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Changelog 

Issue Changes Date 

1.0 First issue 21/01/2025 

1.1 Updated based on RIDs 21/02/2025 

   

 

Detailed Change Record 

Issue RID Description of discrepancy Sections Change 

1 ESA-01 GlobCover Land Cover map 300m 2019, to which map 

are you referring to? GlobCover or C3S MRLC 2019? 

Table 5, 

Table 6, 

Table 7 

The reference to 

the 'GlobCover 

Land Cover map 

300m 2019' is 

incorrect. The 

validation dataset 

was extracted from 

the CCI Medium 

Resolution Land 

Cover (MRLC) Map 

300m 2019. Tables 

and text in the 

document have 

been updated 

accordingly. 

2 ESA-02 GlobCover validation points are from 2008, this 

dataset has been updated to 2019? 

3.2.1.1 

and 

3.2.1.2.1 

3 ESA-03 Please remove the space from the link after 

"download/" 

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESA

CCI-LC-Ph2-PUGv2_2.0.pdf 

Reference 

[11] 

The document is 

updated 

accordingly. 

4 ESA-04 For the comparison maybe it is better to use the 

same scale for the values on the Y axis for both, the 

weekly and monthly plots. 

Fig. 37 

and 38 

The document is 

updated 

accordingly. 

5 ESA-05 Did you investigate the moisture index? NDMI = (NIR 

– SWIR) / (NIR + SWIR). Maybe it could provide some 

additional information on the LC 

3.4.2 We will consider 

NDMI for the 

following 

experiments. 
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1 Introduction 

1.1 Executive summary 

By the end of the first year, the EOS team conducted extensive comparative testing and performance analyses 

to evaluate the effectiveness of different algorithms for specific components of the processing chain designed to 

produce high-resolution land cover (HR LC) products. The results of these experiments, along with 

recommendations for the best-performing techniques, are detailed in section 3. The analysis is ongoing, as the 

team continues to assess various approaches to select the final algorithms that will ensure optimal performance 

for both static and historical land cover (LC) and land cover change (LCC) products. 

1.2 Purpose and scope 

The Product Validation and Algorithm Selection Report (PVASR) provides an in-depth overview of the 

comparative tasks conducted to assess the best-performing algorithms and techniques for inclusion in the 

classification blocks of the overall processing chain. The current version presents the activities carried out during 

the first year, with a particular focus on the classification of optical and SAR imagery, decision fusion and change 

detection. Key areas of emphasis include: 

1. Testing optical pre-processing and evaluating its performance in terms of accuracy, computational 

efficiency and composite quality. 

2. Testing classifiers and evaluating their performance in terms of accuracy, computational efficiency, and 

adaptability for model/code modifications to meet specific requirements and implementation needs. 

3. Exploring methods for creating reliable training datasets from existing products, which may be sub-

optimal in terms of spatial resolution (coarse to medium) and legend detail (less comprehensive 

compared to HR LC products as outlined in the ATBD). 

4. Assessing sets of multitemporal features used as inputs for classifiers. 

5. Evaluating multisensory decision fusion methods in terms of both accuracy and computational time. 

6. Evaluating optical composite generation to enhance detection accuracy and analyzing different feature 

spaces to ensure reliable change detection maps. 

 

1.3 Applicable documents 
Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI HR Technical Proposal phase 1 

[AD2] CCI HR Technical Proposal phase 2 

[AD3] CCI Extension (CCI+) Phase 1 – New ECVs – Statement of Work, v1.3, 22/08/2017, ESA-CCI-PRGM-EOPS-

SW-17-0032 

[AD4] CCI_HRLC_Ph2-D1.1_URD, latest version 

[AD5] CCI_HRLC_Ph1-D2.2_ATDB, latest version 

[AD6] CCI_HRLC_Ph2-D2.2_ATDB, latest version 

 

1.4 Reference documents 
Ref. Title, Issue/Rev, Date, ID 

[RD1] The Global Climate Observing System: Implementation Needs, 01/10/2016, GCOS200 

1.5 Acronyms and abbreviations 

3D-FCN   3-Dimensional - Fully Convolutional Network 
AC  Atmospheric Correction 
ATBD  Algorithm Theoretical Basis Document 
BSI  Bare Soil Index 
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CCI+  Climate Change Initiative Extension 
dB  Decibel 
DEM  Digital Elevation Model 
DL  Deep Learning 
ER  Ecoregion 
GEE  Google Earth Engine 
GRD  Ground Range Detected 
HR  High Resolution 
HRLC10  CCI High Resolution Land Cover Map at 10m resolution of 2019 
HRLC30  CCI High Resolution Land Cover Map at 30m resolution from 1990 onwards every 5 years 
HRLCC30 CCI High Resolution Land Cover Change Map at 30m resolution from 1990 onwards 
IW  Interferometric Wide Swath 
L-5/7/8/9 Landsat-5/7/8/9 
LC  Land Cover 
LCC  Land Cover Change 
MOLCA  Map Of LC Agreement 
MRLC  Medium Resolution Land Cover 
NDVI  Normalized Difference Vegetation Index 
NDWI  Normalized Difference Water Index 
OA  Overall Accuracy 
PA  Producer Accuracy 
PCC  Post Classification Comparison 
RF  Random Forest 
S1/2  Sentinel-1/2 
SAR  Synthetic Aperture Radar 
SCL  Sen2Cor Scene Classification Layer 
SITS  Satellite Image Time Series 
SNAP  Sentinel Application Platform 
SR  Surface Reflectance 
UEXT  Urban EXTent 
VH  Vertical-Horizontal polarization 
VV  Vertical-Vertical polarization 
  



 

Ref D2.1 - PVASR 

 
Issue Date Page 

1.1 21/01/2025 5 

 

2 Selection procedure 

The overall procedure for the selection of best performing algorithms and methods is performed according to a 

three-step procedure. The algorithms presented in the Technical Proposals [AD1] [AD2] and ATBD [AD6] are 

considered for the comparisons together with a set of proposed solutions for each task such as generating 

training samples and building multitemporal features. The evaluation-selection procedure is devised in such a 

way that the selected algorithms/techniques are the most suitable to satisfy project requirements. 

The three steps of the procedure are the following: 

• Step 1: Qualitative pre-screening of algorithms 
A pre-screening of the algorithms and methods from a State-of-the-art pool of competitors is carried out in 

order to identify the most relevant methodologies with respect to the project objectives. This preliminary 

analysis is driven by the selection criteria described in Section 2.1. In this first step, a high-level qualitative 

evaluation of these criteria is conducted in order to identify techniques that clearly cannot reach a 

satisfactory ranking on several categories of parameters. These techniques are discarded and not considered 

in the next steps. Algorithms and methods that passed the pre-screening are reported in the Technical 

Proposal [AD2] and more in detail in the ATBD [AD6]. In this report only the methods that passed the pre-

screening are considered explicitly. 

• Step 2: Quantitative evaluation of algorithms 
Algorithms that pass the pre-screening in step 1 are analyzed in greater detail with a quantitative evaluation. 

This analysis is based on different parameters, ranging from a scientific and technical analysis to possible 

impacts on the application and users. For each investigated item (algorithm, method, technique, etc.) details 

on the quantitative evaluation of the comparison activities can be found in a dedicated section of this 

document. 

• Step 3: Final decision 
According to the analysis carried out for each individual comparison task, a final decision is taken according 

to the best performer and its relevance with respect to project objectives. Final decision is reported. 

It is worth noting that the pre-processing algorithms are not included in the evaluation and ranking procedure 

because we expect to import in the project basic pre-processing chains already developed for both multispectral 

and SAR data. 

2.1 Criteria 
In this section the criteria adopted for evaluating the relevance of methods and algorithms with respect to project 

requirements are listed. Up to seven categories of parameters are considered divided in different issues. 

 
1. Scientific Background and Technical Soundness – The scientific validity of the algorithms and of the 

methodologies on which the algorithms are based is considered as an important parameter. The rationale is 

that selected algorithms should be based on a solid theoretical background that guarantees the accuracy of 

its results also at an operational level. The guidelines for rating are as follows: 

o The methodology is solid; 

o The methodology is technical convincing; 

o The methodology is at the state-of-the-art; 

o The methodology is published in high quality journals; 

o The methodology is included in several other scientific publications or project technical reports. 

 
2. Robustness and Generality – In order to obtain a reasonable estimation for the robustness and generality 

of the investigated algorithms, different parameters are considered, such as: 

o The method is suitable to be used with different kinds of images (e.g., S2, Landsat, SAR, etc.); 

o The method shows high performance on different images (Sentinel, Landsat, etc.) and over the three 

test areas as described in URD [AD4]; 

o There are software implementations or examples for the implementation available; 

o The algorithm can be used in combination with other methodologies. 
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3. Novelty – An appropriate candidate algorithm should have been published or reported for the first time 

relatively recently in the literature. It is not required that algorithms are completely innovative; the novelty 

may consist in both combining well established methodologies or applying well-known techniques in a novel 

way. As a main guideline, a tested method should be already applied in literature to solve existing problems. 

 
4. Operational Requirements – The expected operational requirements (in terms of computational complexity, 

time effort, cost, etc.) for the final implementation of an algorithm/technique are evaluated. Although no 

actual constraints are fixed on the algorithm computational complexity, the most optimized 

implementations available in literature are preferred. Other crucial aspects are: 

o The algorithm is prone to architectural modifications; 

o The processing time scaling is likely to be linear with image size; 

o The hardware and disk-storage requirements are appropriate. 

Algorithm/method consistency with project requirements is also extremely relevant, following guidelines 

from GCOS [RD1] and SoW [AD3][AD3] : 

o Algorithms and methodologies must be effective for high resolution images (e.g., optical data at 10-30m). 

o Documented accuracy must be within the boundaries imposed by GCOS (see[RD1]) and as reported in 

SoW [AD3]. 

 
5. Accuracy – An algorithm is positively evaluated if able to provide a high absolute accuracy in all test areas, 

especially keeping into account the different climatological conditions and possibly different data availability 

conditions. Accordingly, the following guidelines are used for evaluating accuracy characteristics: 

o Accuracy/uncertainty to be in line with GCOS [RD1] requirements as reported in SoW [AD3]. 

o The algorithm matches the end-user (climatologist and other users from the community) requirements; 

o For unsupervised tasks the accuracy should not depend on the availability/quality of prior information. 

o For supervised tasks the accuracy should be robust to the availability/quality of prior information. 

 
6. Level of Automation – From an operational point of view, it is mandatory that an algorithm runs in a 

completely automatic way. Algorithms requiring any amount of manual work, strong interaction with the 

final users are negatively evaluated. 

 
7. Specific End-users Requirements – From an operational point of view, capability of an algorithm to satisfy 

and meet possible end-user requirements is another important parameter of evaluation. The main 

guidelines for driving this ranking are: 

o The algorithm is robust to the use in several climatological regions; 

o The algorithm can be reasonably included in an operational procedure. 

2.2 Evaluation 
The evaluation procedure of each comparative task aimed at deciding on a specific algorithm/technique is carried 

out by considering all criteria listed before. To each reported activity, a thorough discussion is given regarding 

how these criteria are weighted in the overall evaluation, which aspects are given strong emphasis and which 

ones are considered less relevant. The evaluation activity provides answers about best performing 

algorithms/techniques that are included in the processing chain of the current version of HR LC products. 

3 Algorithms and procedures (year 1) 

3.1 Optical data processing 
The optical processing chain is designed to primarily work with images at 10/30m resolution, producing outputs 
at the same resolution. It leverages multitemporal, multispectral data from recent years, including Sentinel-2 
(S2) and Landsat-8/9 (L-8/9), alongside legacy data from Landsat-5/7/8 (L-5/7/8). The pre-processing 
methodology follows the same logical framework as Phase 1, with planned adjustments aimed at enhancing both 
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the quality of the output (e.g., optical composites) and the computational efficiency of the process.  
In the classification stage, Phase 1 faced challenges including: (i) limited availability of photo-interpreted data 
suitable for mapping large areas; (ii) constraints related to input features; and (iii) the need to optimize the 
classification algorithm for efficiency. Phase 2 focuses on refining the classification pipeline to address these 
challenges.  
The pre-processing phase addresses radiometric and geometric distortions specific to sensors and platforms, as 
well as harmonization tasks. Radiometric corrections are applied to mitigate issues such as variations in 
illumination, viewing geometry, atmospheric conditions, and sensor-specific noise or response variations. These 
factors depend on the sensor, platform, and acquisition conditions. A major challenge with optical imagery is 
cloud coverage, which requires targeted processing to accurately identify cloud and cloud shadow pixels, 
potentially incorporating restoration techniques to recover spectral information for occluded areas. Figure 1 
shows the main blocks of the optical pre-processing chain. 
 

 

Figure 1. Optical pre-processing chain. 

Figure 2 illustrates the optical data processing chain used to produce both static and historical high-resolution 
land cover (HRLC) maps. The workflow involves pre-processing the images to create optical composites, 
integrating these with ancillary data (e.g., Copernicus Digital Elevation Model [DEM]) to extract features for 
classification. The classifiers are trained on available training data points and subsequently generate pixel-wise 
class-posterior probabilities. These probabilities feed into the decision fusion processing chain, resulting in the 
final land cover products. 

 
Figure 2. Optical data processing chain for the prototype production of both the static and the historical HRLC maps 

obtained by classifying the time series of HR optical data. 

The following sections provide the results of the activities on the optical processing chain during year 1 of the 
project. The results here presented are focused on three main activities: 

1. Cloud detection: validation of the S2 Sen2Cor Scene Classification Layer (SCL) Cloud and Cloud shadow 
mask enhancement; 

2. Composite generation: code optimization and alternative compositing strategies; 
3. Optical classification: preliminary evaluation of deep learning architectures for HRLC mapping with 

optical Satellite Image Time Series (SITS). 
 

