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Changelog 

Issue Changes Date 

1.0 First issue 14/01/2025 

1.1 Secondo issue with applied RID 26/02/2025 

 
 

Detailed Change Record 

Issue RID Description of discrepancy Sections Change 

1 ESA-01 Inputs: 
o Before 2020: Optical data from 
Landsat (e.g., Landsat 8) sourced 
from STAC catalogs, aggregated 
seasonally (e.g., 4 seasonal 
composites per year). 
o After 2020: Optical data from 
Sentinel-2 retrieved from STAC 
catalogs, aggregated monthly (12 
monthly composites per year). 
It looks like that only Landsat data will 
be used before 2020 and S2 after 
2020. This wasn't reported in the 
ATBD where Harmonized Landsat 
Sentinel-2 data were mentioned. S2 
can be used from 2015 and HLS could 
be used to fill the gap after 2020 as 
well. 
 

Operational 
Processing 
Chain 
Component / 
3.2 

The system is able to ingest all 
the mentioned satellite data. 
The use of such data is 
described in ATBD. The 
reference to the years are 
removed form SSD as ATBD is 
already an applicable 
document. 
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1 Introduction 

1.1 Executive summary 
The System Specification Document (SSD) provides a detailed technical description of the High Resolution Land 
Cover (HRLC) system developed under Phase 2 of the ESA Climate Change Initiative (CCI). The system is designed 
to process and deliver global land cover data products by integrating multi-sensor inputs, advanced processing 
workflows, and cloud-based automation. Key system capabilities include robust metadata management, 
distributed processing for scalability, and temporal harmonization for historical consistency. The document 
outlines the system architecture, data management strategy, deployment schemes, and interface definitions, 
ensuring alignment with CCI program requirements and international standards such as Obs4MIPs and CF 
conventions. 

1.2 Purpose and Scope 
The purpose of this document is to define the technical specifications and components of the HRLC system. It 
provides a comprehensive description of the system’s design, workflows, interfaces, and deployment strategies. 
The document serves as a reference for system developers, stakeholders, and operational teams to ensure 
consistent implementation, integration, and maintenance of the system. 
The scope of the HRLC system includes: 

• Multi-sensor Data Processing: Integration of Sentinel-1 (SAR), Sentinel-2 (Optical), and Landsat data for 
land cover classification. 

• Distributed Cloud-based Processing: Leveraging Kubernetes, RabbitMQ, and Docker for scalable 
processing. 

• Metadata and Data Management: Use of STAC, PostgreSQL (pgSTAC), and S3 for efficient data storage 
and discovery. 

• Training set management: based on a new component that guarantees consistency across different 
training sets 

• Ancillary data management: based on a new component that allow the organized storage of ancillary 
data  

• Temporal Harmonization: Backward correction of historical data using post-2020 classification outputs. 

• Standards Compliance: Adherence to Obs4MIPs, CF conventions, and CCI Data Standards for 
interoperability and usability. 

 

1.3 Applicable documents 

[AD1] CCI HR Technical Proposal, v1.1, 12/07/2023 

[AD2] CCI-PRGM-EOPS-TN-13-0009 (Issue 2.3). 

[AD3] D2.2 - ATBD (Algorithm Theoretical Basis Document) - ESA_CCI_HRLC_Ph2-D2.2_ATBD_v1.1 

 

 

1.4 Reference documents 

[RD1] The Global Climate Observing System: Implementation Needs, 01/10/2016, GCOS-200, Updated version 

in 2022 (GCOS-244) available at: https://library.wmo.int/idurl/4/58104  

[RD2] User Workshop Report (UWR)  

1.5 Acronyms and abbreviations 
Acronym Definition 

CCI Climate Change Initiative 

CRC Climate Research Community 

CMUG Climate Modelling User Group 

CREAF Centre de Recerca Ecològica i Aplicacions Forestals 
ECV Essential Climate Variables 

ESM Earth System Models 

https://library.wmo.int/idurl/4/58104
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EVI Enhanced Vegetation Index 

GCOS Global Climate Observing System 

GDPR General Data Protection Regulation 
HR High Resolution 

LAI Leaf Area Index 

LBA Large-Scale Biosphere-Atmosphere Experiment 

LC Land Cover 

LCC Land Cover Change 
LCCS Land Cover Classification System 

LCML Land Cover Meta Language 

LCZ Local Climate Zone 

LSCE Laboratoire des Sciences du Climat et de l’Environnement 

MR Medium Resolution 
NDVI Normalized Difference Vegetation Index 

PFT Plant Functional Type 

RS Remote Sensing 

SFT Surface Functional Type 

STAC SpatioTemporal Asset Catalog 
OpenEO Open Earth Observation API 

SoW Statement of Work 

URD User Requirements Document 

VM Virtual Meeting 

WP Work Package 
PG PostgreSQL Database 

pgSTAC PostgreSQL Extension for STAC 

OGC Open Geospatial Consortium 

COG Cloud Optimized GeoTIFF 

S3 Amazon Simple Storage Service 

CI/CD Continuous Integration / Continuous Deployment 
SAR Synthetic Aperture Radar 

FORCE Framework for Operational Radiometric Correction for Environmental Monitoring 

SNAP Sentinel Application Platform 

ML Machine Learning 

DL Deep Learning 
K8s Kubernetes 

API Application Programming Interface 

VPC Virtual Private Cloud 

ELB Elastic Load Balancer 

Table 1-1: Acronyms and Definitions 
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2 High-Level Description 

2.1 System Objectives and Improvements Over Phase 1 
Considering the evolution of technologies over the last 5 years, the new CCI-HRLC will maintain similar concepts 
with respect to Phase 1 system but will be redesigned also to face the requirements identified in the Technical 
Proposal. Here is a list of the Requirements  
 

Title REQ Code Requirement Improvement 

Scalability 
and 
Distributed 
Processing 

HRLC-TR-12 
The system shall enable distributed task 
execution to ensure scalability across 
cloud resources. 

Horizontal scalability through 
task orchestration with 
RabbitMQ and deployment 
automation via Kubernetes. 

Multi-Sensor 
Data 
Handling 

HRLC-TR-11 

The system shall support the ingestion, 
processing, and harmonization of multi-
sensor datasets such as Sentinel-1, 
Sentinel-2, and Landsat datasets. 

Improved integration and 
harmonization of multi-sensor 
datasets (Optical and SAR) 
across the workflow. 

Metadata 
Management 
and 
Harvesting 

REQ-3, HRLC-
TR-13 

The system shall implement metadata 
management to manage, index, and 
expose metadata for discoverability and 
interoperability. 

