; Peplinski et al. 
1995; Wang and Schmugge 1980). In 1998 Owe and Van de Griend compared the Dobson and 
Wang and Schmugge model and they concluded that the Wang and Schmugge model had 
better agreement with the laboratory dielectric constant measurements. Consequently, LPRM 
uses the Wang and Schmugge model, which requires information on the soil porosity (P) and 
wilting point (WP), observation frequency (F), TS, and θ. 

A special characteristic of LPRM is the internal analytical approach for solving for VOD,  τv 
(Meesters et al., 2005). This unique feature reduces the required vegetation parameters to 
one, the single scattering albedo. LPRM makes use of the Microwave Polarisation Difference 
Index (MPDI) to calculate τv, The MPDI is defined as:  
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Eqn. 6-9 

 

When one assumes that τ and ω have minimal polarisation dependency at satellite scales, then 
the vegetation optical depth can be described as: 
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By using all these equations in combination with the dielectric mixing model, soil moisture can 
be solved in a forward model together with a parameterisation of the following parameters; 
atmosphere, soil and vegetation temperature (Ta, Ts, Tc), the optical depth of the atmosphere 
(τa), the roughness parameters Q and h, soil wilting point (WP) and porosity (P), and the single 
scattering albedo (ω). 
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The temperatures for LPRMv6.2 retrievals are estimated using Ka-band (37 GHz) observations 
according to the method of Holmes et al. (2009).  

For the day time (ascending) observations the following equation is used: 

 2.44898.0 37_  Vbs TT  Eqn. 
6-13 

and for the night time (descending): 

 8.44893.0 37_  Vbs TT  Eqn. 
6-14 

For LPRMv7.0, a similar linear regression is used between Ka-band observations and Ts, but 
the slope and intercept vary spatially and per frequency. More insight into this is given int the 
next section. Since the current L-band missions do not observe the Earth at the Ka-band 
frequency, they use collocated observations from other satellites to fulfil the need of Ka-band 
observations (Van der Schalie et al., 2021).  

The soil P and WP were derived from the ancillary 9km global soil attributes data set files from 
the SMAP mission (Das & O’Neill, 2020), which is a dataset that was specifically developed to 
support soil moisture retrievals from the SMAP mission. Table 2 shows the input parameters 
for LPRM for different frequencies, next section will deep dive further into the spatially 
variable parameterization for C-, X- and Ku-band. 

 

Parameter Frequency Band    

 L * (~1.4 GHz) C ** (~6.9 GHz)  X ** (~10.8 GHz) Ku ** (~19 GHz) 

τa 0 0.01 0.01 0.05 

ω 0.12 0.00-0.15 0.00-0.15 0.00-0.15 

h1 (h for Ku-band) 1.1 to 1.3 0.25 0.25 0.25 

Q 0 0.1 0.1 0.1 

AV 0.7 n/a n/a n/a 

BV 2 n/a  n/a n/a 

Table 2: Values of the different parameters used in LPRM for the different frequencies. *LPRMv6.2, ** 
LPRMv7.0. 

6.1.2 C-, X- and Ku-band Model Parametrization  

Soil moisture retrieval using higher frequencies are known to have issues in the more extreme 
climates, e.g. tropical regions, deserts and boreal forests. A single global parameterization 
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functions for L-band, but leads to questionable behaviour for some of the higher frequencies. 
For example, unnaturally high/low soil moisture values over certain land cover classes or non-
valid model retrievals. In LPRMv7.0, a variable parameterization is used. This applies to two 
parameters, dT (a local bias correction of the land surface temperature) and ⍵ (the single 
scattering albedo). 

Due to more dynamic VOD behaviour as compared to L-band, the VOD based vegetation 
correction has too much impact on the soil moisture signal from C-, X- and Ku-band. Therefore, 
we have studied ways to remove this effect from LPRM for the higher frequencies. Together 
with the renewed parameterization, the roughness (see Eqn 6-15) has now been simplified to 
the soil moisture and Porosity (P) dependent: 

 ℎ = ℎ1 ∗ (𝑃 − 𝑆𝑀)/𝑃 Eqn. 
6-15 

 

( ) 

with h being 0 minimal, so when SM reaches higher than the porosity, h will be 0. 

Prior to the optimization of the parameters, the temperature relation with Ka-band has been 
revisited for use in LPRMv7. In which a local slope and intercept has been calculated between 
Ka-band and the average of the ERA5-Land land surface temperature (0cm) and ERA5-Land 
layer 1 soil temperature (0-7cm), see Figure 3. As this dataset is known to have a good quality 
and the expected seasonal behaviour. 
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Figure 3: Slope, Intercept and Correlation of Ka-band against ERA5-Land temperature. Note that the 
interpolation over the tropical region in Africa has since been improved, however of little importance 
as they are generally masked areas in the final product. 

On top of this new local temperature relation, the dT is then used in the optimization to 
correct the effective temperature from the microwave emission, assuming that the seasonal 
dynamics are similar to that of ERA5-Land. During testing a variable slope has also been 
considered, but this gave a negligible effect on final results. The optimization process for both 
parameters (simultaneously) searches for the best correlation against SMAP L-band LPRM and 
limits the results to datasets that had at least >90% valid retrievals between 0.01 And 0.75 
m3m-3. Resulting parameterization can be found in Figure 4, with an example of the final 
quality and the standard deviation, 10/90 percentiles in Figure 5. 
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Figure 4: ⍵, the single scattering albedo, and dT, local bias correction of the land surface temperature, 
results from the optimization for C-, X- and Ku-band. 

 
Figure 5: The 10/90 percentiles (P10/P90) and standard deviation (STDEV) of the LPRMv7 soil moisture 
retrievals from C-, X- and Ku-band. Note that Greenland is normally not run and therefore shows 
artefacts that are not in the final product. 
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6.1.3 Day-time Retrievals 

The temperature distribution within the vegetation and soil is not in equilibrium during the 
1:30 am observations, and with the situation varying throughout the seasons, a standard 
approach of optimizing LPRM left too many regions without a functional parameterization. 
Therefore, an alternative was found that corrects the daytime brightness temperatures to 
nighttime values, and is applied to all frequencies including Ka-band for the temperature 
retrieval. This was done using the following steps: 

 

1. Linearly interpolated gap-filled time series dataset for daytime and nighttime 
brightness temperature observations, to allow for sufficient overlap. 

2. Calculate the median ratios between daytime and nighttime observations over 3 week 
(±10 day) windows. The median was chosen over the mean to reduce the impact of 
strong individual events between overpasses.  

3. Apply these ratios to correct the daytime observation to nighttime. 
4. Apply LPRM to the dataset using the exact same parameterization as for nighttime 

retrievals  

 

The resulting skill of the daytime retrievals from AMSR2 using LPRMv7.0 can be seen in Figure 
6. The daytime values are still reaching good (r > 0.6) correlations over much of the same 
regions where the nighttime performs well against SMAP Level 4 SM. Because the theoretical 
issue of non-existing thermal equilibrium for midday observations remains present within the 
vegetation and soil surface, an increase in overall noise within the daytime datasets does lead 
to an average decrease in correlation, therefore when available the nighttime retrievals will 
still have a preference.  
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Figure 6: Visualized correlation of nighttime (descending) and daytime (ascending) observations 
against SMAP Level 4 SM, for C- (6.9 GHz), X- (10.7 GHz), and Ku-band (18.7 GHz) from AMSR2, using 
LPRMv7.0. 

 

The daytime to night-time methodology is applied to all sensors except for SMOS. Preference 
(night-time) is given to observations done between 7pm and 7am local solar time. So that for 
example means that for SMAP the ascending 6 pm observations are matched to the 6 am 
descending observations.  

The multiple incidence angle for SMOS make this approach not yet applicable, therefore that 
is the only sensor that still has a non-corrected daytime dataset. Current activities are ongoing 
to derive single angle, SMAP-like brightness temperature observations from SMOS. This is 
beneficial for use within LPRM, as it was designed for use with single incidence angle 
observations and allows for the daytime correction. This is expected in upcoming version of 
the ESA CCI SM.  