3.1.1 Cloud and Cloud shadow Detection 

The improvements foreseen for the pre-processing chain of optical data require both quality and speed in the 
computation. This last requirement is essential for reducing costs and production times, especially considering 
the scaling of the production to large areas. For this reason, during Phase 1, Surface Reflectance (SR) products 
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were not generated as part of the processing chain, and instead they were retained from the providers, thus 
relying on the providers Atmospheric Correction (AC) algorithms. This allowed both to use consolidated AC 
strategies and to save processing time. On top of that, cloud detection is often coupled with AC during the 
generation of SR products. Therefore, clouds and cloud shadows masks are usually provided alongside the SR 
products. The availability of precomputed cloud and cloud shadows masks means that we have the possibility of 
saving computation time by utilizing the available masks. During Phase 1, Fmask [1] cloud and cloud shadows 
masks, provided with the SR Landsat products, have shown to be effective in the cloud detection in Landsat 
imagery with satisfying performance levels [AD5]. Therefore, it has been used for masking clouds in the historical 
processing chain for HRLC30 products. On the other hand, Sen2Cor has shown some limitations in the cloud 
detection capabilities with S2 SR products during Phase 1. Therefore, we developed a cloud and cloud shadow 
enhancement module. This approach is being re-evaluated in Phase 2, considering the recent improvements in 
the Sen2Cor cloud detection module. Indeed, the new Collection 1 of reprocessed S2 products (the data that will 
be used in the Phase 2) made available by ESA consider also upgraded cloud detection strategies that leverage 
the parallax effect of S2 MSI sensors. 
Therefore, we are considering whether to use the new Collection 1 masks as they are or whether to apply the 
Phase 1 cloud enhancement module to them. The selection will weigh the performance improvements against 
the necessity of additional processing time, which would undermine the production time for HRLC10 products. 
Indeed, the cloud and cloud shadow enhancement module require the computation of a seasonal background 
image, used to better discriminate clear sky observations from clouds. This means that the cloud detection of 
each acquisition relies on the time series of observations of the current season, which is computationally 
expensive (similar to the composite generation). Therefore, this increase in computation time requires a 
sufficient improvement in cloud detection performance to be acceptable. 
In this analysis, we compare the recent Sen2Cor and the Ph1 Cloud Enhancement module using the multi-
temporal global benchmark dataset CloudSEN12+ [2], [3], for cloud and cloud shadow detection with S2. This 
dataset provides 49,250 S2 image patches (IPs) with different annotation types: (i) 10,000 IPs with high-quality 
pixel-level annotation, (ii) 10,000 IPs with scribble annotation, and (iii) 29,250 unlabelled IPs. The labelling phase 
was conducted by 14 domain experts using a supervised active learning system. A rigorous four-step quality 
control was designed to guarantee high quality in the manual annotation phase. Furthermore, CloudSEN12+ 
ensures that for the same geographical location, users can obtain multiple IPs with different cloud coverage: 
cloud-free (0%), almost-clear (0–25%), low-cloudy (25–45%), mid-cloudy (45–65%), and cloudy (>65%), which 
ensures scene variability in the temporal domain. Therefore, CloudSEN12+ provides a reliable benchmark for 
precisely evaluating different cloud detection algorithms. For this experiment, we consider only IPs of 
2000 × 2000 pixels for which high quality annotations are available. Each pixel is labelled as “Clear”, “Thick 
Cloud”, “Thin Cloud”, or “Cloud Shadow”. The main difference between thick and thin clouds is that thin clouds 
are semi-transparent, while thick clouds are opaque and highly reflective in the visible bands. However, we don’t 
make a difference between thick and thin clouds, thus they are merged into the same class “Cloud” in our 
analysis. While CloudSEN12+ is a very large dataset, it does not contain all the adjacent acquisitions of each 
labelled scene, making it difficult to use with the Phase 1 Sen2Cor enhancement module, which requires the 
computation of a seasonal background by aggregating all the acquisition of the same season as the target 
acquisition. Therefore, we selected a subset of CloudSEN12+. Specifically, we selected three S2 tiles for which 
we have multiples IPs during the same season and a fair representation of each class: 

• 18NWL with 4 IPs in Winter 2019; 

• 21HUA with 3 IPs in Spring 2019; 

• 36SWH with 4 IPs in Winter 2017. 
For each of these tiles, we collected all the S2 L2A acquisitions of the corresponding season, and computed the 
enhanced masks. Figure 3 shows the visual comparison of the cloud and cloud shadow masks obtained by 
Sen2Cor and the enhancement module. From the images, it is clear that Sen2Cor overestimates clouds, and the 
enhancement module further accentuates this phenomenon. The quantitative results in Table 1 confirm the 
observations, reporting the User’s Accuracy (UA), Producer’s Accuracy (PA) and F1 score against the 
CloudSEN12+ subset. Indeed, the enhancement module reduces the omission errors at the cost of highly 
increasing the commission errors of the Cloud category over the Clear category. Cloud shadow performance 
remain unchanged. 
Given the limited improvements provided by the enhancement module applied to the new Sen2Cor masks, the 
decision is to remove the enhancement step from the processing chain, reducing the overall computation time. 
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Figure 3. Comparison of the expert annotation with the Sen2Cor and Ph1 Improved Sen2Cor cloud and cloud 
shadow masks. (black = clear, gray = cloud, white = cloud shadow) 
 
Table 1 Quantitative accuracy metrics from the benchmark analysis on the CloudSEN12+ dataset. 

 Sen2Cor Ph1 Sen2Cor Enhancement 

 UA PA F1 UA PA F1 
Clear 0.91 0.85 0.88 0.86 0.44 0.58 

Cloud 0.68 0.84 0.75 0.38 0.85 0.52 
Cloud Shadow 0.91 0.75 0.82 0.91 0.75 0.82 

 

3.1.2 Composite Generation 

The composite generation is the most expensive step in the optical pre-processing chain. The activities of the 
first year focused on the improvement of the processing time while maintaining or improving the composite 
quality. During Phase 1, optical composites were generated by using a processor written in Python, using GDAL, 
numpy and basic multiprocessing capabilities. The approach is here compared to two different alternatives: 
FORCE and an improved Python processor adopting more advanced libraries such as xarray and dask. 
FORCE has the advantage of being compiled, thus it allows generally fast processing time. Moreover, FORCE is 
developed with a focus on time series analysis: it implements the concepts of data cube and allows for parallel 
processing of long Satellite Image Time Series (SITS). However, it has some restrictions, as it requires the data to 
be saved on disk in a specific format, achievable only by processing Top-of-Atmosphere (TOA) data directly with 
FORCE AC, which adds an additional step to the processing chain. Also, FORCE does not provide a strategy for 
generating optical composites exactly as they were designed during Phase 1. Nevertheless, workaround 
strategies are under analysis both to avoid the AC processing of FORCE and to use instead the providers SR 
products, and to generate products equivalent to Phase 1 monthly/seasonal composites by exploiting specific 
parametrizations of FORCE time series analysis (TSA) tool. 
The improved Python processor has been designed by keeping in mind two main aspects: the advantage of 
modelling data cubes for processing SITS data and the capability of scaling the processor in a distributed scenario. 
The improved Python processor implements two approaches to composite generation: band-wise median 
aggregation and medoid approach to most-representative-image selection (see ATBD [AD6]). The advantage of 
using the medoid approach is the generation of a composite whose spectral signature actually matches the 
spectral signature of on the observations that has been aggregated. This allows to have more consistent 
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representation of the spectral signature of the land cover. Indeed, the band-wise median aggregation creates a 
composite whose reflectance values can come from different acquisitions, thus distorting the spectral signature 
of the land cover by mixing the spectral signature of potentially very different acquisitions. In the current 
implementation, the medoid is computed for each pixel as the image that minimizes the Euclidean distance in 
the spectral domain from the median composite. 
The test area considered for the analysis is the S2 tile 21KUQ in the Amazonia area. From this area, we collected 
a time series of 73 S2 acquisitions over the year 2023, with acquisitions every 5 days. For the experiment, we 
considered both monthly and bimonthly composites: 

• Legacy Phase 1 processor: test only with 12 bimonthly composites (pixel-wise median of each band of 
all the acquisition in a given month +- 15 days); 

• Improved Python processor: test both monthly and bimonthly composites; 

• FORCE: a custom parametrisation of TSA is used to generate monthly composites. 
Note that FORCE does not only compute the median for each band by month, but it estimates a cloud-free SITS 
by cloud masking and interpolation beforehand. First, all clouds, cloud shadows and defective pixels are 
discarded. Then, the acquisitions are reprojected on a regular time grid by interpolation, generating a full time 
series of multispectral acquisitions. Only after this, the pixel-wise and band-wise median is computed by month. 
This approach effectively fills in missing data in the SITS, which is partly equivalent to Phase 1 cloud/shadow 
restoration step. However, the Phase 1 approach does this after the composite generation. Therefore, FORCE is 
able to better exploit the temporal information in the original SITS to fill in the missing data. In order to efficiently 
interpolate the time series, FORCE uses temporal convolutions with Radial Basis Function (RBF) kernels [4]. This 
ensures fast processing exploiting low-level implementations of the convolution operation. In the experiments, 
we consider an interpolation step (defining the spacing in the temporal grid) of 14 days, using three RBF kernel 
with sigma values of 14, 28, and 42 days. The sigma values define the width of the gaussian bell of each filter. 
Using different filters allows to more precisely follow the SITS when frequent acquisitions are available with the 
smaller kernels, whereas it allows for interpolating more distant time steps with larger kernels when few 
acquisition area available. The three filters are combined by weighting them by the acquisition’s density within 
each filter. Since gaussian kernels have in principle infinite width, a cut-off density of 0.95 is set, reducing the 
effective width of each kernel. The maximum width allowed for each filter is also limited to ± 54 days around the 
centre of the kernel. After interpolation, the FORCE folding capabilities is used to generate temporal aggregates 
on a monthly basis. FORCE does not allow bimonthly folds, thus we only tested monthly composites. 
Nonetheless, the interpolation capabilities of FORCE actually address the same issue addressed by the use of 
bimonthly composites over monthly composites, i.e., reduced data availability. Therefore, FORCE monthly 
composites are actually comparable to both the monthly and bimonthly composites generated by both the legacy 
Phase 1 processor and the improved processor. 
 
Table 2. Processing time of the different processors for composite generation 

 12 Monthly composites 12 Bimonthly composites 

Legacy Phase 1 processor − ≥ 3ℎ 
Upgraded Python processor 

(median) 
33𝑚  ℎ 26𝑚 

Upgraded Python processor 
(medoid) 

 ℎ 45𝑚 − 

FORCE (interpolation + median) 33𝑚 (+ ℎ  8𝑚 𝐿2 𝑔𝑒𝑛) − 

 
Table 2 reports the processing times of the different processors. These results were achieved on a workstation 
with 64GB of RAM (2x32GB DDR4 3200MHz CL16 non-ECC), a 8C/16T Ryzen 7 5800X CPU, and the data was 
stored on a M.2 NVMe v1.4 SSD Samsung 980. From these results, we can observe a clear 2x improvement in 
processing time over the legacy processors by the upgraded Python processor. If we consider the interpolation 
capabilities of FORCE, we achieve a ~6x improvement over the legacy processor. Considering monthly 
composites, the processing time of the upgraded processor with median aggregation and FORCE are similar. 
However, there are few aspects to keep into consideration. On one hand, FORCE performs both interpolation 
and median aggregation taking the same time as the upgraded processor, which performs only the median 
aggregation operation. On the other hand, FORCE needs the Level-2 imagery to be already stored following the 
specific FORCE requirements for tiling, projections, and file formats. Currently, the only way to achieve this is to 
use the Level-2 generation capabilities of FORCE, which adds an additional step to the processing (~ ℎ  8𝑚 for 
generating all the Level-2 images of the 73 S2 acquisition considered). This makes the use of the upgraded 
processor more appealing. Approaches for avoiding this time consuming step are under analysis. If we can utilize 
the pre-computed Level-2 data from the providers, FORCE would become the most efficient approach to 
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composite generation, also including an interpolation step before temporal aggregation, which further reduce 
gaps in the data. In the case this is not possible, the upgraded Python processor will be updated to integrate the 
interpolation procedure before computing the median composite, thus aligning it with FORCE. The processing 
time of the upgraded processor with medoid aggregation takes 3x the median aggregation. This large increase in 
processing undermines the applicability of the medoid operator. The results for computing the bimonthly 
composites with the medoid operator are missing due to the high memory requirements of this approach. 
However, we can expect worse processing time than the legacy processor. 
Figure 4 shows some examples of optical composites for January (Figure 4(a)-(c)-(e)-(g)) and February (Figure 
4(b)-(d)-(f)-(h)) 2023 in tile 21KUQ. While January is populated with mostly clear-sky observations for the whole 
tile, February consists of almost completely clouded acquisitions, with the exception of a single acquisition (Feb. 
5th 2023) with sparse cloud cover. This challenge provides a good benchmark for understanding the most proper 
composite generation approach. First, we can observe that the January composites in Figure 4(a)-(c)-(e)-(g) are 
all very similar and of good quality. This is expected given the good number of cloud-free observations for all the 
pixels. Instead, the February composites in Figure 4(b)-(d)-(f)-(h) show some differences. First, Figure 4(b)-(d), 
generated by monthly median and medoid composites, respectively, show some gaps in the scene (the black 
regions). This is expected given the availability of a single acquisition with low cloud cover (Feb. 5th 2023), 
whereas all the other acquisitions have a cloud cover > 90%. However, the other acquisitions still contribute to 
the final composite for the few available cloud-free pixels (from the computed cloud masks). Note that the cloud 
masks in these scenes are underestimating the cloud coverage, thus cloudy pixels are actually used in the 
composites. In these areas of the scene, we can observe a difference in the median and medoid composites 
(otherwise the same). In particular, the medoid composite seems noisier than the median (Figure 4(b)-(d)), as it 
tends to select the cloudy pixels, failing in filtering the available observations. If we consider the bimonthly 
composite of February 2023 (Figure 4(f)), we can see improvements related to absence of gaps in the scene. 
Thanks to the temporal window ranging from January 15th to March 15th, the bimonthly composite is able to 
exploit the cleaner observations of January and February to fill the gaps. However, we can observe artifacts due 
to the large temporal distance in the selected pixel values, which reflects the gaps due to clouds. The FORCE 
monthly composite, instead, is the one producing the cleanest February composite, despite using a median 
aggregation by month. This is possible thanks to the interpolation computed before aggregation, which not only 
allowed to avoid gaps in the scene by combining January and March acquisitions but also produced an artifact-
free composite. 
In conclusion, we improved the efficiency of the composite generation step, reaching good processing times. 
Among the considered approaches, medoid is the most expensive with no composite quality improvements, 
whereas FORCE has shown to be both efficient and to produce high-quality composites. The key aspect to the 
improved quality of FORCE can be identified in the interpolation procedure performed before median 
aggregation. However, we need to take into account that FORCE requires the input L2 data to be consistent to 
its internal representation. Therefore, we are considering two directions:  

• The alignment of the upgraded processor to the FORCE TSA pipeline; 

• The introduction of converter that is able to satisfy FORCE internal requirement, such that to remove 
the necessity of performing AC, which adds unavoidable processing time. 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4. Examples of generated composites for S2 tile 21KUQ in 2019 for January [firs column, i.e., (a) (c) (e) 
(g)] and February [second column, i.e., (b) (d) (f) (h)]. (a) (b) Monthly median composites. (c) (d) Monthly 
medoid composites. (e) (f) Bimonthly median composites. (g) (h) Monthly FORCE median composites. Black 
areas are pixels with not clear-sky observations in the considered period. 

3.1.3 Optical Classification 

During Phase 1, the optical classification was performed by using Support Vector Machines (SVMs). The main 
challenges in using SVMs were related to features selection and accurate pixel-wise class-posterior probabilities 
estimation. To solve both these problems in Phase 2, we consider deep learning strategies. Indeed, a deep 
learning architecture is able to learn a good feature representation starting from the raw input features, reducing 
time in tuning the optimal feature set, and it can directly estimate the pixel-wise class-posterior probabilities, 
instead of relying on external calibration approaches such as in the case of SVMs.  
In our preliminary analysis, we compared three different architectures, all of which incorporate temporal 
information. To further examine the effectiveness of the methodologies in utilizing contextual information, we 
also included pixel-level networks. The considered architectures are the following:  

1. Transformer: we employed the encoder architecture of a Transformer [5]. Positional encoding was 
applied to the SITS, focusing on classifying single pixels without incorporating contextual information. 

2. Swin Transformer: we adapted a Vision Transformer (ViT), designed to capture both local and global 
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dependencies in the image. Instead of using global attention across the entire image like traditional 
ViTs, the Swin Transformer divides the image into non-overlapping windows, performing self-attention 
within each window. Our implementation considers an adaptation to the RS scenario of [6], initially 
designed for super-resolution of videos, here adapted to jointly model the spatial and temporal 
information of the SITS. 

3. Convolutional Long Short-Term Memory (ConvLSTM): this hybrid model integrates convolutional neural 
networks (CNNs) with long short-term memory (LSTM) networks. It is tailored for spatio-temporal data, 
maintaining spatial information within individual time steps while capturing temporal dependencies 
across time steps [7]. 