Enhanced metadata 
management using pgSTAC for 
indexing and STAC API for 
compliant metadata sharing. 

Automation 
of 
Deployment 
and 
Processing 

REQ-19, 
HRLC-TR-12 

The system shall automate 
containerized deployment, testing, and 
versioning using GitLab CI/CD pipelines 
and Docker Registry. 

Automated CI/CD pipelines 
ensure reproducible builds, 
reliable deployments, and 
version management. 

Standardized 
Data Access 
and 
Distribution 

HRLC-TR-23, 
HRLC-TR-16 

The system shall provide standardized 
access to products via API for metadata 
distribution. 

Enhanced discoverability and 
interoperability through STAC 
catalog and API. 

Enhanced 
User 
Interaction 

REQ-19 
The system shall provide an interactive 
interface through for job execution, 
analysis, and visualization. 

Simplified access for scientists 
and developers through 
interactive, user-friendly 
interfaces. 

Robust 
Storage and 
Data 
Management 

HRLC-TR-14, 
HRLC-TR-17 

The system shall implement an S3-based 
Data Lake for storing data and support 
delivery to long-term archiving by the 
mean of CCI Portal. 

Efficient storage, retrieval, and 
archiving of large datasets using 
cloud-native and CCI-compliant 
solutions. 

Table 2-1: Main requirements summary derived from Technical Proposal 

3 Logical Architecture 

3.1 Overall Logical Architecture 

3.1.1 Static View 

This logical architecture integrates user interfaces, standardized APIs, scalable back-end services, reliable data 
storage, and distributed processing in the CCI-HRLC system for processing multi-sensor geospatial data. Here is 
the static view of the architecture 
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Figure 1: Logical Architecture of the CCI-HRLC system 
 
1. User Interfaces 

• The Jupyter Notebook serves as the primary interface for users (e.g., developers, scientists) to interact 
with the system. 

• Through the notebook, users can: 
o Execute processing workflows. 
o Submit and monitor jobs. 
o Access and analyze results. 

This interface simplifies access to APIs and back-end services, providing a user-friendly environment for running 
and testing workflows. 
 
2. API Layer 
The API Layer provides access to system services and data through standardized interfaces: 

• S3 API: Manages interactions with the S3 storage system for retrieving and storing raw, intermediate, 
and final datasets. 

• openEO API: Serves as the interface for orchestrating and executing geospatial processing tasks. It 
abstracts the complexity of distributed workflows and connects the user environment to processing 
backends. 

• STAC API: Provides metadata discovery, search, and access for geospatial datasets, ensuring compliance 
with the SpatioTemporal Asset Catalog standard. 

This layer enables seamless communication between the user interface and back-end components. 
 
3. Back-end Services 
The Back-end Services handle job management, orchestration, and system coordination: 

• Training Set Importers: Import training datasets and ancillary features for machine learning models into 
the system. 

• Registry: Manages the catalog of processors, their versions, and availability for job execution. 

• RabbitMQ: Acts as a message broker to orchestrate and distribute processing jobs to the available 
processors. 

• Status Consumer: Monitors the status of processing tasks, collecting feedback and ensuring reliable job 
execution. 

These services enable scalable, fault-tolerant, and efficient management of processing workflows. 
 
4. Data Persistence Layer 
The Data Persistence Layer provides long-term and efficient storage for input data, metadata, and intermediate 
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results: 

• S3: Cloud-based object storage for handling large volumes of geospatial data (e.g., input imagery, 
processed outputs, and temporary results). 

• PG DB (PostgreSQL Database): Stores metadata, including processing parameters, feature sets, and 
STAC-compliant metadata. The integration of pgSTAC ensures efficient querying and retrieval of 
geospatial records. 

This layer ensures durability, traceability, and accessibility of system data. 
 
5. Processors Cluster & Deploy [HRLC-TR-12] 
This layer handles the execution and deployment of processing workflows: 

• Processor 1 to Processor N: A scalable cluster of containerized processors that execute tasks such as 
optical preprocessing, SAR preprocessing, classification, and data fusion. These are orchestrated by 
RabbitMQ. 

• Git/Docker Registry: Stores versioned container images for all processing components, ensuring 
reproducibility and portability of workflows. 

The processors are deployed in a scalable, cloud-native environment (e.g., Kubernetes), enabling distributed 
execution of geospatial processing tasks. 
 

3.1.2 Dynamic View 

 
Figure 2: Logical Elements of the processing chain as they are organized in the CCI-HRLC system and their 
dynamic behaviour 
 

1. Notebook-Based User Interaction: A Jupyter Notebook (or similar environment) serves as the primary 
interface for researchers and analysts. Through the notebook, users: 

o Invoke data queries and job submissions via the OpenEO API. 
o Discover and query datasets through the STAC API. 
o Initiate new processing tasks (e.g., running a land cover classification model). 
o Monitor job status and retrieve outputs. 
o Import the training set using specific back-end importers 

2. APIs: 
o OpenEO API: Provides a standardized interface for initiating, managing, and retrieving the 

results of geospatial processing jobs. Users can compose workflows using a high-level Python 
client in the notebook. 

o STAC API: Allows the notebook user to search and discover geospatial datasets, browse 
metadata, and query time-series or spatial subsets. The STAC API’s responses inform the user 
about available data suitable for processing tasks. 
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3. Backend Orchestration and Messaging (RabbitMQ): 

o RabbitMQ acts as a task broker, receiving processing job requests dispatched by the OpenEO 
API. It balances workloads and ensures distributed processors can handle tasks in parallel. 

o The Registry service keeps track of available processors and their versions. When a job is 
submitted, the OpenEO API consults the Registry (implicitly or explicitly) to identify which 
processors are available for specific tasks. 

4. Data Processing Components: 
o Processors (e.g., Processor 1, Processor N) are containerized algorithms that consume tasks 

from RabbitMQ. These processors: 
▪ Fetch input data from S3 (or other object storage). 
▪ Process the data (e.g., apply land cover classification algorithms). 
▪ Write results (intermediate and final) back to S3. 

o Training Set Importers ingest reference and training datasets into the system’s storage and 
databases. They can be triggered separately or integrated into the workflow when re-training 
or model tuning is required. 

5. Data Storage and Databases: 
o PostgreSQL (PG DB): 

Stores metadata related to datasets, job parameters, processing results, and references to 
outputs stored in S3. It may also store training metadata and model versions. 

o S3 Object Storage: 
Holds large datasets, intermediate products, and final outputs. Processors read from and 
write to S3, ensuring a scalable storage layer that can handle large volumes of geospatial 
data. 