6.1.4 SMOS Incidence angles 

SMOS measures brightness temperatures at various incidence angles. To compute a single 
soil-moisture estimate from multiple incidence angles, a merging approach is needed. We use 
two different merging approaches: 

 Merging at the soil moisture level. 
For the passive and merged products, we first compute soil moisture for six incidence 
angles (32.5, 37.5, 42.5, 47.5, 52.5, and 57.5 degrees). We then merge these six 
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estimates into one estimate using CDF matching to the 42.5-degree estimate. 
Because not all incidence angles have the same swath width, we scale using all 
available incidence angles per pixel. 
 

 Merging at the brightness temperature level. 
For the model-free product, we want to get as close to the SMAP observations as 
possible. Therefore, we re-scale the SMOS brightness temperatures to SMAP. To do 
so, we express the brightness temperatures as a combination of the SMOS brightness 
temperatures at various incidence angles: 

 BTmerged = c0 + c1 BTsmos,32.5 + c2 BTsmos,37.5 + c3 BTsmos,42.5 Eqn. 
6-16 

The coefficients have been estimated per pixel as described in Madelon et al. (2023): 
the linear combination of the parameters is chosen such that the resulting brightness 
temperatures minimize the squared difference with SMAP brightness temperatures. 
We do this for both horizontally and vertically polarized brightness temperatures. We 
then compute soil moisture from these brightness temperatures.  

 

6.2 Known Limitations 

The known limitations in deriving soil moisture from passive microwave observations are 
listed and described in detail in this section. These issues not only apply to the LPRM data used 
in the current CCI soil moisture dataset release (v09.0) but also to soil moisture retrievals from 
passive microwave observations in general.  

6.2.1 Vegetation  

Vegetation affects the microwave emission, and under a sufficiently dense canopy the emitted 
soil radiation will become completely masked by the overlaying vegetation. The 
simultaneously derived VOD can be used to detect areas with excessive vegetation, of which 
the boundary varies with observation frequency. 

Figure 7 gives an example of the relationship between the analytical error estimate in soil 
moisture as described in the previous section and VOD. This figure shows larger error values 
in the retrieved soil moisture product for higher frequencies at similar vegetation optical 
depth values. 

For example, for a specific agricultural crop (VOD=0.5), the error estimate for the soil moisture 
retrieval in the C-band is around 0.07 m3·m−3; in the X-band, this is around 0.11 m3·m−3, and 
in the Ku-band, this is around 0.16 m3·m−3. All relevant frequency bands show an increasing 
error with increasing vegetation optical depth. This is consistent with theoretical predictions, 
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which indicate that, as the vegetation biomass increases, the observed soil emission 
decreases, and therefore, the soil moisture information contained in the microwave signal 
decreases (Owe et al., 2001). 

In addition, retrievals from the higher frequency observations (i.e., X- and Ku-bands) show 
adverse influence by a much thinner vegetation cover.  

 

 
Figure 7: Error of soil moisture as related to the vegetation optical depth for 3 different frequency bands 
(from Parinussa et al., 2011). 

 
For the L-band based retrievals from SMOS, the vegetation influence is less as compared to 
the C-, X- and Ku-band retrievals, which can be seen from the Rvalue and Triple Collocation 
Analysis (TCA) results in Figure 8 (top). In Figure 8 (bottom), the SMOS LPRM and AMSR-E 
LPRM (based on C-band) are included and shows more stable results over dense vegetation, 
i.e. NDVI values of over 0.45. 
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Figure 8: Triple collocation analysis (TCA: top) and Rvalue results (bottom) for several soil moisture 
datasets, including SMOS LPRM and AMSR-E LPRM, for changing vegetation density (NDVI). Based on 
(van der Schalie et al., 2018). 

 

6.2.2 Frozen Surfaces and Snow 

Under frozen surface conditions the dielectric properties of the water changes dramatically.  
As snow cover, ice, and frozen conditions were demonstrated to have a big impact on data 
quality and availability within the current Passive product, a uniform satellite driven flagging 
strategy was designed by Van der Vliet et al. (2020). Prior to this, all pixels where the surface 
temperature is observed to be at or below 274.15 K are assigned with an appropriate frozen 
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data flag, this was determined using the method of Holmes et al. (2009). However, as this 
methodology is insufficiently accurate in detecting the transition to snow and frozen 
conditions, the new methodology was introduced by Van der Vliet et al. (2020), which uses 
three frequencies (Ku-, K- and Ka-band) to properly flag these conditions. 

6.2.3 Barren Grounds and Desert Areas 

Very dry conditions above deserts and other barren areas lead to subsurface scattering 
phenomena and complicate the process of defining a correct land surface temperature due to 
the increased sensing depth. To account for errors in very dry soils affecting the passive 
retrieval, flagging of these conditions is applied. Figure 9 (left) illustrates how barren grounds 
can likely be flagged in a similar manner as the snow/frozen conditions (Van der Vliet et al., 
2020). Based on MODIS Landcover data1 a first classification was made in LPRMv7 that was 
stepwise improved by considering the spatial patterns. The related decision tree can be found 
in Figure 9 (right). 

 
Figure 9: (left) Barren ground and related desert regions are clearly visible when using the first step of 
the snow/frozen flag without the correction for low physical temperatures. (right) Final decision tree 
for the barren soil flagging. 

 

The dynamic behaviour of barren ground conditions is captured well, as displayed in Figure 
10. 

 
1 https://lpdaac.usgs.gov/products/mcd12c1v006/ 
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Figure 10: Example of resulting flags for four different months in the year. 

6.2.4 Water Bodies 

Water bodies within the satellite footprint can strongly affect the observed brightness 
temperature due to the high dielectric properties of water. Especially when the size of a water 
body changes over time they can dominate the signal. LPRM uses a 5 % water body threshold 
based on MODIS observations and pixels with more than 5 % surface water are masked (Owe 
et al., 2008). 

6.2.5 Rainfall 

Rainstorms during the satellite overpass can strongly affect the brightness temperature 
observations, and are therefore should be flagged in LPRM. Ongoing investigations are done 
to define a proper filtering mechanism derived from the passive microwave observations 
themselves. Currently, only strong events are removed due to its effect on the retrieved 
temperature from Ka-band, which then drops below 274.15K.  

6.2.6 Radio Frequency interference 

Natural emission in several low frequency bands are affected by artificial sources, so called 
Radio Frequency Interference (RFI). As a diagnostic for possible errors an RFI index is 
calculated according to De Nijs et al. (2015). Most passive microwave sensors that are used 
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for soil moisture retrieval observe in several frequencies. This allows LPRM to switch to higher 
frequencies in areas affected by RFI. 

The new methodology that is used since LPRMv6 for RFI detection uses the estimation of the 
standard error between two different frequencies. It uses both the correlation coefficient 
between two observations and the individual standard deviation to determine the standard 
error in Kelvin. A threshold value of 3 Kelvin is used to detect RFI. This method does not 
produce false positives in extreme environments and is more sensitive to weak RFI signals in 
relation to the traditional methods (e.g. Li et al., 2004).  

As the currently integrated SMOS mission does not have multiple frequencies to apply this 
method, here we base the filtering on the RFI probability information that is supplied by in the 
SMOS Level 3 data. SMAP, by using different channels around 1.4GHz, already has an internal 
mitigation of RFI that removes almost all occurrence of RFI, therefore no extra filtering is 
needed for use with the ESA CCI SM.  
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7 ESA CCI SM Merging Algorithm 

7.1 Principles of the Merging Process 

The ESA CCI SM project provides three soil moisture datasets: 
1. ACTIVE – a dataset generated from active scatterometers using the TU Wien change 

detection algorithm, with the ASCAT datasets provided through H-SAF (1991 – 2023). 
Break-adjusted from v9.0 onward. 

2. PASSIVE – a dataset generated from passive radiometers using the LPRM algorithm 
(1978 – 2023). Break-adjusted from v9.0 onward. 