Given the complexity of training deep network with the full HRLC legend on large areas, we performed a 
benchmarking exercise on restricted area in the Amazonia area. In order to provide a sufficiently large training 
dataset, we employed the HRLC10 map generated during Phase 1 as reference. Therefore, the accuracy metrics 
provide information on the level of agreement with the existing products. On one hand, a high level of agreement 
does not provide an actual accuracy metric. On the other hand, a high agreement means that the considered 
deep network agrees with the whole Phase 1 processing chain, including the optical-SAR decision fusion, spatial 
harmonization and post processing results, which improved the overall classification of the optical SVM classifier. 
Therefore, we consider this benchmark sufficient for comparing the different models and selecting the most 
suitable one for Phase 2. For our analysis, we selected the dataset corresponding to the MGRS S2 tile 22KGV in 
Brazil, chosen for its heterogeneous distribution of land cover classes, including tree cover (evergreen broadleaf, 
deciduous broadleaf, evergreen needleleaf), shrub (evergreen, deciduous), grassland, aquatic vegetation, 
cropland, bare areas, built-up areas, seasonal open water, and permanent open water. 
We utilized all S2 images available for 2019, generating 12 monthly median composites. To ensure a balanced 
training dataset, we adopted a heterogeneity-based patch extraction approach. Specifically, we divided the S2 
composite images into non-overlapping 5 × 5 pixel patches. For each patch, the dominant land cover class was 
identified. These patches were then randomly divided into training, validation, and test sets with a minimum 
requirement of 𝑁 representative patches per class, where 𝑁 was fixed at  000. 
For minority classes with fewer than 𝑁 patches, 50% of available patches were allocated to the training set, 25% 
to the validation set, and 25% to the test set. This process resulted in a training dataset representing 
approximately 0.22% of the area. Validation set sizes were determined as 25% of the training samples per class, 
while the remaining patches in the tile, not included in the training or validation sets, comprised the test set. This 
methodology ensured a small but representative dataset for the full classification scheme. 
To ensure the robustness of the evaluation, we conducted all tests five times, using distinct samplings for the 
training, validation, and test sets in each iteration. For reproducibility, we utilized predefined seed values for the 
random number generator (RNG). The evaluation metrics reported include Overall Accuracy (OA), mean F1 Score 
(mF1), and mean Intersection over Union (mIoU) on the test sets. Additionally, the standard deviation of these 
metrics was calculated as an unbiased estimator to provide insight into the consistency of the results. Table 3 
shows the overall performance of the three deep architectures. In general, ConvLSTM and Transformer Encoder 
perform similarly, with no significant differences in overall performance metrics. On the other hand, Swin 
Transformer performs significantly better than the other, achieving the best performance overall. 
 
Table 3. Comparison of the accuracies obtained by different architectures on the considered S2 tile. The best 
performance are in bold. The related standard deviation is reported in brackets. 

 mF1 (%) OA (%) mIoU (%) 

Transformer Encoder 60.80 (0.59) 80.21 (1.06) 48.66 (0.55) 
Swin Transformer 65.42 (1.10) 83.53 (0.95) 53.14 (1.10) 

ConvLSTM 61.81 (1.38) 81.65 (1.03) 49.73 (1.35) 

 
In order to validate class-wise accuracies, we selected a random seed to initialize the networks’ weights before 
training for all the considered architectures. For each class, we computed the User’s Accuracy (UA), the Producers 
Accuracy (PA) and the F1 Score. Table 4 shows the accuracies metrics of the different architectures. Swin 
Transformer is again the best performing architecture in terms of F1 scores, achieving the best performance on 
most classes. However, Transformer Encoder is the one achieving the best PA scores on most classes. These 
results highlight that the best performance is achieved by architectures employing the attention mechanisms to 
model the temporal information (i.e., Transformer Encoder and Swin Transformer), and that the best results are 
achieved by combining it with the spatial context (Swin Transformer). Indeed, the proper modelling of the 
temporal information helps in identifying the phenology of different land covers, while the spatial context 
provides more control over commission errors on categories with spatial features such as shrubs and build-up 
areas. 
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Table 4. Class-wise accuracy metrics obtained by different architectures on the considered S2 tile. The best 
performance are in bold. 

  Transformer Encoder ConvLSTM Swin Transformer 
 

UA PA F1 UA PA F1 UA PA F1 

Tree cover evergreen broadleaf 91.18% 65.89% 76.50% 86.48% 74.50% 80.04% 85.33% 76.93% 80.91% 

Tree cover evergreen needleleaf 46.95% 96.47% 63.16% 49.57% 91.90% 64.40% 54.53% 86.53% 66.90% 

Tree cover deciduous broadleaf 43.66% 41.91% 42.77% 45.67% 44.54% 45.10% 43.38% 57.03% 49.28% 

Shrub cover evergreen 25.10% 81.68% 38.40% 38.58% 56.37% 45.81% 35.62% 73.72% 48.04% 

Shrub cover deciduous 5.70% 38.22% 9.92% 2.90% 37.48% 5.38% 5.10% 41.98% 9.09% 

Grasslands 89.52% 89.79% 89.65% 89.72% 87.85% 88.77% 92.95% 87.05% 89.90% 

Croplands 94.35% 90.95% 92.62% 91.66% 89.91% 90.77% 94.25% 90.88% 92.53% 

Grassland vegetation aquatic 74.02% 74.29% 74.15% 72.18% 80.84% 76.27% 76.01% 84.24% 79.91% 

Bare areas 23.30% 63.30% 34.06% 26.26% 55.74% 35.70% 27.75% 73.38% 40.27% 

Built-up 42.49% 84.32% 56.51% 57.15% 78.33% 66.09% 66.20% 75.26% 70.44% 

Open water seasonal 51.03% 81.18% 62.66% 57.19% 66.31% 61.41% 58.98% 74.52% 65.84% 

Open water permanent 97.88% 98.40% 98.14% 98.89% 96.70% 97.78% 98.78% 97.22% 97.99% 

 
Figure 5 shows a qualitative comparison of the predictions of the three deep architectures with the reference 
HRLC10 map. Notably, we can see that all the deep methods seem to better delineate the boundaries between 
the different land covers, especially for tree cover categories. Additionally, the deep learning methods seem to 
better capture the urban fabric, providing better results for the built-up class (especially the Transformer model). 
The Swin Transformer seems to provide noisy predictions in the example. However, the inference algorithm 
utilized with Swin Transformer was not optimized to perform proper semantic segmentation of the scene. 
Indeed, it process the image in a block-wise manner instead of using a rolling window approach. This leads to 
some checkboard artifacts, especially where the model is uncertain. Future analysis will include the qualitative 
results with proper inference algorithms, which will most likely improve the visual fidelity of the prediction maps 
of Swin Transformer. 
 

  
(a) January median composite (b) HRLC10 map 
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(c) Transformer Encoder prediction (d) Swin Transformer prediction 

              
(e) ConvLSTM prediction  

Figure 5. Qualitative comparison of the predictions from the different deep architectures considered. (a) RGB 
image of the January median composite of 2019. (b) Reference HRLC10 map. (c) Transformer Encoder 
prediction. (d) Swin Transformer prediction. (e) ConvLSTM prediction. 
 
The preliminary analysis for the optical classification suggests that the use of deep learning architectures is 
promising, with results similar to the output of the full processing chain of HRLC10 (and in some cases 
qualitatively better). In particular, Swin Transformer and Transformer Encoder networks are promising options 
for improving the optical classification in Phase 2. Further analysis will focus on defining proper training strategies 
for defining deep networks able to operate at a large scale. This will include self-supervision approaches, as they 
have affirmed as the state-of-the-art approaches for model pre-training, and weak supervision approaches, in 
order to be able to augment the training dataset. Indeed, while the available photo interpreted points are 
fundamental for defining models that properly map the target land cover classes, the size of the training database 
is still scarce for training deep learning models. 

3.2 SAR data processing 

Figure 6 illustrates the processing workflow for generating the high-resolution (HR) land cover (LC) map through 
the classification of Sentinel-1 (S1) time series. Initially, the SAR images undergo preprocessing to convert the 
backscattered signal into 𝜎0, expressed in decibels (dB). 
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Figure 6. Block diagram of the SAR classification chain. 

To determine the most suitable algorithm for the final SAR land cover classification process to be applied in Phase 
2 of the project, a series of carefully designed experiments were conducted. These experiments aimed to assess 
the performance and accuracy of different approaches, with each outcome meticulously evaluated to ensure the 
optimal selection. 
In more detail, the initial phase of testing employed the SAR classification chain, as illustrated in Figure 6, which 
had been developed during Phase 1 of the CCI+ project. This chain was used to generate preliminary classification 
outputs, providing an initial benchmark for performance. The Random Forest (RF) classifier was trained using the 
ground truth data collected by the team in Phase 1 through the hierarchical approach. Training points for the 
urban and water classes were excluded from the dataset. 
However, recognizing the inherent limitations and challenges associated with traditional machine learning 
techniques for complex classification tasks, additional methods were considered. Specifically, alternative 
approaches leveraging Deep Learning (DL) techniques, Attention U-Net, Swin-Unet, and 3D FCN, were explored 
to address the limitations of the initial framework and potentially improve classification accuracy, particularly in 
dealing with the high-dimensional nature of SAR data. Figure 7 presents a simplified block diagram that outlines 
the key steps and processes involved in the system, providing a clear overview of the workflow and the 
interconnections between each stage of the procedure. 

 

Figure 7. A simplified workflow illustrating the DL mapping procedure applied to SAR time series. 

3.2.1 Data and Methods 

A first test was carried out in the Amazonian region, specifically focusing on the 21KUQ tile, shown in Figure 8, 
which was selected as one of the benchmark areas during Phase 1 of the project. 
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Figure 8. S2 tile 21KUQ in Amazonia, selected to test the enhancement of the RF classification. 

This tile is particularly significant due to its diverse land cover types and ecological importance, making it an ideal 
test case for assessing the classification methods. 
For this test region, the performance of the classification procedure based on the use of the RF algorithm was 
specifically evaluated, considering an expansion of the feature set compared to what was implemented during 
Phase 1 of the project. 
S1 Level-1 Ground Range Detected (GRD) products, acquired in Interferometric Wide Swath (IW) mode, were 
employed for the analysis. The dataset spans the entire year 2019, offering a comprehensive temporal 
representation of land cover dynamics. The preprocessing stage constitutes a foundational step in generating a 
time series specifically tailored for land cover map production. S1 products are first subjected to radiometric 
calibration to ensure consistency in backscatter values, followed by terrain correction to account for 
topographical distortions. These steps are executed using the Sentinel Application Platform (SNAP) software 
provided by ESA, ensuring standardised and reliable data preparation. 
For the multitemporal analysis, the images are stratified into the four annual seasons, winter, spring, summer, 
and autumn, to capture seasonal variations in land cover. For each seasonal subset, a multitemporal despeckling 
filter is applied to reduce noise while preserving significant spatial and temporal details. This process results in a 
"super image" for each season, representing an aggregated and noise-reduced view of the tile. 
From each super image, a set of spatial features is extracted, including statistical metrics such as Lee, Min, Max, 
Max-Min, Mean, and Median, which provide valuable information about texture and spatial variability. These 
spatial features, combined with the super images themselves, form the inputs for training and executing a RF 
classification. 

3.2.1.1 Random Forest classifier 

Following Phase 1, a RF classifier was applied in this area. Just to quickly recall it, the RF algorithm has become a 
cornerstone in land cover mapping due to its robustness and adaptability, particularly when dealing with complex 
datasets such as those derived from S1 time series. 
The classical RF approach, used as a baseline in Phase 1, relied on 28 features derived from four seasonal 
composites of S1 VH polarisation data collected in 2019. These features captured a range of spatial and statistical 
characteristics, including local edge enhancement, minimum and maximum values, the difference between 
them, as well as mean and median measures. While effective in providing a basic understanding of land cover 
patterns, this classical method was limited in its ability to distinguish subtle variations in the landscape. The need 
for more detailed classification motivated the development of an expanded feature set. 
This initial test investigates potential improvements to the Phase 1 RF classification framework as per the 
previous paragraphs by incorporating an expanded feature set and implementing advanced preprocessing 
techniques, following the methodology outlined in [8]. These innovations aim to address the limitations of 
traditional approaches and provide more accurate and detailed maps, contributing to a better understanding of 
land cover dynamics in challenging environments like the Amazonian region. Specifically, the enhanced approach 
introduced data from both VH and VV polarisations, broadening the scope of information captured by the model. 
S1 images were grouped into 24-day intervals, and multitemporal despeckling was applied to reduce noise. For 
each period, an arithmetic mean composite was generated, adding 15 new features to the original set. This 
process resulted in a comprehensive 43-feature set, significantly increasing the algorithm’s potential to discern 
finer details in land cover. These additional features offered improved temporal resolution and better 
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representation of surface dynamics, particularly in areas with rapid environmental changes. A simplified block 
scheme is depicted in Figure 9. 

 
Figure 9. A simplified block diagram illustrating the land cover mapping procedure, highlighting enhancements to the 

feature pool. 

Another critical aspect of the study was the application of an angular-based radiometric slope correction. This 
preprocessing step, inspired by the method proposed by Vollrath et [9], addressed terrain-induced distortions in 
S1 images. These distortions, often present in rugged terrains, can skew classification results by altering the 
apparent radiometric values of the imagery. By correcting for these angular effects, the study sought to enhance 
the reliability of the data, especially in regions like the Amazon, where topographic variability can significantly 
impact radiometric measurements. 
As mentioned, this first experimental setup was centred on the Amazonian region, specifically the S2 21KUQ tile. 
This area presented a diverse range of land cover types, making it an ideal testbed for the proposed 
enhancements. The training data used consisted of points manually collected through a hierarchical approach 
during Phase 1 within the region, covering a spectrum of land cover classes, including evergreen forests, 
grasslands, croplands, and bare soil. Figure 10 shows the spatial distribution of tile 21KUQ in the Amazon region, 
along with the corresponding legend indicating the number of points for each class. 
 

 

Figure 10. Spatial distribution and legend of the training points collected over the benchmark area 21KUQ in the Amazon 

region. 

Three distinct classification experiments were conducted to assess the proposed enhancement under evaluation. 
The first experiment utilised the classical 28-feature set without any slope correction, serving as the control. The 
second incorporated the expanded 43-feature set, also without slope correction, to assess the impact of the 
additional features alone. The final experiment applied the expanded feature set with slope correction, 
examining the combined effect of the two enhancements. All classifications were implemented within Google 
Earth Engine, a platform that allowed efficient processing of large datasets. 
Validation datasets for the quantitative assessment were sourced from well-established global products, 
including the Copernicus Global Land Cover (CGLC) at 100m 2019 [10], and the CCI Medium Resolution Land 
Cover (MRLC) Map 2019 [11], as well as a validation set provided by PoliMi and verified by UNITN, ensuring a 
robust comparison against external benchmarks. The validation points from existing global land cover products 
were randomly extracted to create a balanced and representative dataset for each land cover class. This 
approach ensures that the distribution of points adequately reflects the diversity of the classes, avoiding biases 
that could skew the classification accuracy assessment. Care was taken to select points from various geographic 
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regions within the study area, capturing variations in land cover types due to environmental and climatic factors. 
The balanced dataset enables a robust comparison across classes, providing a comprehensive evaluation of the 
classification model's performance. 
 
Table 5. List of validation datasets used to evaluate the classification performance based on the RF approach. 

Validation set description Class Number of Points 

PoliMi/UNITN 

Validation Set 

Tree cover (evergreen broadleaf) 658 

Tree cover (deciduous broadleaf) 338 

Grassland 308 

Cropland 137 

Built-up 250 

CGLC Map 

100m 2019 

Tree cover (evergreen broadleaf) 1000 

Tree cover (deciduous broadleaf) 1000 

Shrubland (evergreen) 1000 

Grassland 1000 

Cropland 1000 

Grassland veg. aq. or reg. flooded 1000 

Bareland 198 

Built-up 1000 

Open water (permanent) 1000 

CCI MRLC Map 

300m 2019 

Tree cover (evergreen broadleaf) 1000 

Tree cover (deciduous broadleaf) 1000 

Grassland 1000 

Cropland 1000 

Grassland veg. aq. or reg. flooded 1000 

Open water (permanent) 1000 

 

3.2.1.2 Assessing the Impact of Enhancements on Random Forest Classification 

The results of the improved RF provide significant insights into the effectiveness of the proposed enhancements. 