6. Status and Monitoring: 
o Status Consumer: Listens to RabbitMQ for job status updates published by processors. It 

updates the Registry and PostgreSQL database with the current state of each job. 
o The notebook can periodically query the OpenEO API to obtain real-time status updates and 

logs. 
 
Step-by-Step Interaction Flow: 

1. Data Discovery in the Notebook: 
o The user runs Python code in the Jupyter Notebook to query the STAC API. 
o The STAC API returns a list of relevant datasets (e.g., Sentinel-2 imagery for a given AOI and 

time range). 
o The user selects specific STAC Items or Collections to process. 

2. Job Submission via OpenEO: 
o Using the OpenEO client library in the notebook, the user composes a processing graph or 

workflow (e.g., cloud masking, spectral index calculation, classification). 
o The user submits the workflow to the OpenEO API, specifying input datasets (found via STAC), 

processing parameters, and desired outputs. 
3. Task Dispatch to RabbitMQ: 

o The OpenEO API receives the request and places a corresponding job message into RabbitMQ. 
o The message contains references (STAC links, parameters) to input data in S3 and instructions 

on which processor(s) to use. 
4. Processor Execution: 

o A suitable processor (Processor 1 … Processor N), registered in the Registry, fetches the job 
message from RabbitMQ. 

o The processor retrieves necessary data from S3 (as indicated by STAC references stored in PG 
DB). 

o The processor executes the job (e.g., land cover classification) and writes intermediate/final 
results back to S3. 

5. Status Updates and Completion: 
o During processing, the processor sends status updates back to RabbitMQ, which the Status 

Consumer picks up. 
o The Status Consumer updates job state in the PG DB and possibly the Registry. 
o On completion, the final output references (e.g., STAC Items of the resulting products) are 

stored in the PG DB and accessible via STAC API. 
6. Result Retrieval in the Notebook: 
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o The user periodically queries the OpenEO API from the notebook to check job status. 
o Once the job is complete, the user retrieves the results (e.g., a classified raster in GeoTIFF 

format) from S3, or downloads them locally via the OpenEO API. 
o The user can also query the STAC API to integrate newly generated products into subsequent 

analyses. 
7. Retraining and Model Updates (Optional): 

o If the user needs to improve the classification model, they can run Training Set Importers from 
the notebook to load new training samples. 

o The updated training data is stored in PG DB and S3. 
o The notebook triggers a re-training job (also dispatched via OpenEO → RabbitMQ → 

Processor), resulting in a new model version. 
o The Registry updates model references for subsequent processing tasks. 

 

3.1.3 Security and Authentication Management  

The system implements authentication and authorization mechanisms for integration point such as APIs. Users 
of the system interact with the system primarily through a Jupyter Notebook interface and S3 clients. In 
particular, the Jupyter Notebook must first authenticate against the identity provider before invoking the openEO 
and STAC APIs. Authentication tokens (e.g., OAuth 2.0 bearer tokens) are obtained and securely stored within 
the Notebook session, ensuring that all subsequent requests made to the openEO API are verified and authorized 
at the time of execution. Similarly, the STAC API enforces authenticated access to metadata catalogs and uses 
presigned URLs for data downloads from S3 storage. These presigned URLs are generated server-side, are short-
lived, and provide read-only access to specific objects, preventing unauthorized data retrieval. All 
communications are transmitted over HTTPS. 

3.1.4 Technological Stack 

The proposed system architecture builds on established geospatial data standards and modern processing 
technologies. At the core, it leverages STAC (SpatioTemporal Asset Catalog) for consistent data discovery and 
metadata management and openEO to standardize the interface for executing and managing large-scale Earth 
Observation processing workflows. It integrates Jupyter notebooks for user-friendly, interactive development 
and analysis; stac-fastapi for implementing a performant, standards-compliant STAC API; pgstac for efficient 
metadata storage and retrieval in a PostGIS-enabled PostgreSQL database; and scalable object storage (e.g., S3) 
for handling large volumes of input and output data. Data are stored and processed using Cloud Optimized 
GeoTIFF (COG) formats for efficient, cloud-native reading and analysis. The processing environment is 
encapsulated in conda-based processors, ensuring reproducible and portable runtime environments with 
common geospatial Python libraries (such as GDAL, Rasterio, xarray, and geopandas). This technology stack, 
combined with robust orchestration and messaging frameworks, provides a flexible, scalable, and interoperable 
platform for Earth Observation data processing and analytics. 
 
STAC (SpatioTemporal Asset Catalog): According to the STAC specification website, STAC provides a common 
language to describe geospatial datasets, making them easy to find, use, and integrate. STAC defines a flexible, 
JSON-based structure that can be read by both humans and machines, enabling indexing, discovery, and 
interoperability of spatial-temporal assets. By standardizing metadata and catalog organization, STAC ensures 
that satellite imagery, aerial photography, and other geospatial resources can be consistently searched, 
accessed, and combined, regardless of origin or platform. 
 
openEO: As described on the openEO project website, openEO is an open API and corresponding ecosystem 
designed to connect Earth observation data processing platforms in a simple and interoperable manner. It allows 
users to process geospatial datasets using a unified interface and workflow, independent of the underlying data 
storage and processing infrastructure. Through openEO, developers and researchers can build workflows in 
familiar languages (such as Python), transparently execute them on diverse backends, and easily compare 
different processing environments. 
 
Jupyter: According to Jupyter.org, Project Jupyter provides a web-based, interactive computing environment 
that supports over 40 programming languages. Its Notebook, Lab, and Hub tools enable data scientists and 
researchers to create, share, and reproduce data-driven narratives that combine live code, visualizations, and 
explanatory text. Jupyter’s extensible architecture and strong community ecosystem make it a cornerstone in 
the modern data science workflow, promoting transparency, reproducibility, and collaborative research. 

https://stacspec.org/
https://openeo.org/
https://jupyter.org/
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stac-fastapi: Described in its GitHub repository, stac-fastapi is a flexible and performant implementation of the 
STAC API specification. It leverages the modern FastAPI Python framework to provide a developer-friendly, high-
performance, and scalable API for searching, browsing, and retrieving STAC-compliant catalogs and items. The 
project aims to simplify the deployment of STAC services, supporting various backends and extending STAC’s 
core capabilities while maintaining compatibility with the STAC specification. 
 
pgstac: Based on its GitHub page, pgstac is a PostgreSQL/PostGIS extension that optimizes storage and querying 
of STAC metadata within a relational database. It uses a JSONB-based schema to efficiently store and retrieve 
STAC Items, leveraging PostGIS for spatial queries and PostgreSQL’s indexing capabilities for fast searching. 
pgstac enables robust filtering, faceted searches, and dynamic queries, making it an essential component for 
large-scale STAC-based data catalogs. 
 