3. COMBINED – a dataset incorporating all of the sensors included in the ACTIVE and 
PASSIVE datasets (1978-20213) and break-adjusted from v8.0 onward to correct for 
temporal SM breaks according to the methods described in section 7.2.7. 

4. Gap-filled (1978-2023, new at ESA CCI SM v08.0) – a dataset based on COMBINED 
where data gaps have been filled using the method described in section 7.2.9 

5. Model-independent (2010-2023, new at ESA CCI SM v08.0) – a dataset based on 
COMBINED where the rescaling reference has been replaced with an L-Band dataset 
derived from SMAP and SMOS, as detailed in section 7.2.8 

Details of the sensors used in the generation of the ESA CCI SM datasets are provided in Table 
3 and Table 4 with a visual example (v7.0 based) provided in  

Figure 11. 

The homogenised and merged products represent surface soil moisture with a global coverage 
and a spatial resolution of 0.25°. The time period spans the entire period covered by the 
individual sensors, i.e., 1978 – 2023, while measurements are provided at a 1-day sampling. 
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Figure 11: Example Overview of the time periods used for each of the products of ESA CCI SM v9.0 . 
Satellite input is correct, end dates may vary, see Table 3. 
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Table 3: Major characteristics of passive microwave instruments used in ESA CCI SM 

 

Passive microwave products 

SMMR SSM/I, SSMIS TMI AMSR-E AMSR2 Windsat MIRAS SMAP  GMI MWRI MWRI MWRI 

Platform Nimbus 7 DMSP TRMM Aqua GCOM-W1 Coriolis SMOS SMAP GPM  FY-3B FY-3C FY-3D 

Product LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

LPRM 
(VanderSat) 

Product 
Source 

EUMETSAT 
CM SAF 

NASA 
EarthData, 

XCAL 
calibrated 
with GPM 

NASA 
EarthData, 

XCAL 
calibrated 
with GPM 

JAXA, G-portal JAXA, G-portal Bespoke order CATDS NASA 
EarthData 

NASA 
EarthData, 

XCAL 
calibrated 
with GPM 

nsmc nsmc nsmc 

Algorithm  
Product 
version 

LPRM v7.0  (2) LPRM v7.0 (2) LPRM v7.0 (2) LPRM v7.0 (2) LPRM v7.0 (2) LPRM v7.0 (2) 
LPRM v06.2 (2, 

3) 
LPRM v06.2 (2, 

3) LPRM v7.0 (2) LPRM v7.0 (2) 
LPRM v7.0 

(2) 
LPRM v7.0  

(2) 

Time period 
used 

11/1978– 
8/1987 

09/1987– 
12/2022 

01/1998– 
04/2015 

07/2002– 
10/2011 

05/2012–  
12/2023 

10/2007– 
7/2012 

01/2010– 
12/2023 

04/2015- 
 12/2023 

03/2014 – 
12/2023 

11/2010 – 
08/2019 

09/2013 – 
02/2020 

01/2019 – 
12/2023 

Channel used 
for soil 

moisture 
6.6 GHz 19.3 GHz 10.7 GHz 6.9/10.7 GHz 6.9/10.7 GHz 6.8/10.7 GHz 1.4 GHz 1.4GHz 10.7 GHz 10.7 GHz 10.7 GHz 10.7 GHz 

Original 
spatial 

resolution(1) 
(km2) 

150×150 69 × 43 59 × 36 76 × 44 35 x 62 25 x 35 40 km 38 x 49 19x32 51 x 85 51 x 85 51 x 85 

Spatial 
coverage 

Global Global N40o to S40o Global Global Global Global Global N70o to S70o Global Global Global 

Swath width 
(km) 780 1400 

780/897 after 
boost in Aug 

2001 
1445 1450 1025 600 1000 931 1400 1400 1400 

Equatorial 
crossing time 

Descending: 
0:00 

Descending: 
~06:30 

(drifting 
orbits) 

Varies (non 
polar-orbiting) 

Descending: 
01:30 

Descending 
01:31 

Descending 
6:03 

Ascending 
6:00 

Descending 
06:00 

Varies (non 
polar-orbiting) 

Descending: 
01:30 

Descending: 
10:30 

Descending: 
01:30 

Unit m3m-3 m3m-3 m3m-3 m3m-3 m3m-3 m3m-3 m3m-3 m3m-3 m3m-3 m3m-3 m3m-3 m3m-3 

(1) For passive microwave instruments, this stands for the footprint spatial resolution. 
(2) LPRM references: van der Schalie et al. (2015, 2017, 2018), van der Vliet (2020) 

 (3) LPRM v6.2 consists of a temporal extension of LPRMv6.1, including day time retrievals and barren soil filtering 
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Table 4: Major characteristics of active microwave instruments and model products used in ESA CCI SM 

 
Active microwave products Model product 

AMI-WS AMS-WS ASCAT ASCAT ASCAT GLDAS-2-Noah GLDAS-2-Noah 

Platform ERS1/2 ERS2 Metop-A Metop-B Metop-C --- --- 

Product 
SSM Product 

(TU WIEN, 
2013) 

SSM Product 
(Crapolicchio et 

al., 2016) 

H 119 (H-SAF 
2019a and 

2019b) 

H 119 (H-SAF 
2019a and 2019b) 

H 119 (H-SAF 
2019a and 2019b) 

--- --- 

Algorithm  
Product version 

TU WIEN 
Change 

Detection (2) 

TU WIEN Change 
Detection (3) 

TU WIEN 
Change 

Detection (3) 

TU WIEN Change 
Detection (3) 

TU WIEN Change 
Detection (3) 

V2.0 V2.1 

Time period used 
7/1991– 
12/2006 

5/1997– 
2/2007 

1/2007– 
12/2020 

11/2012– 
12/2023 

11/2018– 
12/2023 

1/1948– 12/2010 
1/2000– 
12/2023 

Channel used for 
soil moisture 

5.3 GHz 5.3 GHz 5.3 GHz 5.3 GHz 5.3 GHz --- --- 

 Original spatial 
resolution(1) (km2) 50 × 50 25 x 25 25 × 25 25 × 25 25 × 25 25 × 25 25 × 25 

Spatial coverage Global Global Global Global Global Global Global 

Swath width (km) 500 500 1100 (550×2) 1100 (550×2) 1100 (550×2) --- --- 

Equatorial 
crossing time 

Descending: 
10:30 Descending 10:30 

Descending: 
09:30 

Descending: 
09:30 

Descending: 
09:30 --- --- 

Unit 
Degree of 

saturation (%) 
Degree of 

saturation (%) 
Degree of 

saturation (%) 
Degree of 

saturation (%) 
Degree of 

saturation (%) kg m-2 kg m-2 

(1) For active microwave instruments, this stands for the footprint spatial resolution. 
(2) TU Wien change detection algorithm references for AMI-WS: Wagner et al. (1999) 
(3) Most recent H-SAF references for ASCAT: H-SAF (2019a, 2019b) 
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7.2 Algorithm Description 

The level 2 surface soil moisture products derived from the active and passive remotely sensed 
data undergo a number of processing steps in the merging procedure (see Figure 12 for an 
overview): 

1. Spatial resampling and temporal resampling (including flagging and cross-flagging of 
observations) 

2. Rescaling passive and active level 2 observations into radiometer and scatterometer 
climatologies (for the PASSIVE and ACTIVE product), and separately rescaling all level 
2 observations into a common model-based climatology (for the COMBINED product) 

3. Triple collocation analysis (TCA)-based error characterisation of all rescaled level 2 
products 

4. Polynomial regression between VOD and error estimates to fill spatial gaps where 
errors could not be reliably retrieved i.e., where TCA is deemed unreliable 

5. Merging rescaled passive and active time series into the PASSIVE, ACTIVE, and 
COMBINED products, respectively. 

6. Removing breaks in all products 

 
Figure 12: Overview of the processing steps in the ESA CCI SM product generation (v09.0): The merging  
of two or more data sets is done by weighted averaging and involves overlapping time periods, whereas 
the process of joining data sets only concatenates two or more data sets between the predefined time 
periods. The join process is performed on datasets of each lines and on datasets separated by comma 
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within the rectangular process symbol. *The [SSM/I, TMI] period is specified not only by the temporal, 
but also by the spatial latitudinal coverage (see Figure 18). 