Qualitative assessments of the classification maps show that the expanded feature set improves the visual clarity 

and spatial detail of the outputs. Features such as roads and bare areas within the study region are more 

distinctly identified, highlighting the value of the additional temporal composites. However, the application of 

slope correction introduces unexpected challenges. While it aimed to standardise radiometric values, it also 

increased noise in the classification process, particularly in homogeneous regions, leading to less consistent 

maps, as highlighted in Figure 11. 
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Figure 11. Visual comparison of the 21KUQ AOI tile between: (a) Google satellite image, (b) the RF map produced by the 

‘classical’ approach, (c) S1 RF map with an extended feature set and no slope correction, and (d) S1 RF map with an 

extended feature set and slope correction. 

A visual assessment in Figure 11 suggests that extending the feature space enhances classification performance, 
making spatial details more apparent. For instance, within the AOI, routes are more distinctly identified and 
classified as bare land. However, the slope correction appears ineffective in resolving class recognition confusion, 
resulting in a classification map that appears noisier. Notable examples of this issue are highlighted in the blue 
areas. 
Quantitative analyses supported these findings, with OA metrics indicating a clear improvement when the 
expanded feature set was used without slope correction. This approach achieved higher differentiation between 
land cover classes and better alignment with validation datasets. Conversely, the slope-corrected classifications 
exhibited lower OA, underscoring the need for further refinement of the correction algorithm to avoid 
introducing artefacts into the data. 
Table 6 compares the performance of different RF classification experiments across three validation datasets. 
The results are expressed in terms of Producer's Accuracy (PAX, percentage accuracy per class x, where x indicates 
the class number) and OA, overall classification accuracy across all classes). 
 
Table 6. Comparison of Producer's Accuracy (PA) for individual classes and Overall Accuracy (OA) across three validation 

datasets using different Random Forest (RF) experimental approaches: Classical Approach, Features Expanded, and 

Features Expanded and Slope Corrected. 

 

*PA: Producer Accuracy; 1: Tree cover (evergreen broadleaf); 2: Tree cover (deciduous broadleaf); 3: Shrubland (evergreen); 4: Shrubland (deciduous); 5: 

Grassland; 6: Cropland; 7: Grassland vegetation aquatic or regularly flooded; 8: Bareland; 9: Built-up; 10: Open water (seasonal); 11: Open water (permanent). 

Note: The symbol ‘-’ indicates the absence of validation points for a specific class. 

Concerning the PoliMi/UNITN Validation Set, expanding features improves class accuracy, especially for PA5 (51% 

→ 93%) compared to the classical approach. The slope-corrected approach achieves similar accuracy for PA5 

Validation set RF experiment PA1 (%) PA2 (%) PA3 (%) PA4 (%) PA5 (%) PA6 (%) PA7 (%) PA8(%) PA9(%) PA10(%) PA11(%) OA(%)

Classical approach 56 75 - - 51 87 - - - - - 54

Features expandend 56 80 - 50 93 - - - - - - 53

Features expandend and Slope corrected 55 79 - 53 92 - - - - - - 53

Classical approach 42 37 17 - 29 40 25 8 - - 91 29

Features expandend 43 35 - - 31 40 20 8 - - 91 29

Features expandend and Slope corrected 43 41 - - 30 46 25 7 - - 92 28

Classical approach 47 27 - - 18 36 44 - - - 91 28

Features expandend 47 27 - - 18 31 40 - - - 91 27,6

Features expandend and Slope corrected 47 22 - - 18 42 48 - - - 91 27,5

PoliMi/UNITN

Validation Set

CGLC Map

100m 2019

CCI MRLC Map

300m 2019
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(92%). All approaches yield similar OA (53%-54%), suggesting that improvements in specific classes do not 

significantly affect global performance. 

For the CGLC validation set, the slope-corrected approach slightly improves PA6 (46%) compared to the classical 

approach (40%). Low accuracy is observed for classes such as PA1 (42%-43%) and PA2 (35%-41%). Incorporating 

slope corrections results in a marginal decrease in OA (28% vs. 29%). 

For the CCI MRLC map, the slope-corrected approach enhances PA7 (48%) compared to other methods. Other 

classes remain stable or decline slightly (e.g., PA2 drops from 27% to 22%). The OA remains almost unchanged 

(27.5%-28%). In conclusion, expanding features or adding slope corrections improves the accuracy of certain 

classes (e.g., PA5 and PA7). However, OA remains relatively consistent across experimental approaches, indicating 

that these refinements do not translate into significant global improvements. Performance varies across 

validation datasets, with the PoliMi/UNITN dataset achieving the highest OA (53%-54%) compared to the other 

datasets (27.5%-29%). 

3.2.1.2.1 RF Performance Assessment with Ecoregion Classification 

To improve classification performance, the RF model was trained using training points manually collected by the 

EO team and organised by Ecoregions, as shown in Figure 12. This approach takes advantage of the ecological 

distinctions specific to each Ecoregion, allowing for a more tailored and accurate land cover classification. The 

model was applied across all three scenarios under consideration, ensuring comprehensive coverage of varying 

ecological contexts. The performance of this Ecoregion-based RF model was evaluated using the same three 

validation datasets employed in prior experiments. The Ecoregion (ER)-based training and classification process 

was carried out using Google Earth Engine (GEE), and the resulting classification maps are in Figure 13. 

 

Figure 12. Spatial distribution and legend of the training points collected across the corresponding Ecoregions in the 

Amazon region. 
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Figure 13. Visual comparison of the 21KUQ AOI tile between: (a) Google satellite image, (b) the RF map produced by the 

‘classical’ approach ER-based, (c) the S1 RF map with an extended feature set and no slope correction ER-based, and (d) S1 

RF map with an extended feature set and slope correction ER-based. 

Furthermore, to mitigate residual misclassification errors and refine the output, a neighborhood reduction filter 

was applied as a post-processing step, with the resulting classification maps shown in Figure 14. This filter aims 

to smooth classification outputs by addressing isolated misclassified pixels, thereby enhancing spatial coherence 

and improving the overall map quality. 

 

Figure 14. Visual comparison of the 21KUQ AOI tile between: (a) Google satellite image, (b) the RF map produced by the 

‘classical’ approach ER-based, neighbourhood reduced (c) the S1 RF map with an extended feature set and no slope 

correction ER-based, neighbourhood reduced, and (d) S1 RF map with an extended feature set and slope correction ER-

based, neighbourhood reduced. 
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This additional step is particularly effective in reducing noise in areas where class transitions are abrupt or where 
small misclassified patches might distort the final results. This technique significantly improved map 
homogeneity, reducing the 'salt and pepper' effect often observed in RF outputs. The filter proved particularly 
effective for the extended feature sets, further enhancing the usability of the classification results for practical 
applications. 
Table 7 presents the results of classification performance for the different RF experiments, where training was 
based on Ecoregion (ER) data. The experiments were evaluated using the three validation sets used previously. 
The performance of the RF model is measured by PA for each class (PA1, PA2, PA3, etc.) and OA. 
 
Table 7. Comparison of Producer's Accuracy (PA) for individual classes and Overall Accuracy (OA) across three validation 

datasets using different Random Forest (RF) experimental approaches ER-based: Classical Approach, Features Expanded, 

and Features Expanded and Slope Corrected. The performances have been also compared with their corresponding 

neighborhood reduced filtering version. 

 

*PA: Producer Accuracy; 1: Tree cover (evergreen broadleaf); 2: Tree cover (deciduous broadleaf); 3: Shrubland (evergreen); 4: Shrubland (deciduous); 5: 

Grassland; 6: Cropland; 7: Grassland vegetation aquatic or regularly flooded; 8: Bareland; 9: Built-up; 10: Open water (seasonal); 11: Open water (permanent). 

Note: The symbol ‘-’ indicates the absence of validation points for a specific class. 

For the PoliMi/UNITN Validation Set, the highest OA (OA = 59%) is achieved by the "Features expanded ER-based 
neighbourhood reduced" experiment, indicating that adding feature expansion and applying the neighbourhood 
reduction filter leads to improved classification performance. The "Classical approach ER-based" experiment 
shows lower OA (OA = 42.6%), suggesting that using a classical approach without additional post-processing or 
feature expansion does not perform as well. "Features expanded ER-based" and "Slope corrected" methods 
provide relatively better results (OA = 55.4% and OA = 53%, respectively). 
Using the CGLC set, the "Classical approach ER-based, neigh. reduced" experiment shows the best performance 
with an OA of 28%, followed by "Features expanded ER-based neigh. reduced" with an OA of 26.6%. Adding the 
neighbourhood reduction filter improves the classification, as seen in experiments like "Classical approach ER-
based, neigh. reduced" (OA = 28%) and "Features expanded ER-based neigh. reduced" (OA = 26.6%). The 
"Features expanded ER-based" experiment without neighbourhood reduction or slope correction results in lower 
accuracy (OA = 25.8%). 
With the CCI MRLC validation points, the best performance is observed in the "Features expanded ER-based 
neigh. Reduced" experiment, which achieves an OA of 32.9%, indicating that this combination of methods 
(feature expansion with the neighbourhood reduction filter) delivers the most accurate classification results. 
"Classical approach ER-based, neigh. reduced" (OA = 30.4%) and "Features expanded ER-based" (OA = 31.9%) 
also perform well, showing that adding neighbourhood reduction and expanding features consistently improves 
results. The lowest OA (OA = 27.9%) is obtained from the "Classical approach ER-based" experiment, underlining 
the importance of additional processing steps like feature expansion and neighbourhood reduction for improved 
accuracy. 
The application of feature expansion and neighbourhood reduction significantly enhances classification accuracy, 
particularly when combined with Ecoregion-based training. The Slope corrected method provides some 
improvements in accuracy, but not as consistently as the neighbourhood reduction filter. 
The Classical approach without feature expansion or post-processing methods yields the lowest accuracy, 
indicating that relying solely on basic RF techniques may not be sufficient for accurate classification across diverse 
land cover types. This analysis highlights the importance of data preprocessing and model refinement (e.g., 
feature expansion, slope correction, and neighbourhood reduction) in improving the performance of land cover 

Validation set RF experiment PA1 (%) PA2 (%) PA3 (%) PA4 (%) PA5 (%) PA6 (%) PA7 (%) PA8(%) PA9(%) PA10(%) PA11(%) OA(%)

Classical approach ER-based 46 48 - - 40 47 - - - - - 42,6

Classical approach ER-based, neigh. reduced 52 55 - - 68 39 - - - - - 51,1

Features expandend ER-based 56 59 - - 55 55 - - - - - 55,4

Features expandend ER-based neigh. reduced 61 64 - - 56 55 - - - - - 59

Features expandend ER-based, Slope corrected 53 55 - - 56 60 - - - - - 53

Features expandend ER-based, Slope corrected, neigh. reduced 55 59 - - 59 56 - - - - - 54,1

Classical approach ER-based 36 26 5 - 18 33 12 3 - - 91 24,6

Classical approach ER-based, neigh. reduced 48 35 - - 17 48 17 12 - - 91 28

Features expandend ER-based 40 26 - - 21 34 15 6 - - 91 25,8

Features expandend ER-based neigh. reduced 47 29 - - 20 36 15 11 - - 91 26,6

Features expandend ER-based, Slope corrected 37 27 - - 27 35 15 7 - - 92 25,9

Features expandend ER-based, Slope corrected, neigh. reduced 47 29 - - 20 36 15 11 - - 91 26,6

Classical approach ER-based 40 22 - - 23 33 28 - - - 91 27,9

Classical approach ER-based, neigh. reduced 47 25 - - 25 35 30 - - - 91 30,4

Features expandend ER-based 46 29 - - 27 43 36 - - - 91 31,9

Features expandend ER-based neigh. reduced 51 32 - - 26 54 36 - - - 91 32,9

Features expandend ER-based, Slope corrected 44 28 - - 27 36 36 - - - 91 31

Features expandend ER-based, Slope corrected, neigh. reduced 50 33 - - 27 50 36 - - - 91 33,2

PoliMi/UNITN

Validation Set

CGLC Map

100m 2019

CCI MRLC Map

300m 2019
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classification using RF models. 
Some classes consistently exhibit low PA values, which may indicate underlying issues related to the distribution 
of training samples or confusion between similar classes. These low PA values, coupled with equally low OA 
scores, suggest that the current RF approach may not be capturing the complexities of certain land cover types 
effectively. Such results point to the necessity of exploring alternative, more powerful methods for land cover 
classification. In particular, DL approaches, with their ability to model complex spatial relationships and learn 
hierarchical features directly from raw data, may offer significant improvements in performance. DL methods. 

3.2.1.3 Deep Learning Models as an alternative to RF for LC Classification 

The performance of the 'classical' RF classification, as used in Phase 1 and based on 28 features per season, was 
also evaluated in comparison with three advanced DL algorithms: Attention U-Net, Swin-Unet, and 3D Fully 
Convolutional Network (3D FCN). 
For the training of the three DL algorithms the channel axis of the input tensors was utilised to encode the spatio-
temporal information derived from the sequence of seasonal features extracted from the original SAR images. 
This approach allowed the networks to process the temporal dynamics effectively. The input tensors were 
structured as 𝐵 × 𝑇 ×𝑊 × 𝐻, where: 

• 𝐵 represents the batch size, 

• 𝑇 corresponds to the temporal dimension (seasonal features), 

• 𝑊 and 𝐻 denote the width and height of the input images, respectively. 
Training was conducted over 30 epochs, ensuring sufficient iterations for the models to converge. The remaining 
parameters were configured as described in reference [12]. Specifically: 

• Learning rate:  0−4, optimised for gradual and stable learning, 

• Batch size: 1, chosen to efficiently handle the 28-feature temporal sequence while managing memory 
constraints. 

• Optimizer: Adam, used for its effectiveness in handling sparse gradients and adaptive learning rates. 

• Loss function: Categorical Cross-Entropy, applied to optimise for multiclass classification. 
This configuration ensured the models could capture the intricate spatio-temporal relationships inherent in the 
seasonal SAR features, thereby enhancing their performance in classifying diverse land cover types. 
The DL training set was extracted from the MOLCA dataset [13], which provides a comprehensive collection of 
labeled land cover data. This dataset includes various land cover classes with high spatial resolution, and it was 
specifically selected to ensure the availability of accurate training samples. The methodology for selecting and 
processing this training data is described in detail in the ATDB (Algorithm Technical Description Book) [AD6], 
where the steps for data extraction, sample refinement, and class assignment are outlined to ensure high-quality 
input for the DL model. 
These algorithms were applied not only to the previously mentioned Amazonia tile, but to three static and 
geographically diverse areas representing the Amazon, Africa, and Siberia regions. These regions, selected during 
Phase 1 of the project for their distinct ecological and land cover characteristics, are illustrated in Figure 15. 
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Figure 15. Views of the static areas identified in Phase 1: (a) Amazonia (62.1014° W, 23.5983° S to 42.9441° W, 0° N, WGS 

84), (b) Africa (9.8986° E, 0.0885° S to 43.2908° E, 18.0891° N, WGS 84), and (c) Siberia (64.4361° E, 51.2789° N to 93.4017° 

E, 75.6847° N, WGS 84). 

The performance of the classification models was rigorously compared across the three static areas., each 

represented by a subset of S2 tiles listed in Table 8 and shown in Figure 16.  

Table 8. List of tiles selected to assess the DL classification performance for each static area: Amazonia (86 S2 tiles), Africa 
(103 S2 tiles), and Siberia (64 S2 tiles). 