S3 (Amazon Simple Storage Service): From the AWS product page, Amazon S3 is a scalable, secure, and highly 
durable object storage service designed for modern cloud applications. It provides easy-to-use management 
features and an API-driven architecture, supporting a virtually unlimited amount of data storage. With low 
latency and high throughput, S3 allows developers, enterprises, and researchers to store and retrieve any 
amount of data from anywhere on the web, making it ideal for large geospatial datasets. 
 
Cloud Optimized GeoTIFF (COG): As explained on the COG website, a Cloud Optimized GeoTIFF is a regular 
GeoTIFF file structured so it can be accessed efficiently over HTTP. By organizing internal data blocks and 
including an overviews structure, a COG allows clients to request only the required portions of the file instead of 
downloading the entire dataset. This structure makes streaming and visualization of large geospatial rasters 
possible directly from cloud storage, significantly improving performance and user experience. 
 
Conda-Based Processors and Common Geospatial Python Libraries: Conda is a package, dependency, and 
environment management system that simplifies the creation of reproducible software environments. By using 
conda-based processors, developers encapsulate all dependencies and libraries into isolated, portable 
environments, ensuring consistent results across machines. Common geospatial Python libraries, such as GDAL, 
Rasterio, xarray, and GeoPandas, provide robust functionality for reading, writing, transforming, and analyzing 
geospatial data. These libraries support a wide range of operations—from file handling and coordinate 
transformations to complex geospatial analytics—empowering data scientists to build advanced Earth 
observation workflows. 
 

3.2 Operational Processing Chain Component 

3.2.1 Land Cover Chain 

Taking into account the description in the ATBD document, the design of the Land Cover operational processing 
chain has the aim to describe the logical elements that will be developed and their integration. Here is a scheme 
that identify the Logical Elements of the processing chain as they are organized in the CCI-HRLC system. 
 

 
Figure 3: Logical Elements of the processing chain as they are organized in the CCI-HRLC system for the LC chain 
 

https://github.com/stac-utils/stac-fastapi
https://github.com/stac-utils/pgstac
https://aws.amazon.com/s3/
https://www.cogeo.org/
https://gdal.org/
https://rasterio.readthedocs.io/
https://geopandas.org/
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Here is a detailed description of each step: 
 
Optical Preprocessing (FORCE EO): 

• Description: The optical preprocessing step leverages the FORCE Earth Observation (EO) processing 
framework to perform atmospheric corrections, surface reflectance retrievals, cloud masking, and 
radiometric calibrations. By running FORCE EO operations on raw optical satellite imagery (e.g., 
Sentinel-2, Landsat), this processor ensures that the resulting data is analysis-ready, with standardized 
reflectance values and consistent metadata. Throughout the process, intermediate data—such as cloud 
masks, pixel quality matrices —are generated and stored in S3.  

• Inputs (according to ATBD indications): 
o Optical data from Landsat (e.g., Landsat 8) sourced from STAC catalogs, aggregated seasonally 

(e.g., 4 seasonal composites per year). 
o Optical data from Sentinel-2 retrieved from STAC catalogs, aggregated monthly (12 monthly 

composites per year). 

• Intermediate Data Structures: 
o Preprocessed Reflectance Composites (Cloud-Free): 

▪ Format: Cloud Optimized GeoTIFF (COG) 
▪ Naming Convention: optical_{sensor}_{year}_{period}.tif (e.g., 

optical_sentinel2_2021_01.tif for January 2021 monthly composite, 
optical_landsat_2018_season1.tif for a pre-2020 seasonal composite) 

▪ Metadata: Accompanying STAC Items or STAC Item-level metadata in 
PostgreSQL/pgstac including sensor type, temporal period (monthly or seasonal), 
spatial extent, and processing parameters (cloud mask ratio, atmospheric correction 
method). 

o Ancillary Layers (e.g., Cloud Masks, Quality Flags): 
▪ Additional COGs (e.g., optical_sentinel2_2021_01_cloudmask.tif) 
▪ Linked via STAC Item properties and referenced in the Metadata DB. 

 
SAR Preprocessing (ESA SNAP + Python Pipelines): 

• Description: This step focuses on Synthetic Aperture Radar (SAR) data, employing the ESA SNAP toolbox 
for initial calibration, speckle noise filtering, and terrain correction. After these baseline operations, 
Python-based feature extraction pipelines produce advanced SAR metrics (e.g., backscatter intensity 
composites, coherence layers) that help characterize the target surfaces.  

• Inputs (according to ATBD indications): 
o Sentinel-1 data from STAC catalogs, processed to normalized backscatter composites for the 

same monthly periods as Sentinel-2. 

• Intermediate Data Structures: 
o Preprocessed SAR Composites: 

▪ Format: COG 
▪ Naming Convention: sar_sentinel1_{year}_{month}.tif (e.g., 

sar_sentinel1_2021_01.tif) 
▪ Metadata: STAC Items with properties describing polarization modes (e.g., VV, VH), 

incidence angles, and terrain correction flags. 
o Derived Feature Layers (e.g., Coherence, Texture): 

▪ Stored as separate COGs (e.g., sar_sentinel1_2021_01_coherence.tif), linked to main 
SAR composite via STAC relationships and referencing the same spatial and temporal 
extent. 

 
Coregistration (Python Scripts): 

• Description: The coregistration processor is responsible for precisely aligning optical and SAR datasets 
to ensure spatial consistency across different sensor modalities. Implemented as a Python script, this 
step employs robust feature-matching algorithms and geometric transformations to achieve pixel-level 
alignment of multisensor imagery.  

• Inputs (according to ATBD indications): 
o Monthly Sentinel-2 composites and Sentinel-1 composites for the same time periods. 

• Intermediate Data Structures: 
o Coregistration Parameters: 

▪ Format: JSON files stored in S3 
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▪ Naming Convention: coreg_params_{year}_{month}.json containing information 

such as control points, geometric transforms, and root mean square error (RMSE) 
metrics. 

o Coregistered Composites: 
▪ Format: COG 
▪ Naming Convention: coreg_optical_sar_{year}_{month}.tif 
▪ Metadata updates in STAC catalog, referencing applied transforms and quality 

metrics. 
 
Classification (Deep Learning/ML on Time-Series): 

• Description: This stage applies deep learning and machine learning models to time-series stacks of 
preprocessed optical and SAR data. Using frameworks like TensorFlow, PyTorch, or scikit-learn, the 
classification processor identifies and labels land cover types, taking advantage of temporal patterns 
and multisensor inputs. Throughout the process, intermediate products—such as extracted feature 
vectors, model checkpoints, inference probabilities, and preliminary classification maps—are written to 
S3.  