 

In this section the algorithms of the scaling and merging approach are described. Notice that 
several algorithms, e.g. rescaling, are used in various steps of the process, but will be described 
only once. 

7.2.1 Resampling 

The sensors used for the different merged products have different technical specifications 
(Table 3 and Table 4) with clear differences in spatial resolution and crossing times. Both 
elements need to be brought into a common reference before the actual merging can take 
place. 

Spatial Resampling 

The final CCI SM merged products are provided on a regular grid with a spatial resolution of 
0.25° in both latitude and longitude extension. This is a trade-off between the higher 
resolution scatterometer data and the generally coarser passive microwave observations 
without leading to any under-sampling. The same resolution is often adopted by land surface 
models.  

For the LPRM passive data, nearest neighbour resampling is performed on the radiometer 
input data sets to bring them into the common regular grid. Following this resampling 
technique each grid point in the reference (regular grid) data set is assigned to the value of 
the closest grid point in the input dataset. In general, the nearest neighbour resampling 
algorithm can be applied to data set with regular degree grid. 

For the active microwave data sets, where equidistant grid points are defined by the geo-
reference location of the observation, the hamming window function is used to resample the 
input data to a 0.25° regular grid. The search radius is a function of latitude of the observation 
location, as the distance between two regular grid points reduces as the location tends 
towards the poles. In contrast, the active microwave data set uses the discrete global grid 
(DGG), where the distance between every two points is the same. This main difference 
between the DGG (active) and the targeted regular degree grid is rectified by using a hamming 
window with search radius dependent on the latitude for the spatial resampling of the active 
microwave data. 

Temporal Resampling 

The temporal sampling of the merged product is 1 day. The reference time for the merged 
dataset is set at 0:00 UTC. For each day starting from the time frame center at 0:00 UTC 
observations within ±12 hours are considered.  
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The temporal resampling strategy firstly searches for the valid observation that is closest to 
the reference time. In the case that there are only invalid observations, which are flagged 
other than “0” (zero), within this time frame, the closest measurement among these invalid 
observations is selected. In the event that there are no measurements available at all within 
a time frame, no value is assigned to that day. This strategy results in data gaps when no 
observations within ±12 hours from the reference time are available. 

Starting from v07.1, day time observations are available from the passive sensors (LPRMv7). 
While it is planned in future dataset versions to achieve a sub-daily temporal resolution, in 
v07.1 the temporal resampling applies indistinctly to day- and night-time observations. 

Flagging 

During the temporal resampling stage, flagging is applied to the datasets where relevant 
information is available. The key flags set during this process are ‘frozen’, ‘high VOD’ and 
‘Other’ and these flags are propagated through the entire processing chain to the final 
product. 

The ASCAT and ERS products include a Surface State Flag (SSF) which effectively encodes 
information about whether or not the surface is frozen or snow-covered. In the ESA CCI SM 
product, those soil moisture values where the SSF is greater than 21 (i.e. 2) are used to flag 
the observation as frozen. The ASCAT and ERS products do not provide information on high 
VOD. 

The LPRMv6.1 (and following) products provide a FLAGS field which provides information on 
high VOD, frozen conditions and the performance of the LPRM algorithm. The thresholds 
above which VOD is considered ‘high’ are set based on the saturation point in the VOD signal 
for each sensor and band. This is the point at which the VOD value is considered to equal 100% 
vegetation signal. Secondly, the frozen/snow flag was applied using the new approach by Van 
der Vliet et al. (2020), which derives the frozen/snow conditions from Ku-, K- and Ka-band 
observations. In addition to this, from LPRMv7 onwards a flag for barren grounds and desert 
areas is included (see section 6.2.3). This is implemented as an advisory flag as of CCI SM v7.1. 
Including it as a critical flag would have a big impact on the soil moisture availability in desert-
prone regions. Therefore more validation is needed to establish whether the optional usage 
of the barren ground flag or a more conservative version thereof (as a critical flag) is suitable 
in CCI SM. New at CCI SM v09.0 is the implementation of cross-flagging for frozen soils. This 
means that any frozen flags provided in any of the datasets are effectively transferred to all 
of the datasets. It works by reading in all of the flag data for all of the datasets, determining if 
the frozen flag is set in any of them and then if it is, applying it to all those observations in all 
of the sensors.  
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7.2.2 Merging ASCAT 

In the time period from 6 November 2012 to 31 December 2023 Metop-A ASCAT, Metop-B 
ASCAT and Metop-C ASCAT data are available. These datasets are merged by applying the 
arithmetic average for locations, where more than one observations is available, otherwise 
either one of the three is then used. 

7.2.3 Rescaling 

Rescaling Methodology 

Due to different observation frequencies, observation principles, and retrieval techniques, the 
contributing soil moisture datasets are available in different observation spaces. Therefore, 
before merging can take place, the datasets need to be rescaled into a common climatology. 

Until version v08.1 a cumulative distribution function matching was used to calibrate the 
different climatologies. Such method performs a piecewise linear regression between equally 
sized percentile bins (Drusch et al., 2005; Liu et al., 2007; Liu et al., 2011; Reichle et al., 2004, 
Moesinger et al., 2020). However, after the introduction of a seasonal rescaling approach (see 
paragraph below), a simple mean-standard deviation matching approach was considered 
more suitable:  

 𝑌  =  
(𝑌 −  𝑌ത)

𝑆𝑇𝐷 𝐷𝑒𝑣(𝑌)
𝑆𝑇𝐷 𝐷𝑒𝑣(𝑋) +  𝑋ത Eqn. 7-1 

 

  

With Y the source, X the reference, and 𝑌 the rescaled time series. This is justified by the 
following: 

1. The availability of data can be largely reduced at specific days-of-year due e.g. to 
mostly frozen soil conditions. In this scenario, the CDF matching method being more 
data greedy is likelier to fail or provide poorly-fitted results which result in outliers. 

2. The CDF-matching method is more computationally intensive and results in slow 
processing if repeated 366 times for a single time series 

3. The CDF-matching can partly remove temporal patterns in the source time series when 
applied on a seasonal basis. This is because the method reproduces the exact same 
CDF of the reference, which in certain cases misses seasonal features (e.g., the GLDAS 
model lacks an irrigation module and can underrepresent SM peaks in the dry season). 

 To demonstrate point 3., Figure 13 shows the comparison of correlation between the source 
and rescaled time series (RY, Y_x) with the Mean-STDD and the CDF-matching method. 
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Noticeably, the correlation is higher for the Mean-STDD which illustrates how the method is 
less “destructive” or in other words better able to preserve the original signal of Y. 

 
Figure 13: Difference between the correlation of SMAP and SMAP rescaled to GLDAS using a STD 
Deviation or a CDF-matching method and a seasonal merging with a 90 days window. 

 

Intra-annual bias correction 

From version v07.1 of CCI SM, the source and reference samples used in the scaling procedure 
are first divided into 366 subsets corresponding to the data points belonging to each day of 
the year. The scaling parameters are then calculated and applied separately to each subset, 
effectively providing a seasonality and thus accounting for non-stationary biases between the 
different sensors (or between a sensor and the reference model). These biases are generated 
by the different effect that the seasonally variable environmental conditions exert on the 
retrieval. One of such effects is for instance the vegetation state which impacts differently the 
scatterometric and radiometric datasets. The size of the window is calibrated to avoid that 
too much of the scaling reference signal is superimposed in the rescaled time series, which 
can happen if the source and reference time series have differing temporal patterns, for 
narrow window sizes. The calibration criterion is to retain an arbitrary level of correlation (RY, 
Y_x) > 0.75. Three separate window size prescription maps are used for ACTIVE sensors, 
PASSIVE sensors with high temporal frequency, and PASSIVE sensors with low temporal 
frequency Figure 14. 