Amazonia Africa Siberia 

20KQD 32NQF 41UPA 

20KQV 32NRH 41VPE 

20KRF 33NUA 41WPN 

20LQH 33NUE 42UVD 

20LQM 33NUG 42UWF 

20LQR 33NVC 42VUP 

20LRK 33NWJ 42VVH 

20LRP 33NXA 42VVM 

20MQD 33NXE 42VVR 

20MQV 33NXG 42VWK 

20MRB 33NYC 42VXP 

20MRT 33PWN 42WVD 

21KTS 33PWS 42WVV 

21KVQ 33PXL 42WWB 

21KVU 33PXQ 42WXT 

21KWA 33PZN 42XWF 

21KWS 33PZS 43UCU 

21KYQ 33QXU 43UDA 

21KYU 34NBF 43UFU 

21LUC 34NBK 43VCC 

21LUG 34NBP 43VCG 

21LUL 34NCH 43VDE 
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21LVE 34NCM 43VDL 

21LVJ 34NEF 43VEG 

21LXC 34NEK 43VFC 

21LXG 34NEP 43VFJ 

21LXL 34NFH 43WDQ 

21LYE 34NFM 43WEU 

21LYJ 34NHF 43WFN 

21LZG 34NHK 43WFS 

21LZL 34NHP 44ULF 

21MUQ 34PCR 44UNF 

21MUU 34PCV 44UPD 

21MVN 34PEB 44VLK 

21MVS 34PET 44VMJ 

21MXQ 34PFR 44VMM 

21MXU 34PFV 44VMR 

21MYN 34PHB 44VPH 

21MYS 34PHT 44VPP 

21MZQ 34QCD 44WMV 

22KBB 34QFD 44WNB 

22KBF 35NLC 44WNE 

22KCD 35NLG 44WPT 

22KDV 35NNA 44XMF 

22KEB 35NNE 45UUA 

22KEF 35NNJ 45UWU 

22KFD 35NPC 45UXA 

22KGV 35NPG 45VUE 

22KHF 35NRA 45VUG 

22LBH 35NRE 45VVL 

22LCK 35NRJ 45VWC 

22LCP 35PLL 45VWG 

22LDM 35PLQ 45VXE 

22LEH 35PNN 45WVQ 

22LER 35PNS 45WVU 

22LFK 35PPL 45WWN 

22LFP 35PPQ 45WWS 

22LGM 35PRN 45WXQ 

22MBD 35PRS 45WXU 

22MCB 35QLU 45XVC 

22MCT 35QPU 45XWA 

22MED 36NUH 46VCP 

22MEV 36NUM 46VCR 

22MFB 36NVF 46XDH 

22MFT 36NVK  

23KKS 36NVP  

23KLU 36NXH  

23KMA 36NXM  

23KMQ 36NYF  

23KNS 36NYK  

23LKC 36NYP  
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23LKE 36PUR  

23LKJ 36PUV  

23LKL 36PWB  

23LLG 36PWT  

23LMJ 36PXR  

23LNC 36PXV  

23LNE 36PZB  

23LNL 36PZT  

23MKN 36QUD  

23MKQ 36QXD  

23MKS 37NBC  

23MKU 37NBG  

23MMN 37NCA  

23MNQ 37NDE  

23MNS 37NDJ  

 37NEC  

 37NEG  

 37NFA  

 37NGE  

 37NGJ  

 37PCL  

 37PCQ  

 37PDN  

 37PDS  

 37PFL  

 37PFQ  

 37PGN  

 37PGS  

 37QCU  

 37QFU  

 38NKF  

 38NKM  

 

 

Figure 16. Visual representation of the spatial distribution of the tiles selected for (a) Amazonia, (b) Africa, and (c) Siberia, 
to assess the classification performance of the DL networks. 

For the comparison, the S1 Level-1 GRD dataset from 2021 was utilised. The dataset was segmented into four 
subsequences corresponding to the seasons (winter, spring, summer, and autumn). This seasonal division 
provided a comprehensive temporal perspective for analysing land cover dynamics across diverse regions. 
The resulting dataset included: 
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• Amazonia: for 86 S2 tiles, a total of 5105 SAR images, distributed as 1264 for winter, 1310 for spring, 
1338 for summer, and 1193 for autumn. 

• Africa: A collection of 5827 SAR images for 103 S2 tiles, comprising 1470 for winter, 1480 for spring, 
1654 for summer, and 1405 for autumn. 

• Siberia: For 64 S2 tiles, a dataset of 3396 SAR images, with 768 for winter, 744 for spring, 984 for 
summer, and 900 for autumn. 

All images were acquired in IW mode with VH polarisation and descending orbit configuration. 
Each algorithm was evaluated in terms of its ability to accurately classify land cover types, with particular 
attention to how well each model handled the unique characteristics of the SAR data in these diverse regions. 
This evaluation aimed at determining the most effective DL model for the classification in the Phase 2 of the 
project, ensuring robust and reliable land cover maps across the selected global regions. 

3.2.1.4 Comparative Performance Analysis of DL Models and RF for LC Classification 

Table 9 displays the performance of different three DL models for the three regions: Amazonia, Africa, and 
Siberia. As a general statement, Swin-Unet consistently outperforms the benchmark CNN-based models (3D-FCN 
and Attention U-Net) and the RF model in terms of OA, kappa, and F1-score across all three regions. While RF 
remains robust in simpler scenarios, DL models outperform it by leveraging their ability to learn hierarchical and 
contextual features [14]. 
 
Table 9. Overall Accuracy (OA), Kappa Coefficient, F1-Score, and Producer Accuracy (PA) for the evaluated models across 
different regions. 

 

*pa: Producer Accuracy; 1: Forest; 2: Shrubland; 3: Grassland; 4: Cropland; 5: Wetland; 6: Bareland; 7: Built-up; 8: Water. 

A visual comparison of the results from the Swin-Unet model, including random S1 super images from the 

validation dataset, MOLCA reference data (Ground Truth), and the corresponding predictions, is illustrated in the 

Figure 17, Figure 18 and Figure 19, for Amazonia, Africa and Siberia, respectively. 

 

Figure 17. Visual comparison for the Amazonia region, showing Sentinel-1 super image data (top row), Ground Truth 
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(middle row), and predicted patches (bottom row). 

 

Figure 18. Visual comparison for the Africa region, showing Sentinel-1 super image data (top row), Ground Truth (middle 
row), and predicted patches (bottom row). 

 

Figure 19. Visual comparison for the Siberia region, showing Sentinel-1 super image data (top row), Ground Truth (middle 
row), and predicted patches (bottom row). 

In these regions, the Swin-Unet model achieves OAs of 93.3%, 93.6%, and 97.4%, respectively. The corresponding 

confusion matrices are presented in the Figure 20, with each diagonal element indicating the PA for the 

respective class. Notably, the results table indicates that the Forest, Grassland, Cropland, and Water classes are 

effectively extracted using the leading model across all three study areas. 

 

Figure 20. Normalized confusion matrices derived from the validation set for the regions: (a) Amazonia, (b) Africa and (c) 
Siberia. 
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The evaluation of the models on the African dataset indicates that CNN-based approaches may have difficulty 
differentiating Bareland from classes such as Water or Grassland within SAR imagery. In Africa, the 3D-FCN model 
scores 0.77 for Water, but only 0.36 for Bareland, 0.53 for Cropland, and 0.44 for Grassland. The Attention U-Net 
framework, on the other hand, achieves a PA of 0.89 for Water, 0.66 for Forest, and 0.55 for Grassland, but only 
0.02 for Bareland. In contrast, the Swin-Unet achieves a final PA of 0.97 for Forest, 0.83 for Grassland, and 0.93 
for Bareland, surpassing the other two models. 
The improvement in recognizing Bareland with the Swin-Unet model is evident not only in Africa but also in the 
Siberian dataset. Despite representing only 1.04% of the available tiles, Bareland achieves a PA of 0.75 with this 
model, marking a substantial enhancement from the initial values of 0.16 and 0.06 recorded with the 3D-FCN 
and Attention U-Net, respectively. These outcomes suggest that the transformer model is capable of recognizing 
various LC classes and tends to make more balanced classifications compared to the other two CNN-based 
models, which generally show high PA only for specific classes like Water. This difference may stem from the 
Attention U-Net model's limited ability to generalize, which results in strong classification performance primarily 
for classes with easily identifiable spatial patterns or unique brightness values, such as Water or Forest. However, 
it struggles with more complex morphological relationships of specific LC classes like Bareland. Consequently, 
the Attention U-Net, which depends on locality-based attention mechanisms, may find it challenging to classify 
classes that share similar pixel value distributions. Regarding the 3D-FCN model, its three-dimensional logic-
based structure does not provide additional benefits when the input data lacks a dense temporal sequence and 
instead consists of seasonal synthetic images, referred to as features. In this context, a 2D-CNN model, like the 
Attention U-Net, appears to be sufficient. In contrast, transformer-based models like Swin-Unet consider global 
pixel relationships, leading to a more accurate assessment of context and environment. The global attention 
mechanisms in these models can help recover this context, which CNNs cannot achieve due to the local nature 
of the convolutional kernel. Furthermore, the Built-up class showed significant improvement through the Swin-
Unet model in Amazonia and Siberia with final values of 0.85 and 0.92. For the African region, the value for this 
specific class remains poor, likely due to the lower number of representative labels for the this class in this area 
(only 0.5%). Another contributing factor could be the small and fragmented nature of urban areas, particularly 
when compared to more spatially uniform LC classes like Forest, Grassland, or Cropland. In favor of these latter 
classes, the highest confusion is observed when predicting Built-up, indicating a significant challenge in visually 
distinguishing small urban areas from surrounding classes due to their reduced size and scattered appearance. 
For Wetland, a high PA of 0.79 is obtained in the Siberian region, while for the other two areas, the accuracy 
remains 
For both Amazonia and Siberia, RF achieves lower OA than all three DL approaches. In Africa, RF reaches an OA 
of 0.745, slightly exceeding the OA of 3D-FCN and Attention U-Net. However, its Kappa coefficient (0.544) and 
F1-Score (0.712) remain lower than those of these DL models. The Swin-Unet achieves the highest metrics 
overall, with an OA of 0.936, a Kappa coefficient of 0.900, and an F1-Score of 0.932. 
Finally, it is important to note that both the DL models and RF, show moderate performance in classifying the 
Forest and Water classes. RF records producer accuracies (PA) of 0.51 and 0.18 for these classes in Amazonia, 
0.64 for both in Africa, and 0.31 and 0.41 in Siberia, respectively. However, RF struggles significantly with other 
classes. In Amazonia, it performs poorly for Shrubland (PA = 0.09), Cropland (PA = 0.07), Bareland (PA = 0), and 
Built-up (PA = 0.02). Similar issues arise in Africa for Shrubland (PA = 0.11), Wetland (PA = 0.07), and Built-up (PA 
= 0), as well as in Siberia for Shrubland (PA = 0), Wetland (PA = 0.06), and Bareland (PA = 0). These low PAs suggest 
that RF struggles with complex and highly variable LC classes. 

3.2.1.4.1 DL Swin-Unet Performance Assessment with Ecoregion Classification 

Additional experiments were conducted for the best DL model using ground truth data organized by ecoregions. 
Figure 21 shows the MOLCA training patches for the Amazon, Africa, and Siberia, divided by climatological zones. 
The legend includes a color map and numerical codes for each region. 
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Figure 21. Division of the MOLCA patches in the training set based on ecoregions for (a) Amazonia, (b) Africa, and (c) Siberia. 

The experiments were designed to incorporate the ecoregions within the three study areas. This additional 
analysis aims to evaluate the performance of the model when training and testing are done within the same 
ecoregion compared to when they are conducted across different ecoregions, with the goal of providing a deeper 
assessment. The results obtained using the Swin-Unet model are displayed in Figure 22 , and are presented in 
terms of OA. Diagonal elements indicate cases where training and testing are done within the same ecoregion, 
while off-diagonal elements represent cross-validation across different ecoregions. 

 

Figure 22. Overall Accuracy (OA) matrices derived from various training/test ecoregion pairings for (a) Amazonia, (b) Africa, 
and (c) Siberia. 

In the Amazonia region in Figure 22(a), the OA. is generally higher when both training and testing occur within 
the same ecoregion. However, a notable exception arises when Ecoregion 14 and Ecoregion 9 are used for 
training and tested on other ecoregions. The poorer performance in these cases is likely due to the limited 
number of tiles in Ecoregion 14 (1 tile) and Ecoregion 9 (4 tiles), restricting the diversity and quantity of training 
data. A similar trend is observed in the African region (Figure 22(b)), where performance is lower when training 
on Ecoregion 9 and Ecoregion 10, which contain only 3 and 4 tiles, respectively. This small dataset may be 
insufficient for the model to generalize well across more diverse ecoregions. In the Siberian region (Figure 22(c)), 
OA. values remain high, surpassing 80% across all combinations. However, the lowest performance is noted when 
training on Ecoregion 4 and testing on other ecoregions, even though it contains just 4 tiles. Despite this, the 
model’s accuracy remains relatively stable, demonstrating the strong generalization capability of the model, even 
when trained with limited data from other ecoregions. 

3.2.1.4.2 Comparison with Conventional SAR Time Series Analysis 

The following analysis presents a comparative evaluation classifications obtained in the static areas identified in 
Phase 1 for Amazonia, Africa, and Siberia either with the full time-series data or just the seasonal. The objective 
is to show that the approach based on seasonal SAR features surpasses the conventional method of using 
multiple temporal SAR images for each season. 
For this experiment, twenty temporal images per tile were collected for 2021, i.e., five images per season. This 
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process generated datasets containing 1620 S1 images for Amazonia, 1860 for Africa, and 960 for Siberia. Strict 
selection criteria ensured that only tiles with complete spatial and temporal coverage were included. As a result, 
the final dataset was refined to 81 MOLCA tiles for Amazonia (reduced from 86), 93 for Africa (down from 103), 
and 48 for Siberia (from 64), preserving the data quality for all analyses. The seasonal distribution of the collected 
S1 time series is presented in Table 10. 
 
Table 10. Seasonal count of S1 images from the 2021 time series for Amazonia, Africa and Siberia static area. 

 

*Winter: 01.01 to 03.31, Spring: 04.01 to 06.30, Summer: 07.01 to 09.30, Autumn: 10.01 to 12.31 

The comparative study employed the Swin-Unet DL model, which demonstrated superior performance among 
the three analyzed DL approaches, alongside the RF classifier, ensuring a fair comparison by using identical 
training and validation sets. The results, reported in Table 9 and Table 11, reveal a significant reduction in 
accuracy when standard time-series images are used compared to the seasonal features series. These findings 
highlight the efficiency and reliability of the synthesized spatial information derived from the features, 
establishing it as a superior approach for multitemporal data analysis. 

Table 11. Results for standard input time series for Amazonia, Africa and Siberia. 

 

*pa: Producer Accuracy; 1: Forest; 2: Shrubland; 3: Grassland; 4: Cropland; 5: Wetland; 6: Bareland; 7: Built-up; 8: Water. 

Specifically, two significant drawbacks of the traditional time-series approach emerged: 

• Increased computational demand: Handling numerous temporal images requires extensive storage and 
processing resources. 

• Data limitations: Some regions lack sufficient temporal data consistency, hampering detailed studies. 
The features series approach provides a significant benefit by condensing temporal dynamics into a single 
composite image, known as the super image. This image captures seasonal variations, offering a consistent 
representation while eliminating the need for extra spatial constraints. This method simplifies the workflow, 
enhancing coherence and reducing complexity. 