• Inputs (according to ATBD indications): 
o Seasonal Landsat-based composites for the entire year. 
o Combined monthly time-series of Sentinel-2 (optical) and Sentinel-1 (SAR, if available) 

composites. 

• Intermediate Data Structures: 
o Feature Stacks: 

▪ Temporal stacks generated per AOI and year. For pre-2020: 
features_optical_landsat_{year}.nc (NetCDF or Zarr) bundling all seasonal composites. 
For post-2020: features_optical_sar_{year}.nc bundling all monthly composites. 

▪ These consolidated time-series files facilitate model ingestion and can include spectral 
bands, backscatter coefficients, NDVI/NDWI indices, and other derived features. 

o Model Checkpoints and Probability Maps: 
▪ Format: 

▪ Model Checkpoints: PyTorch/TensorFlow model weights stored as .pt or .h5 
files in S3. 

▪ Probability Maps: COGs (e.g., class_probs_{year}_{monthOrSeason}.tif) 
containing per-class probabilities. 

▪ Metadata: STAC extensions or auxiliary JSON files documenting the model version, 
training data sources, and classes. 

o Final Classification Maps: 
▪ Format: COG with integer class codes (e.g., classified_map_optical_{year}.tif for pre-

2020, classified_map_optical_sar_{year}_{month}.tif for post-2020). 
▪ Metadata includes class label definitions, accuracy metrics, and temporal references. 

 
Data Fusion and Harmonization (Statistical Approaches in Python): 

• Description: The data fusion step integrates the classification outputs and intermediate results from 
both SAR and optical domains into a unified, harmonized product. Based on statistical techniques and 
implemented in Python, this processor refines class boundaries, resolves conflicts between sensor-
derived labels, and harmonizes spectral/temporal signatures into consistent land cover classes. During 
this process, intermediate fusion layers, harmonization parameters, and validation statistics are stored 
in S3, ensuring full transparency and providing a reference for subsequent updates. The processor also 
uses the Land Change Detection Maps.  

• Inputs (according to ATBD indications): 
o After 2020: Both Optical and SAR classification maps. 
o Before 2020: Optical-only classification maps and, for harmonization, post-2020 classification 

layers used as temporal references. 
o Change Detection Maps  

• Intermediate Data Structures: 
o Fused Classification Maps: 

▪ Format: COG 
▪ Naming Convention: fused_class_map_{year}.tif or 

fused_class_map_{year}_{region}.tif 
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▪ Contains a unified class scheme derived from decision-level fusion (e.g., majority 

voting, statistical weighting). 
o Harmonization Parameters and Backward Corrections: 

▪ Temporal Harmonization Tables: JSON or CSV files (e.g., 
harmonization_lookup_{pastYear}_to_{refYear}.json) describing how classes from 
pre-2020 maps relate to post-2020 classes. 

▪ Retroactive Classification Updates: Updated classification maps for pre-2020 years 
that have been harmonized to match the post-2020 class definitions. Stored as COGs 
(e.g., harmonized_class_map_2018.tif). 

▪ These harmonized products ensure consistency across the entire time series, enabling 
long-term land cover change analysis. 

All intermediate products are stored in S3 and referenced within a STAC-compatible metadata system. The 
PostgreSQL/pgstac database keeps track of product lineages, temporal ranges, sensor provenance, and 
processing metadata. This integrated approach ensures that the data pipeline remains transparent, reproducible, 
and easily navigable for downstream users and future reprocessing tasks. 

3.2.2 Land Cover Change Detection Chain 

Taking into account the description in the ATBD document, the design of the Land Cover Change Detection (LCCD) 
operational processing chain has the aim to describe the logical elements that will be developed and their 
integration. Here is a scheme that identify the Logical Elements of the processing chain as they are organized in 
the CCI-HRLC system. 
  

 
Figure 1: Logical Elements of the processing chain as they are organized in the CCI-HRLC system for LCCD chain 
  
Here is a detailed description of each step: 
  
Optical Preprocessing (FORCE EO): 

• Description: The optical preprocessing step leverages the FORCE Earth Observation (EO) processing 
framework to perform atmospheric corrections, surface reflectance retrievals, cloud masking, and 
radiometric calibrations. By running FORCE EO operations on raw optical satellite imagery (e.g., 
Sentinel-2, Landsat), this processor ensures that the resulting data is analysis-ready, with standardized 
reflectance values and consistent metadata. Throughout the process, intermediate data—such as cloud 
masks, pixel quality matrices —are generated and stored in S3.  

• Inputs (according to ATBD indications): 
o Optical data from Landsat (e.g., Landsat 8) sourced from STAC catalogs, aggregated seasonally 

(e.g., 4 seasonal composites per year). 
o Optical data from Sentinel-2 retrieved from STAC catalogs, aggregated monthly (12 monthly 

composites per year). 

• Intermediate Data Structures: 
o Preprocessed Reflectance Composites (Cloud-Free): 

▪ Format: Cloud Optimized GeoTIFF (COG) 
▪ Naming Convention: optical_{sensor}_{year}_{period}.tif (e.g., 

optical_sentinel2_2021_01.tif for January 2021 monthly composite, 
optical_landsat_2018_season1.tif for a pre-2020 seasonal composite) 

▪ Metadata: Accompanying STAC Items or STAC Item-level metadata in 
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PostgreSQL/pgstac including sensor type, temporal period (monthly or seasonal), 
spatial extent, and processing parameters (cloud mask ratio, atmospheric correction 
method). 

o Ancillary Layers (e.g., Cloud Masks, Quality Flags): 
▪ Additional COGs (e.g., optical_sentinel2_2021_01_cloudmask.tif) 
▪ Linked via STAC Item properties and referenced in the Metadata DB. 

  
SAR Preprocessing (ESA SNAP + Python Pipelines): 

• Description: This step focuses on Synthetic Aperture Radar (SAR) data, employing the ESA SNAP toolbox 
for initial calibration, speckle noise filtering, and terrain correction. After these baseline operations, 
Python-based feature extraction pipelines produce advanced SAR metrics (e.g., backscatter intensity 
composites, coherence layers) that help characterize the target surfaces.  

• Inputs (according to ATBD indications): 
o To be defined 

• Intermediate Data Structures: 
o Preprocessed SAR Composites: 

▪ Format: COG 
▪ Naming Convention: sar_{sensor}_{year}_{month}.tif (e.g., sar _2021_01.tif) 
▪ Metadata: STAC Items with properties describing polarization modes (e.g., VV, VH), 

incidence angles, and terrain correction flags. 
o Derived Feature Layers (e.g., Coherence, Texture): 

▪ Stored as separate COGs (e.g., sar_sentinel1_2021_01_coherence.tif), linked to main 
SAR composite via STAC relationships and referencing the same spatial and temporal 
extent. 