 
Figure 14: Prescribed window size for ASCAT in days of the year. 
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As the time series are subset into smaller samples, it can occur that the calculation of scaling 
parameters relies on too few observations, leading to overfitting. To avoid this, a  threshold 
of a minimum of 20 points is used, below which the parameters are not calculated. In this 
case, the global time series parameters are used, allowing to prevent data loss. 

Rescaling of Active Datasets 

Different sensor specifications between ERS1/2 and ERS2 (e.g. spatial resolution) need to be 
compensated for using scaling. The CDF curves for ERS2 are calculated based on the overlap 
with ERS1/2. Rescaling ERS2 against ERS1/2 and then joining them generates the AMI-WS 
active data set, which is subsequently scaled to the Metop-A ASCAT data (ACTIVE product) or 
the GLDASv2.1 data (COMBINED product) (see Figure 12). 

For the ACTIVE product, the limited overlap between AMI-WS ERS1/2 and Metop-A ASCAT in 
time (i.e., a few months) rules out the global adjustment method based on the information of 
their overlapping period. However, as retrievals from Metop-A ASCAT and AMI-WS capture 
similar seasonal cycles (Liu et al., 2011), we assume that their dynamic ranges are identical 
and therefore, can use non-overlapping observations for the rescaling (i.e. the entire time 
period for each sensor).  

From evaluation of previous versions to v07.1, it was noticed that the soil moisture (and 
backscatter) signal from Metop-B ASCAT is characterized by a positive bias  on a global level. 
This has a detrimental effect particularly on the soil moisture trends from the ACTIVE product. 
To correct for this, Metop-B ASCAT is scaled to the reference of –A leading to a 
homogenization of the data record, as shown in Figure 15. A similar scaling is applied to match 
Metop-C ASCAT. 

 
Figure 15: Comparison of global and hemispheric averages of soil moisture from ASCAT before (left) 
and after rescaling of Metop-B ASCAT on -A.  

Rescaling of Passive Datasets 
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The seasonal cycle associated with the SSM/I dataset is deemed to be unreliable and 
therefore, for all CCI products, the SSM/I seasonal cycle is replaced with that from AMSR-E. 
The high frequency variations (anomalies) associated with SSM/I are scaled to those from 
AMSR-E prior to recombining the decomposed signal. An example of the SSM/I decomposition 
and rescaling is shown in Figure 16. 

For the PASSIVE product, all datasets with the exception of SMAP are rescaled to AMSR-E. 
Where sufficient overlap is available, this is utilised; for all other cases (except AMSR2), the 
entire time period of AMSR-E and the sensor being scaled is utilised. For AMSR2, data in the 
last three years of AMSR-E and the first three years of ASMR2 are used, i.e. 2008-10-04 to 
2015-07-01. SMAP is rescaled to AMSR2 which has already been rescaled to AMSR-E.  

Rescaling in the COMBINED product 

For generating the combined product, all passive and active level 2 data sets are rescaled 
against GLDASv2.1, with the exception of ERS1/2, ASCAT and SSMI which are discussed above. 
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Figure 16: Example illustrating how (a) the TMI was rescaled against AMSR-E, (b-e) the SSM/I 
anomalies were rescaled against AMSRE-E anomalies, reconstructed and merged with rescaled TMI 
and AMSR-E, and (e) the SMMR was rescaled and merged with the others. The grid cell is centred at 
13.875°N, 5.875°W (Image courtesy Liu et al., 2012). 

7.2.4 Error characterisation 

Errors in the individual active and passive products are characterized by means of triple 
collocation analysis (TCA). These errors are used both for estimating the merging parameters 
and for characterising the errors of the merged product (see section 7.2.5). 

TCA is a statistical tool that allows estimating the individual random error variances of three 
data sets without assuming that any of them are acting as supposedly accurate reference 
(Gruber et al., 2016). This method requires the errors of the three data sets to be uncorrelated, 
therefore triplets always comprise of (i) an active data set, (ii) a passive data set, and (iii) the 
GLDAS-Noah land surface model, which are commonly assumed to fulfil this requirement 
(Dorigo et al., 2010). Error variance estimates are obtained as: 
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Eqn. 7-2 

 

where 𝜎ఌ
2 denotes the error variance; 𝜎ଶand 𝜎 denote the variances and covariances of the 

data sets; and the superscripts denote the active (a), the passive (p), and the modelled (m) 
data sets, respectively. For a detailed derivation see Gruber et al. (2016).  

The error estimates detailed above represent the average random error variance of the entire 
considered operational time period of a sensor, which is commonly assumed to be stationary. 
The soil moisture uncertainties of the three products (ACTIVE, PASSIVE, and COMBINED) have 
been determined until v07.1 through the above equations, which caused the uncertainty 
estimates provided with the product to apply to an entire merging period and not vary with 
every (observation) timestamp. However, a seasonal characterisation of the error is 
fundamental to understand the error structure in EO-based soil moisture estimates and its 
coupling with temporally dynamic scene characteristics (Zwieback et al., 2018) and can 
ultimately benefit various aspects of study where observation reliability is highly valued, 
spanning from model assimilation to seasonal yield forecast. For this reason, a new approach 
is used as of ESA CCI SM v08.0, where TCA is performed using moving temporal subsets as in 
7.2.3. Each subset comprise all the observations included in a 3-month window centred on 
each month of the year, therefore providing an error estimate that is representative of the 
relative month. The comparison between a static and seasonal approach is illustrated below 
(Figure 17). 

 

 
Figure 17: Comparison between the static uncertainty (v07.1 and before) and the seasonal uncertainty 
(monthly resolution, v08.0 and following) characterization with TCA for ASCAT and AMSR2. On the 
background, VOD from VODCA C-Band (Moesinger et al., 2020) is shown. 
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As expected, the error structure and the relative performance between the two sensors is 
reflecting the seasonal vegetation patterns (Dorigo et al., 2010). The relative weights of the 
sensors change accordingly throughout the year, as given by equations 7.4-5. 

7.2.5 Error Gap-Filling 

TCA does not provide reliable error estimates in all regions, mainly if there is no significant 
correlation between all members of the triplet, which often happens for example in high-
latitude areas or in desert areas. TCA error estimates are therefore disregarded where the 
Pearson correlation between any of the data sets is deemed insignificant (i.e. p-value < 0.05).  

In these areas, error estimates are derived by deriving an SNR-VOD regression model per land 
cover class and using this to determine the SNR based on the VOD at each location where SNR 
could not be retrieved: 

  

 𝑆𝑁𝑅௫ =  𝑎𝑉𝑂𝐷௫


ே

{ୀ}

  Eqn. 7-3 

Where the subscript denotes the spatial location; and the parameters 𝑎 are derived from the 
polynomial regression. For TMI and WINDSAT third order polynoms (N=3) are used and for all 
other sensors second order polynoms (N=2) are used, which was empirically found to provide 
the best regression results. 

7.2.6 Merging 

The merging procedure is undertaken separately for each of the ESA CCI SM products (ACTIVE, 
PASSIVE and COMBINED) from the rescaled L2 products. The merging periods used in each 
product are shown in Figure 18 and details of each merging period are listed in Table 5 
(ACTIVE0,) Table 6 (PASSIVE) and  (COMBINED). 

Considering the covering period of each microwave instrument we divided the entire time 
period (1978 – 2023 ) into eleven segments. Table 5, Table 6 and Table 7 list these time 
periods, and Figure 18c illustrates also the spatial sensor usage at global scale. 
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Figure 18: Spatial and temporal coverage of different sensors in the CCI SM v09.0 products. All 
sensors contribute to the COMBINED product, those in red contribute to the PASSIVE product and 
those in blue contribute to the ACTIVE product. Note that data from the TMI sensor is only available 
between -37o and +37o. 