3.2.1.5 Comparative Analysis for Water LC Class Recognition between the Swin-Unet DL Approach 

and SAR Water Detector 

To assess the performance of water recognition by the dedicated detector selected in Phase 1 in comparison 
with the DL Swin-UNet approach, 10 benchmark areas were selected within the three static regions of interest. 
Each of these ten test areas were chosen to represent water bodies that are most commonly found in these 
regions, including rivers, streams, basins, lakes, seas, and other aquatic features. The tiles selected as 
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benchmarks for each area are listed in Table 12, and are shown in Figure 23, to offer a clear geographical context 
for each benchmark location.  
 
Table 12. List of benchmark tiles selected for Amazonia, Africa, and Siberia to assess the performance of the Phase 1 water 
extractor against the DL Swin-Unet approach. 

Amazonia Africa Siberia 

21LXD 
22KCA 
22KFB 
22LGK 
22LGP 
22MFA 
22MGD 
22MHT 
23KMV 
23MNT 

33PUK 
33PVQ 
33PYQ 
34NBG 
35NKD 
36NVG 
36NZJ 
36PVB 
37NCG 
37NDJ 

41UPU 
42VVP 

42WWU 
43WES 
44UNF 
44WNE 
45VWL 
45WWR 
45XVB 
46VEK 

 

The selection ensures a diverse and comprehensive evaluation of the detection capabilities in varying 
geographical and environmental contexts. Each region presents unique challenges related to the scale and type 
of water bodies, enabling a detailed performance assessment. 
 

 

Figure 23. S2 tiles selected for evaluating water detection performance in (a) the Amazon, (b) Africa, and (c) Siberia. These 

tiles highlight regions with diverse hydrological features, providing a robust basis for performance comparison. 

For each tile in each area, a representative patch of 549x549 pixels was selected through visual inspection of the 
optical imagery to identify potential water basins of interest. This approach allowed for a targeted evaluation by 
focusing on specific, clearly defined regions within the tiles, enabling a detailed understanding of the detector's 
robustness in real-world conditions, particularly in regions with diverse hydrological features. 
For water extraction using the dedicated detector, the annual series of S1 data from 2021 was considered for 
each tile. The series was subsequently divided into monthly temporal subsets, for which the following temporal 
features were calculated: mean, minimum, maximum, and variance. These monthly feature sets served as inputs 
to the water extractor, which generates binary monthly water maps (where pixel values are 0 for non-water and 
1 for water). 
The water extraction is an unsupervised routine introduced in [15], utilizing a K-means clustering approach. This 
procedure differentiates areas with low backscatter and low variance along the temporal series (characteristic 
of water bodies) from other potential regions of interest. The final water map is derived from these monthly 
water maps, following the methodology described in the deliverable ATDB [AD1], particularly in the section titled 
"8.2.2.2 Water Dynamics Analysis: Seasonal vs. Permanent Water Identification." 
The monthly aggregation of statistical measures such as mean and variance helps capture the temporal dynamics 
of water bodies, which may fluctuate due to seasonal changes or hydrological events. The reliance on K-means 
clustering makes this method adaptable to diverse regions without requiring labeled data, enhancing its 
applicability for large-scale studies. Concerning the final water map, b synthesizing monthly maps, the process 
distinguishes between seasonal and permanent water, providing a comprehensive view of water dynamics over 
the year. 
To refine the final water map, a masking operation was applied to address desert areas or regions with strong 
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similarities to water due to their dominant backscattering mechanisms. Specifically, water areas identified by the 
detector that belong to desert or bare soil classes, according to coarser resolution land cover maps, such as the 
Copernicus Land Cover Map at 100 m spatial resolution, were excluded. This refinement step enhances the 
accuracy of the water map by reducing false positives, particularly in arid or semi-arid regions where surface 
characteristics can mimic water signatures in satellite imagery. 
The classification of water bodies using the Swin-Unet approach is instead performed by utilizing the models 
trained in the previous experiments. Seasonal spatial feature sets were computed and used as input for the Swin-
Unet DL framework. These features capture the temporal variability and spatial characteristics of water bodies, 
enabling the model to account for seasonal changes and better distinguish water from other land cover types. 
To compare the water recognition performance of the two methodologies, the permanent and seasonal water 
classes from the water map generated by the dedicated extractor were merged into a single "water" class. This 
aggregation resulted in a binary map where pixel values of 0 represent "non-water" areas, and pixel values of 1 
represent "water" areas. This simplification was necessary because the MOLCA dataset, used for training the DL 
approach, does not include seasonal information in its LC classes. Concerning the DL maps, regions encompassing 
various land surface types, such as forests, urban areas, agricultural fields, deserts, and other terrains that do 
not exhibit hydrological characteristics, such as low backscatter or high reflectivity, were grouped into the non-
water land cover category. These areas are uniformly assigned a value of 0, distinctly separating them from water 
classes. This aggregation simplifies the classification process by consolidating diverse non-water types into a 
singular, cohesive category. Such an approach streamlines data analysis, enhancing the ability to compare and 
evaluate water-detection results against these non-water regions.  
The classification results and the visual comparison are presented in Figure 24, Figure 25 and Figure 26, 
corresponding to the Amazonia, Africa, and Siberia, respectively. For each region, four representative S2 tiles 
were selected as examples. The water maps derived from the dedicated extractor and the DL Swin-Unet 
approach were evaluated by comparing them against two reference datasets: the ESRI optical basemap, which 
provides high-resolution visual reference imagery, and the super image calculated from the seasonal S1 temporal 
series, which aggregates backscatter data to highlight hydrological patterns over time. 
 

 
Figure 24. Visual assessment for the Amazonia region comparing (first row) the ESRI reference image, (second row) the S1 
seasonal super image, (third row) the water map derived from the dedicated extractor, and (fourth row) the water land 
cover classes from the DL Swin-Unet classification. The comparison is presented for patches of 549x549 pixel size, 
corresponding to the following S2 tiles: (a) 21LXD, (b) 22KCA, (c) 22MFA, and (d) 23MNT. 
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Figure 25. Visual assessment for the Africa region comparing (first row) the ESRI reference image, (second row) the S1 
seasonal super image, (third row) the water map derived from the dedicated extractor, and (fourth row) the water land 
cover classes from the DL Swin-Unet classification. The comparison is presented for patches of 549x549 pixel size, 
corresponding to the following S2 tiles: (a) 34NBG, (b) 35NKD, (c) 36NVG, and (d) 36PVB. 

 
Figure 26. Visual assessment for the Siberia region comparing (first row) the ESRI reference image, (second row) the S1 
seasonal super image, (third row) the water map derived from the dedicated extractor, and (fourth row) the water land 
cover classes from the DL Swin-Unet classification. The comparison is presented for patches of 549x549 pixel size, 
corresponding to the following S2 tiles: (a) 42WWU, (b) 43WES, (c) 44WNE, and (d) 45XVB. 
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This multi-faceted comparison highlights the differences in water detection performance, accounting for the 
strengths and limitations of the two methodologies. In the Amazonia region, for example, examining Figure 24 
and column (a), it is evident that the DL approach can identify water bodies not detected by the dedicated 
extractor. Conversely, column (c) demonstrates a limitation of the Swin-Unet network: half of a lake within the 
examined patch is not classified as water, whereas the dedicated extractor's output map successfully identifies 
the entire lake. Similar observations can be made for the Africa and Siberia regions, as shown in the respective 
figures (Figure 25 and Figure 26). In these cases, the DL approach and the dedicated extractor exhibit 
complementary strengths, with the former excelling in identifying smaller or less prominent water features, and 
the latter showing greater reliability in capturing larger, more stable water bodies. 
To complement the evaluation, a thorough quantitative analysis is introduced, providing a numerical framework 
to validate and expand upon the insights gained from the earlier qualitative assessment. Several metrics are 
considered, including OA Precision, Recall, F1-Score, and Producer Accuracy (pa) for both non-water (𝑝𝑎0) and 
water classes (𝑝𝑎1). These metrics provide complementary insights into different aspects of model performance: 

• OA is used to assess the proportion of correctly classified pixels across the entire dataset, giving a 
general view of model effectiveness. 

• Precision measures the accuracy of water detection, indicating the proportion of true water pixels 
among all those classified as water. This helps to understand how well false positives are minimized. 

• Recall evaluates the ability of the model to identify all water pixels, reflecting how many true water 
features are correctly detected. 

• F1-Score offers a balanced measure of Precision and Recall, particularly useful when there is an 
imbalance between water and non-water classes in the dataset. 

These metrics were computed for each test area (Amazonia, Africa, Siberia) to allow both regional and 
aggregated comparisons between the water detection methodologies. The analysis, reported in Table 13, 
highlights not only the overall reliability of each method but also their strengths and weaknesses in capturing 
diverse hydrological patterns under varying environmental conditions. The ESA WorldCover map, with its 10-
meter spatial resolution, was utilized as the validation dataset to assess the performance of the water detection 
approaches. This dataset provides a globally consistent, high-resolution land cover classification, enabling a 
reliable comparison between detected water bodies and the ground truth information. 
Table 13. Overall Accuracy (OA), Precision, Recall, F1-Score, and Producer Accuracy (pa) for the evaluated approaches 
across different regions. 

 

*pa: Producer Accuracy; 0: Non-Water; 1: Water. 

In Table 13, the performance in Amazonia shows that both the water extractor and the Swin-Unet DL model 
exhibit high accuracy. The OA values are 0.96% for the water extractor and 0.97% for Swin-Unet DL, indicating 
strong performance for both methods. The Precision, Recall, and F1-Score metrics are also very close, ranging 
from 0.96% to 0.97% for both models. For Producer Accuracy (𝑝𝑎), the performance for non-water areas (𝑝𝑎0) 
is higher with the water extractor at 98.06%, compared to 96.56% for Swin-Unet DL. However, for the water class 
(𝑝𝑎1), Swin-Unet DL outperforms the water extractor, achieving 91.81%, compared to 90.40% for the latter. This 
suggests that while both models perform similarly in most aspects, the water extractor has a slight edge in 
correctly identifying non-water areas, while Swin-Unet DL slightly excels in detecting water bodies in Amazonia. 
In Africa, as seen in Table 8, the water extractor outperforms Swin-Unet DL in several key metrics. The OA is 
significantly higher for the water extractor (0.94%) compared to Swin-Unet DL (0.80%). Similarly, the F1-Score of 
the water extractor (0.94) is considerably better than Swin-Unet DL (0.80%). This suggests that the water 
extractor is more effective in overall classification performance in Africa. Looking at the Producer Accuracy (𝑝𝑎) 
values, Swin-Unet DL performs better in detecting non-water areas (𝑝𝑎0), with a value of 99.47%, compared to 
94.62% for the water extractor. However, for water areas (𝑝𝑎1), the water extractor significantly outperforms 
Swin-Unet DL, with a 𝑝𝑎1 of 89.35% compared to 63.65% for Swin-Unet DL. This disparity indicates that Swin-
Unet DL struggles more with identifying water bodies in the complex and diverse African landscape, while the 
water extractor is more proficient in detecting water features in this region. 

Region Model OA Precision Recall F1-Score pa0 pa1

Water extractor 0.96 0.97 0.96 0.96 98.06 90.40

Swin-Unet DL 0.97 0.97 0.97 0.97 96.56 91.81

Water extractor 0.94 0.95 0.94 0.94 94.62 89.35

Swin-Unet DL 0.80 0.90 0.80 0.80 99.47 63.65

Water extractor 0.85 0.91 0.85 0.87 87.77 66.86

Swin-Unet DL 0.92 0.95 0.92 0.93 93.31 90.51

Amazonia

Africa

Siberia
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For the Siberia region, Swin-Unet DL shows better overall performance compared to the water extractor. The OA 
for Swin-Unet DL is 0.92%, surpassing the water extractor's OA of 0.85%. Similarly, the F1-Score for Swin-Unet 
DL (0.93%) outperforms the water extractor (0.87%). These metrics highlight Swin-Unet DL's stronger overall 
classification performance in Siberia. In terms of water class recognition, Swin-Unet DL also significantly 
outperforms the water extractor in terms of Producer Accuracy for water (𝑝𝑎1), with a value of 90.51% compared 
to 66.86%. This indicates that Swin-Unet DL is more adept at recognizing water bodies in the Siberian landscape. 
However, for non-water class recognition (𝑝𝑎0), the water extractor has a slight edge with a value of 87.77%, 
while Swin-Unet DL achieves 93.31%. This suggests that while Swin-Unet DL excels in identifying water bodies, 
the water extractor performs slightly better at distinguishing non-water areas. 
The corresponding confusion matrices for the models' performance in the Amazonia, Africa, and Siberia regions 
are presented in the Figure 27. 

+  

Figure 27. Confusion matrices for the (first row) water extractor and (second row) Swin-Unet DL approach across regions 
of (first column) Amazonia, (second column) Africa, and (third column) Siberia. 

In conclusion, the water extractor typically offers a more consistent and balanced performance across all regions. 
It performs particularly well in Africa, where it demonstrates strong water detection capabilities, even within 
complex landscapes. In contrast, Swin-Unet DL shows more variability, excelling in Amazonia and Siberia, but 
struggling in Africa due to the region's complex land cover and seasonal dynamics. This indicates that while DL 
models such as Swin-Unet DL perform well in simpler or less dynamic environments, they may face challenges in 
regions with significant seasonal changes and diverse land cover types. 
Furthermore, it is important to emphasize that the water extractor-based approach allows for the identification 
of seasonal variations in water bodies, unlike the DL network, which requires a reference dataset where the 
water land cover class is already separated based on seasonality. This makes the water extractor more feasible 
for use in the final SAR production chain, as it is capable of handling seasonal variations and land cover 
complexities more effectively than models like Swin-Unet DL. Given that the water extractor can operate 
independently of pre-labeled seasonal datasets, it offers a more flexible and robust solution, particularly in 
environments where seasonal dynamics play a crucial role in water detection. This adaptability makes it a 
practical choice for large-scale operational applications, where data consistency and continuous performance 
are key. 

3.2.1.6 Comparative Analysis for Built-up LC Class Recognition between the Swin-Unet DL Approach 

and UEXT Detector 

A similar analysis was conducted to compare the performance of built-up land class recognition using the Urban 
EXTent (UEXT) module and DL classification based on the Swin-Unet network. For this analysis, a test area shown 
in Figure 28, was identified in Siberia, specifically in the S2 45UVB tile, where open-pit mines were incorrectly 
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classified as built-up areas in the final product of Phase 1 of the CCI+ project. The aim is to assess whether the 
DL approach can resolve this issue and improve classification accuracy in such cases. Given the lack of an accurate 
urban reference dataset for this region, particularly one that is sufficiently distributed to cover the unique 
landscape features and urban patterns, only a visual comparison is presented in this section. This visual 
comparison helps identify the potential advantages of DL in distinguishing between built-up areas and non-urban 
land uses, such as open-pit mining, which may be misclassified due to their structural similarities to built-up 
regions. The analysis also highlights how well Swin-Unet can adapt to these complex, mixed landscapes compared 
to traditional methods like the UEXT module. 

 

Figure 28- Open-pit mining site (in red) located in Siberia, within the S2 tile 45UVB (in blue), used for comparing built-up 
land class recognition performance between the UEXT module and the Swin-Unet DL classification approach. 