  
Coregistration (Python Scripts): 

• Description: The coregistration processor is responsible for precisely aligning optical and SAR datasets 
to ensure spatial consistency across different sensor modalities. Implemented as a Python script, this 
step employs robust feature-matching algorithms and geometric transformations to achieve pixel-level 
alignment of multisensor imagery.  

• Inputs (according to ATBD indications): 
o Monthly Sentinel-2 composites and Sentinel-1 composites for the same time periods. 

• Intermediate Data Structures: 
o Coregistration Parameters: 

▪ Format: JSON files stored in S3 
▪ Naming Convention: coreg_params_{year}_{month}.json containing information 

such as control points, geometric transforms, and root mean square error (RMSE) 
metrics. 

o Coregistered Composites: 
▪ Format: COG 
▪ Naming Convention: coreg_optical_sar_{year}_{month}.tif 
▪ Metadata updates in STAC catalog, referencing applied transforms and quality 

metrics. 
  
Multitemporal Change Detection and Trend Analysis: 

• Description: This stage focuses on detecting changes and trends over time using multitemporal analysis 
techniques applied to time-series of preprocessed optical and SAR data. The process identifies shifts in 
land cover classes, quantifies trends, and generates outputs for long-term monitoring and reporting. 
Advanced statistical methods, machine learning models, and geospatial analytics are utilized to compare 
data across multiple time steps and derive insights. Intermediate products such as change maps, trend 
statistics, and aggregated time-series results are stored in S3 for further use. 

• Inputs (according to ATBD indications): 
o Optical Data: Preprocessed, cloud-free composites (Landsat for pre-2020, Sentinel-2 for post-

2020). 
o SAR Data: To be defined 
o Coregistered Data Stacks: Combined optical and SAR datasets aligned spatially and temporally 

for analysis. 

• Outputs: 
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o Final Change Maps: 

▪ Format: COG with integer codes indicating changes (e.g., 
final_change_map_{year1}_{year2}.tif). 

▪ Metadata: Class definitions, accuracy metrics, and temporal references documented 
in JSON or STAC extensions. 

 

3.3 Metadata and Data Management Component 
Metadata management is deeply connected to data management in a cloud-native approach. The 
implementation is based on a COTS component from robust projects that are part of the STAC ecosystem: stac-
fastapi and pg-stac. This solution automates the process of ingesting geospatial data into an S3-based Data Lake, 
generating corresponding STAC Items, storing them in a pgSTAC database, and providing user access through a 
STAC API. Below is a simplified description of the behavior in the CCI-HRLC context. 

 
1. Data Ingestion to S3: 

o Geospatial data files (e.g., satellite imagery, processed outputs) are uploaded to an S3 bucket, 
organized in a logical directory structure. 

2. Automatic STAC Item Generation: 
o A monitoring process detects new data files added to the S3 bucket. 
o Metadata is extracted from these files, including spatial extent (bounding box), temporal 

information (acquisition date), and other relevant attributes. 
o STAC Items are generated for each file, conforming to the STAC specification, and include 

assets with links to the data in S3. 
3. Metadata Storage in pgSTAC: 

o The generated STAC Items are ingested into the pgSTAC database. 
4. User Access via STAC API: 

o Users access the API to search and retrieve metadata using spatial, temporal, and keyword 
filters. 

o The API provides links to the data assets in S3, allowing users to download or process the data 
as needed. 

 
Below is the structure presented in a tabular format, designed to organize input data, final outputs and 
intermediate results for the described workflow. This structure is intended for an S3-like environment or a file-
based storage system, with clear separation of raw inputs, intermediate steps, and final outputs. Each folder 
level includes a brief description of its contents. 
 

Folder/Path Description 

/data/ Root directory for all data and processing outputs. 

/data/raw/ Contains raw input data acquired directly from 
STAC catalogs. 

/data/raw/sentinel2/{year}/{month}/ Raw Sentinel-2 imagery organized by year and 
month (post-2020, monthly composites). 

/data/raw/landsat/{year}/{season}/ Raw Landsat imagery for pre-2020 seasonal 
composites. 

/data/raw/sentinel1/{year}/{month}/ Raw Sentinel-1 imagery (post-2020) by year and 
month. 

/data/preprocessed/ Outputs from optical and SAR preprocessing steps 
(cloud-free composites, corrected imagery). 

/data/preprocessed/optical/{sensor}/{year}/{period}/ Optical preprocessed composites (COGs) and 
masks (e.g., optical_sentinel2_2021_01.tif, 
optical_landsat_2018_season1.tif). 

/data/preprocessed/sar/{year}/{month}/ SAR preprocessed composites and derived features 
(e.g., sar_sentinel1_2021_01_coherence.tif). 

/data/coregistration/{year}/{month}/ Coregistered imagery files and associated 
transform parameters (JSON) that align optical and 
SAR data. 

/data/features/{year}/ Stacked feature datasets (NetCDF/Zarr) for time-
series classification (e.g., 



 

Ref D3.2 – SSD 

 
Issue Date Page 

1.1 21/02/2025 16 

 

features_optical_landsat_2018.nc). 

/data/models/ Directory for ML/DL model training artifacts. 

/data/models/checkpoints/ Model checkpoint files (.pt, .h5) for classification 
models. 

/data/models/metadata/ JSON/YAML files describing model versions, 
training parameters, and training datasets. 

/data/classification/{year}/ Classification probability maps, preliminary 
classification results (COGs), and per-class metrics 
for the given year. 

/data/classification/{year}/probabilities/ Probability map COGs (e.g., 
class_probs_2021_01.tif) for each period’s 
classification. 

/data/classification/{year}/final/ Final classified maps (COGs) per year and period 
(e.g., 
classified_map_optical_sar_2021_annual.tif). 

/data/fusion/{year}/ Results of the data fusion step, including fused 
classification maps and intermediate decision 
metrics (COGs, JSON). 

/data/changedetection/{year}/ Change detection maps 

/data/harmonization/ Harmonized classification products that align pre-
2020 and post-2020 class definitions. 

/data/harmonization/{pastYear}/ Harmonized classification maps (COGs) and lookup 
tables (JSON) indicating how past classes map to 
modern classes. 

/data/metadata/ Ancillary metadata (e.g., STAC Items, processing 
logs, and parameter files) linked to the PG/pgstac 
DB entries. 

/data/metadata/stac/ STAC JSON files and catalogs referencing all 
products for discoverability and interoperability. 