 

Table 5 Active sensors used in the ACTIVE products 

Time Periods Active Sensors 

05/08/1991 – 19/05/1997 ERS1/2 (AMI-WS) 

20/05/1997 – 17/02/2003 ERS2 (AMI-WS) 

18/02/2003 – 31/12/2006 ERS1/2 (AMI-WS) 

01/01/2007 – 05/11/2012 Metop-A ASCAT 

06/11/2012 – 07/11/2018 Metop-A ASCAT, Metop-B ASCAT 

08/11/2018 – 31/12/2020 Metop-A ASCAT, Metop-B ASCAT, Metop-C ASCAT 

01/01/2021 – 31/12/2023 Metop-B ASCAT, Metop-C ASCAT 

 

Table 6 Passive sensors in the PASSIVE product. Note: a = ascending, d = descending, a/d = both. 

Time Period Passive Sensors 

01/11/1978 – 31/07/1987 SMMR (a/d) 

01/09/1987 – 31/12/1997 SSM/I (a/d) 

01/01/1998 – 18/06/2002 SSM/I (a/d) TMI (a/d 

19/07/2002 – 30/09/2007 AMSR-E (a/d),TMI (a/d)  

01/10/2007 – 14/01/2010 AMSR-E (a/d), Windsat (a/d)  ,TMI (a/d) 
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15/01/2010 – 31/55/2011 AMSR-E (a/d) , WindSat (a/d) , SMOS (a/d)  ,TMI (a/d) 

31/05/2011 – 04/10/2011 AMSR-E (a/d) , WindSat (a/d) , SMOS (a/d), TMI (a/d). FY-
3B (a/d) 

05/10/2011 – 30/06/2012 WindSat (a/d) , SMOS (a/d), TMI (a/d). FY-3B (a/d)  

01/07/2012 – 28/09/2013 SMOS (a/d) , AMSR2 (a/d), TMI (a/d). FY-3B (a/d)  

29/09/2013 – 28/02/2014 SMOS (a/d) , AMSR2 (a/d), TMI (a/d). FY-3B (a/d), FY-3C 
(a/d) 

01/03/2014-30 - 09-2014 SMOS (a/d) , AMSR2 (a/d), TMI (a/d). FY-3B (a/d), FY-3C 
(a/d), GPM (a/d) 

01/10/2014 – 30/03/2015 SMOS (a/d) , AMSR2 (a/d), FY-3B (a/d), FY-3C (a/d), GPM 
(a/d) 

31/03/2015 – 31/12/2018 SMOS (a/d) , AMSR2 (a/d), FY-3B (a/d), FY-3C (a/d), GPM 
(a/d), SMAP (a/d) 

01/01/2019 – 19/08/2019  SMOS (a/d) , AMSR2 (a/d), FY-3B (a/d), FY-3C (a/d), FY-3D 
(a/d), GPM (a/d), SMAP (a/d) 

20/08/2019 – 31/12/2022 SMOS (a/d), AMSR2 (a/d), FY-3C (a/d), FY-3D (a/d), GPM 
(a/d), SMAP (a/d) 

31/12/2022 – 31/12/2023 SMOS (a/d), AMSR2 (a/d),, FY-3D (a/d), GPM (a/d), SMAP 
(a/d) 

 

Table 7 Sensors used in the COMBINED product in individual time periods. Note: a = ascending, d = 
descending, a/d = both. 

Time Periods Active Sensors Passive Sensors 

01/11/1978 – 31/07/1987 N/A SMMR (a/d) 

01/09/1987 – 05/08/1991  N/A SSM/I (a/d) 

05/08/1991 – 31/12/1997 AMI-WS SSM/I (a/d) 

01/01/1998 – 18/06/2002 AMI-WS SSM/I (a/d) TMI (a/d 

19/07/2002 – 31/12/2006 AMI-WS AMSR-E (a/d),TMI (a/d)  

01/01/2007 – 30/09/2007 Metop-A ASCAT AMSR-E (a/d),TMI (a/d)  

01/10/2007 – 14/01/2010 Metop-A ASCAT AMSR-E (a/d), Windsat 
(a/d)  ,TMI (a/d) 
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15/01/2010 – 31/55/2011 Metop-A ASCAT AMSR-E (a/d) , WindSat 
(a/d) , SMOS (a/d)  ,TMI 

(a/d) 

31/05/2011 – 04/10/2011 Metop-A ASCAT AMSR-E (a/d) , WindSat 
(a/d) , SMOS (a/d), TMI 

(a/d). FY-3B (a/d) 

05/10/2011 – 30/06/2012 Metop-A ASCAT WindSat (a/d) , SMOS (a/d), 
TMI (a/d). FY-3B (a/d)  

01/07/2012 – 05/11/2012 Metop-A ASCAT SMOS (a/d) , AMSR2 (a/d), 
TMI (a/d). FY-3B (a/d)  

06/11/2012 – 28/09/2013 Metop-A ASCAT, Metop-B 
ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
TMI (a/d). FY-3B (a/d)  

29/09/2013 – 28/02/2014 Metop-A ASCAT, Metop-B 
ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
TMI (a/d). FY-3B (a/d), FY-3C 

(a/d) 

01/03/2014-30 - 09-2014 Metop-A ASCAT, Metop-B 
ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
TMI (a/d). FY-3B (a/d), FY-3C 

(a/d), GPM (a/d) 

01/10/2014 – 30/03/2015 Metop-A ASCAT, Metop-B 
ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
FY-3B (a/d), FY-3C (a/d), 

GPM (a/d) 

31/03/2015– 08/11/2018 Metop-A ASCAT, Metop-B 
ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
FY-3B (a/d), FY-3C (a/d), 

GPM (a/d) 

09/11/2018 – 31/12/2018 Metop-A ASCAT, Metop-B 
ASCAT, Metop-C ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
FY-3B (a/d), FY-3C (a/d), 
GPM (a/d), SMAP (a/d) 

01/01/2019 – 19/08/2019  Metop-A ASCAT, Metop-B 
ASCAT, Metop-C ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
FY-3B (a/d), FY-3C (a/d), FY-
3D (a/d), GPM (a/d), SMAP 

(a/d) 

20/08/2019 – 31/12/2020 Metop-A ASCAT, Metop-B 
ASCAT, Metop-C ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
FY-3C (a/d), FY-3D (a/d), 
GPM (a/d), SMAP (a/d) 
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01/01/2020 – 31/12/2022 Metop-B ASCAT, Metop-C 
ASCAT 

SMOS (a/d) , AMSR2 (a/d), 
FY-3C (a/d), FY-3D (a/d), 
GPM (a/d), SMAP (a/d) 

31/12/2022 – 31/12/2023 Metop-B ASCAT, Metop-C 
ASCAT 

SMOS (a/d), AMSR2 (a/d), 
FY-3D (a/d), GPM (a/d), 

SMAP (a/d) 

 

Weight estimation 

The merging is performed by means of a weighted average which takes into account the error 
properties of the individual data sets that are being merged: 

 Θ = ∑ 𝑤 ⋅ Θ
ே
ୀଵ    Eqn. 7-4 

Where Θ denotes the merged soil moisture product; Θ୧ are the soil moisture products that 
are being merged, and w୧ are the merging weights. 

Per definition, the optimal weights for a weighted average are determined by the error 
variances of the input data sets and write as follows: 

 

 𝑤 =
𝜎ఌ

ିଶ

∑ 𝜎ఌೕ
ିଶே

ୀଵ

 Eqn. 7-5 

where the superscripts denote the respective data sets; 𝑖 is the data set for which the weight 
is being calculated; and 𝑁 is the total number of data sets which are being averaged. The 
required error variances are calculated using Eqn. 7-4. Notice that error covariance terms are 
neglected as they cannot be estimated reliably.  