The urban map was generated using the dedicated UEXT module, as described in the Phase 1 ATDB [AD1], 
leveraging the S1 time series for the year 2021. Similarly, for the same year, the LC map was derived using the 
DL Swin-Unet approach, from which the built-up land class of interest was extracted. Regarding the DL approach, 
the classification was executed by segmenting the input data into patches with dimensions of 549x549 pixels. To 
address potential inaccuracies at the patch boundaries, an overlay of 10% was applied between adjacent patches. 
This overlap strategy reduces edge effects, ensuring smoother transitions and improving classification 
coherence. 
The generated patch-wise outputs were subsequently merged using a mosaicking process to create a continuous 
classification map covering the entire area of interest. This integration step not only consolidates the individual 
outputs but also addresses inconsistencies that may arise due to variations in local feature distributions. By 
combining overlapping regions, the approach enhances the overall spatial accuracy and ensures that all regions, 
including boundaries, are classified with minimal discrepancies. 
Additionally, the methodology leverages the advantages of a patch-based workflow, such as scalability for large 
datasets and computational efficiency. This structured approach is particularly beneficial for extensive or 
heterogeneous regions, where variations in land cover types or topographic features might otherwise challenge 
the classification process. The resulting final map provides a detailed, high-resolution representation of the area, 
suitable for downstream analysis and validation. 
The figure presents a performance comparison of these two results: one obtained via the UEXT module and the 
other using the DL approach. To ensure a comprehensive evaluation, the optical ESRI reference map and the S1 
super image are also included in the analysis. The inclusion of these references provides additional context for 
assessing the consistency and accuracy of the built-up class identification. 
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Figure 29. Visual assessment of an area of interest within the S2 tile 45UVB. The analysis was conducted to evaluate the 
performance of the UEXT detector and the Swin-Unet DL classification chain. The comparison includes: (a) the ESRI optical 
reference, (b) the 2021 S1 super image, (c) UEXT output, and (d) DL Swin-Unet classification network output. 

Through visual inspection, the recognition of the built-up class by both methods appears to show comparable 
performance. Specifically, both the UEXT module output map and the Swin-Unet DL network's classification 
reveal misclassification of open-pit mines as "built-up" areas. This highlights the challenges presented by the 
spectral and spatial characteristics of open-pit mines, which closely resemble built-up areas in the feature space 
utilized by both methodologies. 
This shows that there is no “free lunch” using DL approaches. To enhance the urban extraction performances for 
these models, a more accurate training dataset is required. This is what will be explored in the next step of the 
project, aiming at a reduction of open-mines misclassifications as urban areas, a limitation observed in both DL 
models and traditional methods like UEXT. 
3.2.2 Final decision 

The SAR classification chain identified for Phase 2 of the CCI+ project will involve the Swin-Unet DL model and 
the specialized water and urban area extractors. According to the previously described analysis, it combines 
innovative algorithms and robust validation processes to address the unique complexities of SAR data. The final 
framework represents a careful balance between DL model and specialized detectors, ensuring optimal results 
for diverse land cover applications. 
The Swin-Unet DL network has been selected as the primary model for the SAR classification chain. Extensive 
testing demonstrated its superior performance in classifying complex and heterogeneous landscapes across 
regions such as Amazonia, Africa, and Siberia. The model's global attention mechanism enables precise feature 
extraction and contextual understanding, making it the most reliable and accurate solution for SAR-based land 
cover classification. 
For the water class, the SAR classification chain will continue to use the dedicated water detector. This detector 
excels in capturing the seasonal dynamics of water bodies, a critical requirement for accurate hydrological 
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mapping. Its ability to differentiate between permanent and seasonal water ensures it remains the most effective 
tool for this purpose, particularly in regions with significant hydrological variability. 
Regarding the built-up class, the choice of methodology will depend on future developments. While the Swin-
Unet network has shown potential in detecting urban areas, challenges such as the misclassification of open-pit 
mines highlight the need for an enhanced training dataset. If improvements to the training set yield the desired 
results, the Swin-Unet could become the preferred choice for this class, given its advanced feature extraction 
capabilities. For the moment, however, the dedicated UEXT extractor remains a viable option, and there are 
plans to enhance its performance using spatial indicators to better address current limitations. This dual-path 
strategy ensures flexibility, allowing the project to adapt and adopt the most effective solution based on further 
testing and refinement. 
In conclusion, the SAR classification chain for the HRLC ECV project aims at improving the performance of the 
Phase 1 processing chain. The adoption of Swin-Unet for general classification, the dedicated water detector for 
hydrological features, and a flexible approach for built-up areas demonstrates a commitment to achieving 
accuracy, reliability, and adaptability.  

3.3 Decision Fusion 

3.3.1 Decision fusion methods 

3.3.1.1 Multi-temporal fusion method 

In the context of historical land cover mapping where the availability of the data is different for each year, the 

classification process which is done independently in each historical year inevitably causes temporal 

inconsistencies in the classification product. To address this problem, a multi-temporal model called cascade 

model [16] was introduced in Phase 1. The idea behind that model was to propagate the information from the 

2019 static map, whose generation benefits from more data availability, to other historical maps backward. The 

cascade model reduced incorrect land cover transitions significantly, but the use of the temporal information 

was limited because its processing considered only pairs of historical years i.e., 2019 coupled with each of other 

years. Taking into account this limitation, we adopt an approach based on the theory of Hidden Markov Models 

(HMMs) in Phase 2, to consider the information from posteriors coming from all of the years in which land cover 

map is produced. We refer to the ATBD for the general methodological formulation, and here, we only specify 

algorithmic details. Let 𝑇 be the total number of observation times (years), ℓ𝑡 be the class label of a generic pixel 

in time 𝑡 (𝑡 =  ,2,… , 𝑇), 𝒙𝑡  be the corresponding feature vector (resulting from the optical and SAR 

observations), and 𝒙 = (𝒙1, 𝒙2, … , 𝒙𝑇) be the vector collecting the observations of that pixel on all dates across 

the whole time series. The inference of the label at each time step 𝑃(ℓ𝑡|𝒙) is accomplished using the forward-

backward algorithm. Indeed, it is possible to prove that [17]: 

𝑃(ℓ𝑡|𝒙) =
𝛼(ℓ𝑡)𝛽(ℓ𝑡)

∑ 𝛼(ℓ𝑡)𝛽(ℓ𝑡)ℓ𝑡

. 

 
Here, 𝛼(ℓ𝑡) defines a forward step i.e., the joint probability of observing all feature vectors up to time 𝑡 and the 
label at time 𝑡, evaluated through a sequential recursive procedure along the forward time direction: 
 

𝛼(ℓ𝑡) ≡ 𝑃(𝒙1, … , 𝒙𝑡 , ℓ𝑡) 

𝛼(ℓ𝑡) =
𝑃𝐹(ℓ𝑡|𝒙𝑡)

𝑃(ℓ𝑡)
∑ 𝛼(ℓ𝑡−1)

ℓ𝑡−1

𝑃(ℓ𝑡|ℓ𝑡−1), 

 
where 𝑃𝐹(ℓ𝑡|𝒙𝑡) (single-time pixelwise posterior) derives from the logarithmic opinion pool (LOGP) for the 
decision fusion of the posteriors received from the optical and SAR processing chains. 𝑃(ℓ𝑡) is the prior 
probability of the label, and 𝑃(ℓ𝑡|ℓ𝑡−1) is the transition probability stating the probability of one class in 𝑡 
changing to another class in 𝑡 −  . 
In dual fashion, a backward recursive sequential procedure calculates the conditional probability 𝛽(ℓ𝑡) of all 
observations from time 𝑡 +   up to 𝑇 given the value of ℓ𝑡: 
 

𝛽(ℓ𝑡) ≡ 𝑃(𝒙𝑡+1, … , 𝒙𝑇|ℓ𝑡), 
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𝛽(ℓ𝑡) = ∑ 𝛽(ℓ𝑡+1)
𝑃𝐹(ℓ𝑡+1|𝒙𝑡+1)

𝑃(ℓ𝑡+1)
ℓ𝑡+1

𝑃(ℓ𝑡+1|ℓ𝑡). 

 
The calculation of 𝑃(ℓ𝑡|𝒙) is done sequentially starting from 2019 backward to 1990. It is implied by the 
equations above that the algorithm formulated in Phase 2 enables the information propagation from the whole 
available years, because in each year, the forward procedure will include the information from the future years, 
and the backward process considers the information from the past years. Furthermore, the sequential inference 
approach allows the algorithm to run efficiently from the computational point of view. 

3.3.1.2 Spatial fusion method 

In Phase 1, a Markov Random Field (MRF) model [18] was introduced to consider the spatial context during the 
fusion process. This enabled the label regularization to be imposed on the fusion maps. As described in the latest 
Phase 2 ATBD [AD2], the energy function of an MRF model can be written as: 
 

𝑈(𝐋|𝐗) = −∑ 𝛼 log 𝑃𝐹(ℓ𝑠|𝒙𝑠)

𝑠∈𝑆

+ ∑ 𝑉(ℓ𝑠, ℓ𝑟)
𝑠∈𝑆
𝑟∈𝜕𝑠

, 

 
where 𝐋 and 𝐗 refer to the output label map to be generated and the input image data, respectively, 𝑆 is the 
pixel lattice and 𝑠 is a shorthand notation for a generic pixel location (𝑖, 𝑘). 𝒙𝑠 collects the input optical and SAR 

data, and ℓ𝑠 indicates the sample on pixel 𝑠 of the random field {ℓ𝑠}𝑠∈𝑆 of class labels. 𝜕𝑠 ⊂ 𝑆 is the set of 
neighbouring pixels of pixel 𝑠, which can be typically in the form of four connected adjacent pixels (first order 
connectivity) or the surrounding eight pixels (second order connectivity). The energy function consists of: the 

estimated fused posterior probability 𝑃𝐹(ℓ𝑠|𝒙𝑠), and a positive weight 𝛼 in its first term, which is associated with 

the likelihood of the class at the pixel level; as well as the second term 𝑉(ℓ𝑠, ℓ𝑟) that is related to the spatial 

regularization process. While in Phase 1, we guided the degree of regularization through only one parameter 𝛾, 
i.e., the weight of the pairwise potential in the energy function of the Potts MRF model: 
 

𝑉(ℓ𝑠, ℓ𝑟) = 𝛾[ − 𝛿(ℓ𝑠, ℓ𝑟)], 
 
where 𝛿(⋅) is the Kronecker delta function, in Phase 2, we increase our control over the regularization by framing 
the approach within a more general family of probabilistic graphical models called Conditional Random Fields 
(CRFs). The extension of this spatial model includes two main points: Firstly, we change the one-for-all-class 

weight parameter 𝛾 for the label regularization to class-based weights through a function 𝛾(ℓ𝑠, ℓ𝑟): 
 

𝑉𝑠𝑟(ℓ𝑠, ℓ𝑟|𝐗) = 𝛾(ℓ𝑠, ℓ𝑟) [ − 𝛿(ℓ𝑠, ℓ𝑟)]. 
 
This is to give us more freedom in compromising between regularization and detail preservation, considering 
that some classes may need stronger regularization while other classes should be preserved as they are. 
Secondly, we introduce a kernel function that measures the similarity associated with the feature vectors of the 

neighbouring pixels 𝒦(𝑷𝑠(𝐗),𝑷𝑟(𝐗)), which makes the second term of the CRF energy function be written as: 

 

𝑉𝑠𝑟(ℓ𝑠, ℓ𝑟|𝐗) = 𝛾(ℓ𝑠, ℓ𝑟)[ − 𝛿(ℓ𝑠, ℓ𝑟)]𝒦(𝑷𝑠(𝐗),𝑷𝑟(𝐗)), 
 

where 𝑷𝑠(𝐗) is the vector collecting the fused posterior probabilities 𝑃𝐹(ℓ𝑠 = 𝜔𝑘|𝒙𝑠), of all classes 𝜔𝑘, 𝑘 =
 ,2, . . , 𝒞, where 𝒞 is the number of classes. In the current formulation, we chose a radial basis function as the 

similarity kernel: 

𝒦(𝑷𝑠(𝐗),𝑷𝑟(𝐗)) = 𝑒−𝜑‖𝑷𝑠(𝐗)−𝑷𝑟(𝐗)‖
2
, 

 

where 𝜑 is a positive parameter. This enables us to put restraints on the regularization process when the two 
neighbouring pixels are very different in terms of their posterior probabilities, while simultaneously pushing for 
more regularization over homogeneous image regions. 
 
The optimization method of the CRF energy function is based on the Iterated Conditional Mode (ICM) algorithm 
because of the good tradeoff it usually favors between computational burden and accuracy [19] . ICM is applied 
iteratively and in each iteration, the label of each pixel is updated according to: 
 



 

Ref D2.1 - PVASR 

 
Issue Date Page 

1.1 21/01/2025 42 

 

ℓ𝑠 ← 𝑎𝑟𝑔min
𝜔𝑘

𝑈(ℓ𝑠 = 𝜔𝑘|𝒙𝑠). 

 
The initialization makes use of the non-contextual map resulting from the pixelwise fused posteriors, i.e., 
argmax

ℓ𝑠
𝑃𝐹(ℓ𝑠|𝒙𝑠). From the implementation point of view, we aim to keep the efficient execution of the ICM 

algorithm during Phase 1 by keeping the strategy of formulating the ICM processing through convolution-like 
operations, which are designed to be feasible even when applied to the large-scale data of the CCI+ HRLC project. 
In this respect, the choice of ICM is confirmed as an appropriate tradeoff, as compared to more computationally 
intensive graph-theoretic energy minimization approaches. 
 
3.3.2 Qualitative evaluation 

3.3.2.1 Experimental Results – Multitemporal Fusion  

The experiments on the multi-temporal model using HMM were done on representative tiles of each region, 
selected either from the benchmark tiles of the first production or because they were affected by temporal 
artifacts during the Phase 1. Here, we will present experimental results on tiles 20KPF, 42WWD, and 37PHL. Tile 
20KPF (Amazon) is one of the tiles that showed temporal inconsistency that could not be solved even after 
applying the cascade model in Phase 1. The same holds true for tile 42WWD of Siberia, while tile 37PHL in Africa 
was drawn from the list of benchmark tiles for Phase 2. Moreover, for a representative analysis of the model 
performance, we also made sure that all classes defined in the CCI+ HRLC project exist in those tiles, except for 
the snow/ice which almost never shows inconsistency naturally. In the following, we show the results of the 
comparison between the cascade model from Phase 1 and the HMM-based algorithm of Phase 2. For a fair 
comparison, we applied the same spatial fusion process by MRF used in Phase 1 after both procedures. The 
production will make use of both approaches simultaneously, and the next subsection will focus on CRF-based 
results for spatial fusion, but here, we deemed more appropriate not to apply them jointly to disentangle their 
possible impacts. 
Figure 30 shows the comparison between the results of the cascade model and of HMM in the Amazonia area. 
The results using HMM provide more temporally consistent maps, especially in the areas marked by the grey 
rectangles placed on the 2019 maps. When the same areas are traced along the year, the cascade map produced 
inconsistencies between the evergreen broadleaf tree class (dark green) and the deciduous broadleaf tree (light 
green). For example, the bottom right rectangle on the cascade maps of 2019-2015-2010 shows an alternating 
pattern of deciduous-evergreen-deciduous, while the HMM maps indicate the pattern of deciduous with 
evergreen slowly disappearing as it goes backward. This artefact involving the evergreen class was indeed a major 
inconsistency problem pointed out during Phase 1. Furthermore, the information propagation by HMM is also 
beneficial in the case where the open water class (dark blue) disappears in the 2005 cascade map, while it is 
correctly revived in the 2005 HMM map because the class exists in every year except for that year. The favourable 
temporal behaviour can also be observed in the urban area (red) on the left side of the maps, where the HMM 
maps indicate more temporal consistency compared to the cascade maps, which for example exhibit an abrupt 
abundance in the 2010 instance.  
This consistent temporal behaviour is also confirmed in the Siberia area shown in Figure 31. For example, focusing 
on the grey rectangle area on the 2019 map, HMM exhibits more stability regarding the shrub class (brown) along 
the time, while the class appears less in the 2000 cascade map although it exists relatively abundantly in 2005 
and 1995. In Africa’s tile, the urban class (red), which is highly inconsistent and sometimes excessively abundant 
in the cascade maps shown in Figure 32, displays a more natural and progressive transformation along the time 
in the HMM results. The deciduous broadleaf tree class (green) in the region indicated by the grey rectangle on 
the 2019 maps of the same tile, which diminishes on the 2005 cascade maps, seems also to appear in a favourable 
regular pattern on the HMM maps. 
 