/data/logs/ Processing logs, error reports, and audit trails for 
debugging and reproducibility. 

Table 3-1: DataLake structure to maintain the intermediate data and metadata 
 
This structure ensures each step’s outputs are logically grouped, easily referenced, and traceable through STAC 
metadata and naming conventions. It allows reproducible, modular, and scalable data handling across multiple 
years, sensors, and processing workflows. 

3.4 Training Set and Ancillary Data Management Component  
The Training Set and Ancillary Data Management Component is in charge of the import and archiving of the 
training set and charge of retrieving and archiving (if applicable) the ancillary data useful to generate new data 
sets. The elements of this component are: 

• PostgreSQL DB Docker: it is responsible for hosting a database management system named PostgreSQL 
with PostGIS extension to manage geospatial data; 

• Jupyter Docker: it is responsible for hosting the Python scripts to import the training set data and 
ancillary data and to interface with the external components. 

These elements are packaged in Docker images..  
 
The following figure shows the components diagram with each docker image and the external interface to 
manage the import of the Training Set and Ancillary Data into the system. 
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Figure 4: Training Set Component 

 
The external interfaces are the following: 

• GetData: to retrieve new training set data stored in the Amazon S3. The import script will access this 
folder and start the import of the training set data according to the structure defined in the 3.4.2.1 
sections. 

• PutData: to import ancillary data (if not available API and according to the data license) in Amazon S3 
storage 

• API Data Access: to retrieve the ancillary data through API Data Access (if available) and store metadata 
into the component. 

 

3.4.1 Ancillary Data Management 

3.4.1.1 Ancillary Data 

The ancillary data are data that are needed for the processing of optical and SAR data, different from the training 
sets and the optical and SAR data itself. Ancillary data are used in one or more tasks among training, inference, 
comparison, and post-processing. The majority of them are raster data. 
 
The ancillary data can be provisionally summarised as: 

• Digital Elevation Models (DEM): Copernicus DEM 30 m, raster, used in support of training/inference; 

• Land cover (LC): 
o ESA WorldCover, raster, used in support of comparison/post-processing, and possibly training; 
o GLC_FDS, raster, used for comparison; 
o MapBiomas Amazonia, used in support of comparison/post-processing, and possibly training; 
o CCI Circumarctic, raster, used in support of comparison/post-processing, and possibly training; 
o ESA GlobPermafrost, raster, used in support of comparison/post-processing, and possibly 

training; 
o CCI Land Cover , raster, used in support of comparison, and possibly training; 
o CLMS Dynamic Land Cover, used in support of comparison, and possibly training; 

• Other: 
o Global Surface Water, raster, used in support of post processing; 
o Global Human Settlement, raster, used in support of comparison/post-processing; 
o Map of Land Cover Agreement, raster, used in support of training/comparison. 
o GLanCE, vector, used in support of training. 

 

3.4.1.2 Ancillary Data Organisation and Integration 

Two approaches are foreseen to retrieve the ancillary data: 
1. For those data for which a Machine-to-Machine (M2M) approach is available, the retrieving and access 

is done through Application Programming Interfaces (APIs) and protocols (e.g.: S3 (Simple Storage 
Service) to allow the request and retrieve of the data programmatically; 

2. For those data for which a M2M approach is not available (e.g.: data only accessible through static HTML 
pages, etc.), the data is manually retrieved and accessed once according to the data license, and stored 
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in a shared S3 storage. 

 

 
Figure 5: Ancillary Data Sequence Diagram 

The metadata will be stored in the Database and the data will be eventually stored according to a structured 
folder. The Data organization is TBD. 
 

3.4.2 Training Set Management 

3.4.2.1 Training Set Data 

The training set data that will be imported into the component will be points and polygons. They are derived 
from photointerpreted and map-agreement sources. 
The folder in S3 will be structured as follows: 

▪ <area_name> 
o <area_name>_<type>_<ROI>_<year>_<source>_<provider> 

▪ <area_name>_<type>_<ROI>_<year>_<source>_<provider>.cpg 
▪ <area_name>_<type>_<ROI>_<year>_<source>_<provider>.dbf 
▪ <area_name>_<type>_<ROI>_<year>_<source>_<provider>.prj 
▪ <area_name>_<type>_<ROI>_<year>_<source>_<provider>.shp 
▪ <area_name>_<type>_<ROI>_<year>_<source>_<provider>.shx 
▪ <area_name>_<type>_<ROI>_<year>_<source>_<provider>.qml 
▪ <area_name>_<type>_<ROI>_<year>_<source>_<provider>.geojson 
 

Where: 
▪ <area_name>: indicates the toponyms name of the data like africa, amazonia and Siberia; 
▪ <type>: indicates if the data is historic or static 
▪ <ROI>: indicates the Region of Interest 
▪ <year>: indicates the year of the data 
▪ <source>: indicates if the source is photo-interpreted or map-agreement 
▪ <provider>: indicates the provider like Polimi (Milan Polytechnic), UniPV (Padova University), UniTN 

(Trento University) 

3.4.2.2 Database Model 

The Training Set database is based on a relational database management system (PostgreSQL) with spatial 
extension PostGis for managing the training data defined in section 3.4.2.1. This database is composed of the 
following tables: 

• provider: 

• trainingprovider 
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• trainingmetadata 

• traniningset 

• spatialrefsys 
 
The tables should be filled with the data coming from the import script described in section 3.4.2.3. The following 
figure represents the model of the relational database for the TrainingSet DB Model. 
 

  
Figure 6: TrainingSet DB model 

 

3.4.2.3 Import Data 

The training data set defined in section 3.4.2.1 shall be imported into the training DB through a Python script. 
This Python script allows the extracting and loading of the data and metadata in the related tables. 
 