It should be mentioned that the above definition of the weights based on error variances 
assumes all data sets to be in the same data space. However, data sets usually vary in their 
signal variability due to algorithmic differences, varying signal frequencies, etc. Therefore, 
conceptually, it is more appropriate to define relative weights in terms of the data sets SNR 
properties rather than of their error variance (Gruber et al., 2017). Nevertheless, the actual 
merging requires a harmonisation of the data sets into a common data space, which in the 
case of the CCI SM data set is done using the CDF matching approach described in Section 
7.2.2. Therefore, the calculation of the weights using Eqn. 7-4 suffices, keeping in mind that 
they represent rescaled error variances of rescaled data sets. 

Notice that soil moisture estimates of the various sensors are not available every day, hence 
there are certain dates during the overlapping periods on which not all data sets provide a 
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valid estimate to calculate the weighted average.  In such cases, the weights are re-distributed 
amongst the remaining data sets, again based on their relative SNR properties.  

However, this re-distribution of weights could significantly worsen data quality on these days 
because of the increasing contribution of measurements which initially would have had a low 
weight due to their (relatively) low SNR. Therefore, soil moisture estimates in the merged 
product on days where not all data sets provide valid estimates are set to NaN values (Not a 
Number), if the sum of the initial weight of the remaining data sets is lower than 1/(2N) where 
N is the total number of data sets that are potentially available for the corresponding merging 
period. This threshold has been derived empirically to provide a good trade-off between 
temporal measurement density and average data quality.  

Similar to the generation of the PASSIVE product, relative weights at each time step are 
derived from the TCA- or VOD-regression based error estimates for each individual sensor. 
Depending on how many sensors are available within a particular period, a (1/2N) threshold 
for the minimum weight of a particular sensor was applied if not all sensors provide a soil 
moisture estimate at that day. 

7.2.7 Break detection and correction 

At ESA CCI SM v08, the break-adjusted ancillary product (distributed as of v06) is integrated in 
the main ESA CCI SM products. This is an additional process step  added to the COMBINED 
product, which is subject to break detection and correction methods using reanalysis soil 
moisture as the reference data set. For v9.0 this will also be applied to the PASSIVE and ACTIVE 
products.  

Breaks may occur as a result of merging different sensor combinations over time, as shown in 
Figure 19. Such breakpoints may therefore appear between periods with different input 
sensors. Structural inhomogeneities may affect statistics such as trends and changes in 
extreme values (percentiles) and therefore should not only be detected but also corrected. 

 
Figure 19: Potential break times in the ESA CCI SM v04.4 (COMBINED) product- corresponding to 
changeovers in the blended sensors, building the homogeneous (sensor) sub-periods (HSP). 
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Based on the work of Su et al. (2016), a procedure has been developed at TU Wien to relatively 
test for potential inhomogeneities in the ESA CCI SM Climate Data Record (CDR) using the 
Fligner-Killeen test for homogeneity of variances and Wilcoxon rank-sums test for shifts in 
population mean ranks (Preimesberger et al., 2020). For the product provided with ESA CCI 
SM v07.1(and following), the reference dataset used is ERA-5. 

To adjust detected breaks in the data set, Quantile Category Matching (QCM) is used. This 
method uses split-fitted differences in empirical CDFs of the ESA CCI SM and reference SM 
(between quantile categories, i.e., average SM within a number of quantile ranges) values 
before and. after a break are used to find corrections for quantiles of ESA CCI SM before the 
break. 

Adjustment is performed iteratively, with the goal that across each detected break, changes 
in ESA CCI SM means and variances are matched to follow changes within the reference data 
set (relative bias correction) and homogenised observation series (with respect to the 
reference data set) are derived 

The results of the correction performed on v04.4 of the CCI dataset are shown in Figure 20. 
Figure 21 shows the longest homogenous period of available data both before (top) and after 
(bottom) correction using the QCM method (which leads to the lowest number of re-detected 
breaks after correction from the three described methods). 

 

 
Figure 20: Results of the inhomogeneity testing (between HSP3 and HSP4) before any correction 
methods have been applied (top) with the results of the testing after the correction methods are applied 
(for each method as indicated) (bottom). Adapted from (Preimesberger et al., 2021) 
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Figure 21: Longest homogenous period in ESA CCI SM v04.4 (COMBINED) before adjustment (top) and 
after adjustment (bottom) using the QCM method. Taken from (Preimesberger et al., 2021).  

7.2.8 Independency from land surface models 

Soil Moisture simulations from NASA’s GLDAS Noah model (Rodell et al., 2004) are used in the 
COMBINED product as the scaling reference to harmonise L2 input data for the combined 
product prior to estimating uncertainties for merging (Gruber et al., 2019). This leads to the 
ESA CCI SM (COMBINED) observations remaining in the value domain of GLDAS Noah SM 
afterwards. Features in the satellite observations (e.g., impact of irrigation) are potentially 
attenuated in this process. Independence from model SM is therefore desired.  

As of v08.0, merged L-band observations from SMAP and SMOS are used to create an 
alternative, model-free scaling reference. The short time periods and data paucity (if 
compared to the gap-free, 4-hourly outputs GLDAS Noah) of available L-band SM and effects 
such as radio frequency interference (RFI) in this frequency domain may negatively affect the 
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performance of this data set as a scaling reference. For this reason, the product is considered 
experimental and distributed as an ancillary dataset starting in June 2010 (date of operational 
SMOS) and is due thorough validation before being integrated in the main products. 

7.2.9 Spatial and Temporal SM Gap-Filling 

The number of sensors used to generate the soil moisture product varies temporally and 
spatially; this directly translates to the number of valid observations available in the end 
product which can adversely impact end-user applications. For this reason, an ancillary 
product is generated as of v08.0 which includes a gap-filling method applied to COMBINED.A 
full description of the algorithm is given by Garcia et al. (2010). Here we describe the main 
steps of the algorithm relevant for applying it to ESA CCI SM data. The main aim of the original 
algorithm is to find a set of smoothed values ŷ for the original / input data y. The algorithm 
optimizes for (i) minimal Residual Sum of Square (RSS) between the input and smoothed 
observations and (ii) optimal reduced roughness P(ŷ) between smoothed elements (Eq 7-6). 
DCT-PLS therefore ideally removes noise in the data while retaining relevant information. In 
other words, it tries to find smoothed versions of input observations y so that F(ŷ) is minimal. 
This optimization process relies on the Generalized Cross Validation (GCV) to find the optimal 
smoothing parameter “s” (Eqn 7-6), which controls the amount of smoothing, and is the only 
free parameter that needs to be tuned using GCV. 

𝐹(𝑦ො) = 𝑅𝑆𝑆 + 𝑠𝑃(𝑦ො) =  ‖𝑦ො − 𝑦‖ଶ + 𝑠𝑃(𝑦ො)   Eqn. 7-6 

The penalty term P(ŷ) uses neighbourhood information that describes differences (D) between 
smoothed elements of ŷ, thus optimizing for smoothed transitions between them. 

𝑃(𝑦ො) = ‖𝐷𝑦ො‖ଶ   Eqn. 7-7 

Solving the following linear system (𝐼 is the Identity matrix) for D to minimize F(ŷ) 

(𝐼 + 𝑠𝐷்𝐷)𝑦ො = 𝑦   Eqn. 7-8 

is a computationally extensive task. Garcia (2010) provides a step-by-step description on the 
required (matrix) operations to find ŷ and discusses modifications to the base algorithm. 
Computing D and performing Eigenvalue decomposition thereof (𝜆) is simplified greatly by the 
use of equally spaced input data such as ESA CCI SM. In fact, a predefined formulation of the 
Eigenvalues 𝜆 of D: 

𝜆 = −2 + 2cos((𝑖 − 1)𝜋/𝑛)   Eqn. 7-9 

can be used in the 3-dimensional case (N=3) to build the following tensor: 

⋀ =ே
భ,…,ಿ

 ∑ (−2 + 2𝑐𝑜𝑠
(ೕିଵ)గ

ೕ
)ே

ୀଵ    Eqn. 7-10 

Λ can then be used with a realization of the smoothing parameter s to build the tensor: 



 

Algorithm Theoretical Baseline 
Document (ATBD) 

Product Version 09.0 
Date 18-03-2024 

 

  63 

Γே = 1ே + 𝑠Λே ∘ Λே  Eqn. 7-11 

to efficiently solve for ŷ using the discrete cosine transform matrix (DCTN) of y respectively 
the inverse form (IDCTN) for N=3 dimensional data (Strang, 1999). 