The conducted experiments demonstrate that the multi-temporal model based on the developed HMM 
formulation is advantageous in favouring the consistency across the land cover maps over time, and in reducing 
unwanted temporal patterns that were observable from the maps of three or more consecutive years within the 
Phase 1. Those temporal pattern could not, even theoretically, be addressed by the cascade model because the 
information propagation only happens in this model between one pair of years. On the contrary, the HMM 
formulation proposed here addresses multitemporal fusion at the level of the whole time series, which allows 
taking into account the temporal information of the entire sequence in the labelling of each pixel.  
On one hand, this is beneficial in decreasing the inconsistent pattern which is one of the main problems 
encountered during Phase 1. On the other hand, it is worth noticing that generally there is a risk of propagating 
information from maps that are less reliable (e.g., those with problems of lacking acquisition data), and of 
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correspondingly introducing noise in the classification results of the years which we have more confidence at. In 
the experiments conducted so far, this risk has not been observed. Nevertheless, in this regard, we are taking 
into account possible ways to further improve the model to minimize this risk. Moreover, in the next project 
period, we will also put our focus on tuning the transition probability matrix (TPM) which is one of the 
hyperparameters of the HMM that translates to the trade-off between the information propagation (which is 
associated to consistency) and the changes of classes in time. The goal is that the maps exhibit consistency over 
time but also do not end up censoring changes that actually happened. 
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Figure 30. Comparison between the cascade model of Phase 1 (left) and the HMM of Phase 2 (right) for each historical year 
on tile 20KPF in Amazon 
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Figure 31. Comparison between the cascade model of Phase 1 (left) and the HMM of Phase 2 (right) for each historical year 
on tile 42WWD in Siberia. The black pixels in 1995 and 1990 correspond to areas with too limited data availability. 
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Figure 32. Comparison between the cascade model of Phase 1 (left) and the HMM of Phase 2 (right) for each historical year 
on tile 37PHL in Africa 

3.3.2.2 Experimental Results – Spatial-Contextual Fusion 

As mentioned in the methodology section above, the class-specific weights and a kernel function were 
introduced to give more flexibility in controlling the degree of spatial regularization. Preliminary class-specific 
weighting has been considered, but in general, the assignment of class-specific weights in the production will 
take into account the opinion from the Climate Team regarding which classes should be regularized more than 
other classes. Here, we will focus the discussion of the results especially on the behaviour allowed by the 
contrast-sensitive CRF model with its kernel function. The experiments were done on the case of 10-meter 

resolution static maps, and we tried several values of parameter 𝜑 in the Gaussian radial basis function kernel 
of the CRF model, to appreciate the changes in regularization behaviour. To illustrate this behaviour, we show in 
Figure 33, Figure 34, and Figure 35, spatial details of the resulting spatial-contextual classification maps. For visual 
comparison purposes, the non-contextual maps that would be obtained using only the optical pixelwise 
posteriors are also shown. 
Figure 33 shows the zoom-in of an area in tile 20KPF in Amazon. First, let us observe how the regularization 

parameter in the MRF model, 𝛾, affects the regularization of the pixels. When 𝛾 is set to be very small (b), the 
regularization on the image source (a) is very little, and as it is increased to a bigger value (c), the regularization 
becomes stronger, as it can be observed that some spatial details are gone. Interestingly, we can see that when 

𝛾 is enlarged even further, the regularization effect does not take place in this specific area anymore. This is an 
expected behaviour when the best class has much higher posterior probability than the other remaining classes. 

Next, with the CRF model, we intentionally set 𝛾 to be very large to see a clearer effect of the contrast-sensitive 

CRF kernel. Theoretically, when 𝜑 is close to zero, we will see that the CRF behaves similarly to the MRF. This 

similarity can be seen in (e) and (f). With a fixed big value of 𝛾, as the value of 𝜑 is risen (f, g, h, i), we can see 
that spatial details are gradually back, while the impact of noise remains limited and without reviving unwanted 
fragmentation that exists in (b). This effect is expected because the kernel acts, to a certain extent, as an inhibitor 
of the regularization but only when the probability of the neighbouring pixels are not too similar. 
Figure 34 and Figure 35 illustrate the case in tile 37PGN in Africa and in tile 42WWD in Siberia, respectively. With 

the same 𝛾 parameter setting, these figures show the behaviour of the classification results as a function of the 

tuning of the 𝜑 parameter of the CRF model. While in the African tile, we can observe a behaviour similar to that 
described in the case of the Amazonian tile, it is interesting to see that, in the Siberian tile, the comeback of the 

details is not as apparent as in the other two tiles as the 𝜑 parameter increases. This is interpreted as due to the 
uncertainty in this area being higher than in the other two areas, i.e., the posterior probabilities of neighbouring 

pixels appear to be relatively similar. In turn, this implies that the increasing of the 𝜑 value brings back only 
spatial details that have dissimilarity to their neighbourhoods up to a certain point. Indeed, this is a desired 
behaviour since it confirms the capability of the proposed approach to take into account and propagate 
uncertainty from the input data (and their possible data availability issues) to the output land cover product. 
These experimental results confirm that using the CRF model gives us improved control over the regularization 
level, compared to the MRF model. This yields an increased flexibility in taking into account the feedback and 
needs from the Climate Team. Indeed, the spatial regularization of the output map in the production will be 
tuned according to the indications from the Climate Team about the desired trade-off between preserving spatial 
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resolution and favouring spatial homogeneous labelling and about how this trade-off may change in the case of 
different classes. 
 
 

 
(a) Optical 

 
(b) MRF 𝛾 = 0.12 

 
(c) MRF 𝛾 = 1 

 
(d) MRF 𝛾 = 2 

 
(e) MRF 𝛾 = 50 

 
(f) CRF 𝛾 = 50, 𝜑 = 0.5 
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(g) CRF 𝛾 = 50, 𝜑 = 2.5 

 
(h) CRF 𝛾 = 50, 𝜑 = 5 

 
(i) CRF 𝛾 = 50, 𝜑 = 10 

 
Figure 33. The comparison among (a) the map resulting from the original optical posteriors, (b,c,d,e) MRF with several 
regularization parameters, and (f,g,h,i) CRF with several kernel parameters 
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(b) MRF 𝛾 = 50 
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(c) CRF 𝛾 = 50, 𝜑 = 0.5 

 
(d) CRF 𝛾 = 50, 𝜑 = 2.5 

 
(e) CRF 𝛾 = 50, 𝜑 = 5 

 
(f) CRF 𝛾 = 50, 𝜑 = 10 

Figure 34. The comparison among (a) the map resulting from the original optical posteriors, (b) MRF with a big 
regularization parameter, and (c,d,e,f) CRF with several kernel parameters 
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(b) MRF 𝛾 = 50 
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(c) CRF 𝛾 = 50, 𝜑 = 0.5 

 
(d) CRF 𝛾 = 50, 𝜑 = 2.5 

 
(e) CRF 𝛾 = 50, 𝜑 = 5 

 
(f) CRF 𝛾 = 50, 𝜑 = 10 

Figure 35. The comparison among (a) the map resulting from the original optical posteriors, (b) MRF with a big 
regularization parameter, and (c,d,e,f) CRF with several kernel parameters 
 

3.3.3 Final decision 

In the context of multi-temporal fusion, HMM has demonstrated to provide more consistent results temporally 
compared to the cascade model. Similarly, the CRF model gives enhanced flexibility in guarding the spatial 
regularization process than the MRF model can do and allows for stronger spatial smoothing while preserving 
edges and small-scale details. Therefore, HMM and CRF-ICM are identified as appropriate solutions towards the 
first production.  
Further development of both models may regard the tuning of the transition probability matrix of HMM, and the 
evaluation of alternate kernel choices in the CRF energy function, which may consider introducing similarity 
operators between the two probability distributions 𝑃𝑠(𝐗) and 𝑃𝑟(𝐗) instead of calculating the distance between 
them within a radial basis function kernel. These possible variations will be considered also in relation to the 
point of view of computational cost during the production. 
 

3.4 Landcover Change Detection 

In phase 2, the analysis and change detection process expands to include new regions and incorporates S2 

datasets. The CD processing chain continues to operate at the pixel level on a yearly basis from 1990 to 2024, 

with a focus on three subcontinental areas: Amazonia, Africa, and Siberia (see Figure 36 ). This phase introduces 
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several updates to the methodologies, accounting for the higher spatial resolution of S2 data, the challenge of 

harmonizing multi-sensor data across these diverse regions, and the need to incorporate advanced techniques 

for managing both temporal and spatial variability in land cover dynamics. The regional differences in land cover 

patterns, environmental conditions, and spatial distribution of vegetation types require careful adaptation of the 

methodology to ensure accurate change detection outcomes. 

 

 
Figure 36. Multi-annual Multi-feature LC change detection. 

 

To address these challenges, the preprocessing stages from optical data analysis were revisited, aiming to create 

an integrated and unified workflow for both land cover classification and land cover change detection. The goal 

is to streamline the preprocessing process across different data types (optical and radar), reducing the number 

of steps required while ensuring consistency and robustness in the data preparation pipeline. This approach is 

particularly important given the increasing complexity of data sources and the need for efficient processing 

across large datasets, such as those from S2, which provide more frequent, and higher-resolution imagery 

compared to other sources. 

In terms of feature space design, an analysis was conducted to identify the most suitable features for the change 

detection task, considering the specific characteristics of the regions under study. The feature space will be 

regionally optimized, with distinct feature sets developed for Amazonia, Africa, and Siberia to capture the unique 

land cover dynamics of each area. This customization is essential for improving the accuracy of change detection. 

Furthermore, the integration of advanced techniques for managing spatio-temporal variability, such as those 

derived from machine learning models and time-series analysis, will allow for more accurate detection of abrupt 

changes and better handling of temporal variations. 

3.4.1 Time Series Reconstruction 

An analysis was conducted to evaluate the trend of the time series using the monthly composites generated in 

phase 1 for one of the tiles in Amazonia. The primary goal of this analysis was to assess whether the monthly 

composites, derived from the optical processing chain, could effectively capture the underlying trends of land 

cover changes over time without the need for time-consuming and computationally heavy time series 

reconstruction. The reconstruction process typically involves interpolating or filling in missing data points, which 

can be resource-intensive, especially when working with large datasets. By considering only one composite per 

month, the analysis aimed to test if this approach could maintain the temporal dynamics of the land cover 

changes and still yield accurate results. 

The results of the analysis, displayed in the Figure 37 and Figure 38, show the comparisons between the weekly 

time series reconstruction from phase 1 and the monthly composites. This comparison indicates that the monthly 

composites are capable of handling the irregularities in the time series and adequately reflecting the temporal 

trends, even without the traditional reconstruction step. This suggests that it is possible to use monthly 

composites to capture the variation and dynamics in land cover changes, making the process more efficient. 

Consequently, this approach offers a promising alternative to time series reconstruction, especially when dealing 

with high-resolution S2 data in phase 2, as it reduces computational costs while still ensuring reliable breakpoint 

detection. 
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Figure 37. Comparison of time series data of the weekly time series reconstruction method and time series of the monthly 
composites for 2019. 

 

 
Figure 38. Comparison of time series data of the weekly time series reconstruction method and time series of the monthly 
composites for 2019. 

 

3.4.2 Feature Selection 

Another analysis was conducted to optimize feature selection for the developments in phase 2, focusing on 

several indices that are under evaluation for each of the areas of study. Each index provides valuable information 

about land cover, aiding in the analysis of changes. The analysis demonstrates that, depending on the specific 

area of study, certain indices may be more effective than others. In this context, temporal features are 

particularly useful for capturing how spectral information evolves over time, facilitating the identification of 

abrupt land cover changes. Time series analysis of indices such as Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), and Bare Soil Index (BSI) provides insights into patterns like 

deforestation, regrowth, and seasonal fluctuations in vegetation or water bodies. Additionally, feature selection 

will consider features extracted from the optical processing chain, such as deep learning-derived features and 

textural metrics like GLCM. Based on their relevance to change detection, these features will be incorporated 

into the feature selection and feature fusion process to enhance the accuracy and reliability of the analysis. 

So, for a vegetation area affected by deforestation, the indices NDVI, NDWI, and BSI were combined for further 

analysis. The fusion of NDVI and BSI was done using the following equation:  
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𝑓𝑢𝑠𝑒𝑑𝑖𝑛𝑑𝑒𝑥 = √
𝑁𝐷𝑉𝐼2 + 𝑁𝐷𝑊𝐼2 + 𝐵𝑆𝐼2

3
 

This equation assumes that all three indices (NDVI, NDWI, and BSI) are equally weighted. Different weights could 

be assigned to each index, by considering the modified equation below. For example, if you wanted to give more 

importance to NDVI, the equation might look like this: 

𝑓𝑢𝑠𝑒𝑑𝑖𝑛𝑑𝑒𝑥 = √
𝜔1. 𝑁𝐷𝑉𝐼

2 +𝜔2. 𝑁𝐷𝑊𝐼2 + 𝜔2. 𝐵𝑆𝐼
2

𝜔1 + 𝜔2 +𝜔3

 

The weights for combining indices can be defined in several ways, depending on the specific application and what 

aspects of the indices are most important for the analysis. An analysis is currently ongoing to select an efficient 

and effective method for defining the weights using state-of-the-art methods [20], [21].  

The outcome of this analysis, performed for the years 2018 and 2019 in the Amazonia area that experienced 

deforestation because of the crop construction, is shown in Figure 39. In this analysis, monthly composites were 

generated using high-resolution Sentinel-2 data and compared with the change map produced in Phase 1 using 

the Landsat dataset. The analysis was conducted without using the PCC mask, to assess the effectiveness of 

feature representations and the breakpoint detector in achieving accurate change detection. For the latter 

analysis, the PCC will be regenerated using Phase 2 products to align with the land cover (LC) maps and reduce 

computational burden. 

By considering the sample S2 images provided in first row of the Figure 39, the changes that occurred from 2018 

to 2019 reveal that the crop field has continued to be constructed, indicating ongoing agricultural development 

in the area. The change map generated using fused indices demonstrates following aspects: 

• Improved change detection through fused indices: The change map generated using fused indices 

(NDVI, NDWI, and BSI) demonstrates enhanced change detection compared to the Phase 1 map. This 

improvement is due to the complementary information provided by these indices, which collectively 

increase the accuracy of identifying changes specific to the study area. 

• Higher resolution insights with Sentinel-2 data: The use of high-resolution Sentinel-2 data at 10m 

resolution reveals finer details of the changes, offering a more precise representation of the landscape 

(see Figure 40). Notably, even the stripes within the crop field are distinctly detected, underscoring the 

capability of Sentinel-2 data to capture fine spatial details. 

• Effective temporal change detection: The breakpoint detector effectively identified the year of change, 

showcasing its ability to handle high-resolution data for accurate temporal change detection. 

• Efficient analysis without time series reconstruction: The analysis demonstrates that it is possible to 

bypass the computationally intensive time series reconstruction process by using Sentinel-2 composites. 

These composites provide sufficient information to capture temporal trends and detect changes 

accurately. 

The updated approach enhances change detection by both in space and time while offering an efficient 

alternative to time series reconstruction, thereby reducing the computational burden on the processing chain. 

Furthermore, the analysis continues to focus on generating a comprehensive feature space for each area of 

interest, using the features generated from optical classification chain to further refine and enhance the results. 
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Figure 39. A comparison of phase 1 change map and the change map using fused feature space. 
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Zoom Area – Landsat (phase 1) 

 
Zoom Area – Sentinel-2 (phase 2) 

Figure 4041. The details of the generated change maps using Sentinel-2 fused features and phase1. 
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