𝑦ො(ାଵ) = 𝐼𝐷𝐶𝑇𝑁(Γே ∘ 𝐷𝐶𝑇𝑁(𝑊 ∘ ൫𝑦 − 𝑦ො()൯ + 𝑦ො()))  Eqn. 7-12 

As data gaps are present in the data set, applying weights (W) to observations is required (Eqn. 
7-12). Data gaps are assigned a weight of 0, and therefore interpolated as part of the (robust) 
smoothing process. Finally, having an estimate for ŷ, the GCV score is computed as: 

𝐺𝐶𝑉(𝑠) =  
௪ோௌௌ/(ିೞೞ)

(ଵି்(ு)/)మ
=

ฮ√ௐ(௬ොି௬)ฮ
మ

/(ିೞೞ)

(ଵି்(ு)/)మ
   Eqn. 7-13 

where 𝑛௦௦ is the number of missing values of n overall samples, and Tr(H) from Eqn. 7-9 as: 

𝑇𝑟(𝐻) =  ∑ [1 + 𝑠(2 − 2cos (𝑖 − 1)𝜋/𝑛)ଶ]ିଵ
ୀଵ   Eqn. 7-14 

A bounded minimisation is now applied to find s for minimal GCV, and ŷ is computed again 
using this s. As outliers can be present in the data, we use the “robust” implementation of 
DCT-PLS, which includes further repetition of the above described process to iteratively detect 
outliers in the data and gradually reduce weights assigned to these observations until the 
optimisation converges at dŷ ~0, i.e. no more changes between y and ŷ, before and after 
tuning s respectively, are found. 

 Applying DCT-PLS via moving window 

While DCT-PLS can take n-dimensional tensors of any size, we apply it on 3-dimensional 
subsets of soil moisture images via a 15 * 15 degree moving window. The window size is 
gradually increased by 10 degrees (symmetrically along the latitude and longitude axis) in case 
no convergence is found using the available data. The moving window approach was chosen 
to avoid unnecessary interpolations over water, to reduce the total amount of input data and 
to fit separate smoothing parameters to each window which can then better cope with 
different levels of variability within the soil moisture data (e.g., deserts vs. temperate climates) 
while still being large enough to provide enough data for a robust estimation and to fill gaps 
in these regions. Only values over land in the centre 5 * 5 degrees of the moving window are 
kept. 
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 Filling soil moisture for negative soil temperatures 

Soil moisture values generally represent the amount of liquid water in the soil. Satellites 
cannot measure soil moisture under frozen soil conditions, and gap-free products do not 
provide any physically meaningful values at times when soil temperature is negative. For these 
cases the gap-filled product should provide estimates for the amount of water that is currently 
frozen in-place. Therefore, ideally the last (gap-filled) soil moisture observation before the 
freezing would be kept constant until thawing took place and soil moisture can be measured 
again. In practice there can be differences between the last and first available observations 
before, resp. after a period of frozen soil. Therefore, the gap-filled values in ESA CCI SM that 
coincide with negative (daily average) soil temperature in the first layer (0-10 cm) of the 
GLDAS Noah model outputs are overridden with a simple linear interpolation over time. 

 Merging original and smoothed data 

The smoothed soil moisture data after interpolation at time stamps with frozen soils is then 
used to fill gaps in the original observations. This is only done for pixels where gaps are present 
over land in the original data. When mixing original and smoothed data, it must be considered 
that the distributions of those two sets can be different. Especially when only few observations 
were available for smoothing, there can exist a bias between the original and interpolated 
data. This is shown in an extreme example in Figure 22 where the spatial smoothing leads to 
a bias in time. Notably this problem is reduced in practice when longer time series than 60 
days are used. Nonetheless, a scaling of smoothed data to the original data (using only 
common time stamps) is performed by matching the mean and standard deviations of the 2 
distributions before filling gaps in the original data with smoothed values.    
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Figure 22: Data merging between the smoothed and original SM in space (above) and time (below). 

7.3 Quality Control and Validation 

With the production of each new ESA CCI SM dataset, a series of quality assessments are 
undertaken to ensure the best quality product is being delivered to the data users. These 
assessments include spatial / temporal completeness assessments for all soil moisture and 
flag fields provided in the dataset, assessment of the soil moisture anomalies and analysis of 
trends with comparison against modelled data. These assessments are not only run on the 
final product, but with each incremental update to the product during the development stage. 

In addition to these detailed quality controls, validation against in-situ and modelled datasets 
is undertaken to ensure the high level of accuracy of the product is maintained. This is 
undertaken by an independent organisation, ETH Zurich, and the results are provided in the 
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PVIR (Hirschi et al., 2020). In addition, the newest datasets are provided on the QA4SM portal 
to allow users to run their own validations (https://qa4sm.eu/). 

7.4 Known Limitations  

The production of the ESA CCI SM product is a continuous process with new versions released 
each year. With each new major product version (i.e. v05 vs. v06), improvements are made to 
both the input datasets and the merging algorithm. This section discusses the current 
limitations of the ESA CCI SM. 

7.4.1 Active Input Datasets 

Product developments that are planned to be implemented in the H-SAF project will benefit 
the ESA CCI SM products. For example, in future versions of the H-SAF ASCAT SSM CDRs, 
potential ways to correct sub-surface scattering effects will be tested. Morrison et al. (2019) 
found in an experimental setup that sub-surface scattering effects are caused by reflecting 
features in shallow soils under extremely dry conditions as e.g., in deserts. These anomalies 
can appear temporary or continuously in ASCAT observations, dominate the received 
backscatter signal and cause large fluctuations after rainfall events.  

In addition, the use of bootstrapping and/or Monte Carlo methods to estimate the error 
budget of ASCAT SSM retrieval will be explored. Bootstrapping uses a large number of 
subsamples drawn from a set of measurements. This way it extrapolates to the population 
that the original measurements come from and allow to make estimates about the 
distribution of the errors based on the (resampled) measurements themselves. 

7.4.2 Inter-calibration of ERS and ASCAT 

The generation of ESA CCI SM ACTIVE product is based on the individual time series of ERS and 
ASCAT. The inter-calibration of ERS and ASCAT backscatter (Level 1) would improve the quality 
of the individual measurements as well as the robustness of the calculation of the dry and wet 
references. 

This could, for example, be undertaken using the method of Reimer (2014) who introduced a 
model-based inter-calibration methodology that accounts for temporal calibration biases 
within a specific scatterometer mission and subsequently considers temporal invariant inter-
calibration biases between various scatterometer missions. This approach employs a number 
of natural calibration targets (rainforests) supposed to result in a more robust estimation of 
inter-calibration biases. 

As the merging algorithm of ESA CCI SM starts from Level 2 products, such an undertaking is 
outside of the scope of the product generation, but ESA CCI SM would benefit from such inter-
calibration work being undertaken for the L2 input products currently provided by H-SAF. 
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7.4.3 Improved Flagging 

The integration of spurious Level 2 soil moisture retrievals into ESA CCI Soil Moisture may 
adversely affect its quality in different ways. While RFI may lead to increased random error, 
frozen soils, snow cover, and open water will have a more systematic impact on the soil 
moisture levels, e.g. leading to a bias. 

7.4.4 Decomposition into Climatologies and Anomalies 

Currently the SNR-based merging scheme applies a relative weighting of data sets based on 
their relative error characteristics. However, studies have shown that different frequency 
components may be subject to different error magnitudes (Brocca et al., 2011 , Su et al., 2015, 
Draper et al., 2015).  

7.4.5 Uncertainty Analysis 

Currently, “sm_uncertainty” field provided with the ESA CCI SM products is based on the TCA 
results only and does not include errors associated with any other processing steps, nor the 
input data. 
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