During this phase, the Jupyter Notebook can help to check the status of the importing. 
The workflow to import the data internal to the system will be the following: 
 

providers

«column»

*PK id: bigserial

 name: varchar

«PK»

+ providers_pkey(bigserial)

spatial_ref_sys

«column»

*PK srid: integer

 auth_name: varchar(256)

 auth_srid: integer

 srtext: varchar(2048)

 proj4text: varchar(2048)

«PK»

+ spatial_ref_sys_pkey(integer)

«check»

+ spatial_ref_sys_srid_check()

training_providers

«column»

*PK id: bigserial

 FK training_id: bigint

 FK provider_id: bigint

«PK»

+ training_providers_pkey(bigserial)

«FK»

+ training_fk(bigint)

+ provider_fk(bigint)

trainingmetadata

«column»

*PK id: bigint

 area: varchar

 type: varchar

 trainingset_fk: bigint

 year: varchar

 roi: varchar

 path: varchar

 source: varchar

«PK»

+ trainingMetadata_pkey(bigint)

«unique»

+ trainingset_id(bigint)

trainingset

«column»

*PK gid: serial

 level_1: numeric(24,15)

 geom: geometry

 FK setid: bigint

 system_ind: varchar

 field_3: double precision

 field_4: double precision

 level_2: numeric(24,15)

 level_3: numeric(24,15)

 level_4: numeric(24,15)

«PK»

+ trainingSet_pkey(serial)

«FK»

+ trainingMetadata_fk(bigint)

+provider_fk

(provider_id = id)

«FK»

+providers_pkey

+training_fk

(training_id = id)

«FK»

+trainingMetadata_pkey

+trainingMetadata_fk

(setid = trainingset_fk)

«FK»

+trainingset_id
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Figure 7: Training Set Sequence Diagram 

 
 

4 Interface Analysis 

4.1 Internal Interfaces 
 
The table below outlines the primary internal interfaces in the CCI-HRLC system. Each interface is identified by a 
unique code and describes the communication channel between components, including which source and 
destination it connects, the protocol used, and the data format. This ensures a clear understanding of how 
different parts of the system interact, facilitating maintenance, scalability, and interoperability. 

Code Source Destination Protocol Format Description 

CCI-
HRLC-
INT-IF-
000001 

Jupyter 
Notebook 

openEO API HTTPS 
(REST) 

JSON Users interact with the processing 
system through a Jupyter Notebook. 
Requests to start, monitor, or stop 
processing tasks are sent to the openEO 
API in JSON. 

CCI-
HRLC- 
INT-IF-
000002 

Jupyter 
Notebook 

STAC API HTTPS 
(REST) 

JSON 
(STAC) 

The notebook queries the STAC API to 
discover and select geospatial datasets. 
The STAC API responds with JSON-
formatted metadata conforming to the 
STAC standard. 

CCI-
HRLC- 
INT-IF-

Jupyter 
Notebook 

PostgreSQL DB Native Binary The notebook ingest the data from S3 
to the training DB. Training data and 
associated labels are ingested into 
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000003 pgstac. The importers write dataset 
references, features, and annotations 
as JSON to facilitate model training. 

CCI-
HRLC- 
INT-IF-
000004 

openEO 
API 

RabbitMQ AMQP JSON 
Messages 

Once a processing job is defined, the 
openEO API sends job instructions to 
RabbitMQ message queues in JSON 
format for asynchronous task 
distribution. 

CCI-
HRLC- 
INT-IF-
000005 

RabbitMQ Processors AMQP JSON 
Messages 

Processors consume queued tasks from 
RabbitMQ, receiving job parameters 
and references in JSON and 
acknowledging or sending updates back 
into the queue system. 

CCI-
HRLC- 
INT-IF-
000006 

Processors S3 Storage HTTPS (S3 
API) 

COG, JSON Processors read and write intermediate 
and final products to S3. Output data, 
typically Cloud Optimized GeoTIFFs 
(COGs) and associated metadata 
(JSON), are transferred over HTTPS. 

CCI-
HRLC- 
INT-IF-
000007 

Processors PG DB 
(pgstac) 

PostgreSQL 
Wire 

SQL/JSON Processors update, read, and write 
records in the PostgreSQL database 
with pgstac extension using SQL 
queries. Metadata and processing 
parameters are stored as JSON. 

CCI-
HRLC- 
INT-IF-
000008 

STAC API PG DB 
(pgstac) 

HTTPS 
(REST), PG 

JSON 
(STAC), 
SQL 

The STAC API interacts with pgstac to 
store and retrieve STAC Items and 
Catalogs. STAC metadata is ingested 
into pgstac and queried via SQL. 

CCI-
HRLC- 
INT-IF-
000009 

STAC API S3 Storage HTTPS (S3 
API) 

COG, JSON The STAC API references data stored in 
S3, enabling direct download or 
streaming of geospatial products in 
COG format, along with STAC metadata 
in JSON. 

Table 4-1: Internal Interfaces of the CCI-HRLC system 

4.2 External Interfaces 
The following table provides the list of external interfaces dedicated to the integration with Online Repositories 
([HRLC-TR-14], [HRLC-TR-16]) and Data Distribution via OGC and STAC Services ([HRLC-TR-23]). The two main 
objectives in terms of external interfaces are: 

• Integration with Online Repositories ([HRLC-TR-14], [HRLC-TR-16]): The system connects to external 
repositories either through direct integration with systems like NASA Earthdata and Copernicus 
Dataspace using HTTPS-based APIs and using repositories available on AWS Open Dara Registry. Data is 
retrieved in GeoTIFF format and ingested into the system's S3-based Data Lake, while metadata (e.g., 
STAC Items) is extracted and registered in the STAC API for discoverability. 

• Data Distribution via OGC and STAC Services ([HRLC-TR-23]): Processed and harmonized products are 
distributed through standard interfaces. The STAC API serves metadata and product links in a compliant 
JSON format, facilitating easy access for users and integration with downstream tools. For long-term 
archiving and delivery, products are also integrated into the CCI Portal. 

 
 

Code Source Destination Protocol Format Description 

CCI-
HRLC-
EXT-IF-
000010 

Online 
Repositories 
(NASA Earthdata, 
Copernicus 
SciHub, DIAS) 

System Data 
Lake (S3 
Storage) 

HTTPS 
(REST, API) 

GeoTIFF, 
JSON 

Integration with external 
repositories to retrieve satellite 
data (Sentinel-1, Sentinel-2, 
Landsat) in GeoTIFF format. 
Metadata is fetched in JSON for 
STAC registration. 

CCI-
HRLC- 

System Data Lake 
(S3 Storage) 

STAC API HTTPS 
(REST) 

JSON 
(STAC) 

STAC API serves as the interface 
to expose ingested geospatial 
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EXT-IF-
000011 

data and metadata for 
discoverability. 

CCI-
HRLC- 
EXT-IF-
000012 

System Data Lake 
(S3 Storage) 

OGC Services 
(WMS, WCS) 

HTTPS 
(OGC 
Standard) 

GeoTIFF, 
PNG, 
JSON 

External data distribution via 
OGC services, enabling 
visualization (WMS) and access 
(WCS) of processed and fused 
data products. 

CCI-
HRLC- 
EXT-IF-
000013 

STAC API External Users 
/ Clients 

HTTPS 
(REST) 

JSON 
(STAC) 

Provides access to metadata, 
data catalogs, and links to 
products stored in the Data Lake 
for download and analysis. 

CCI-
HRLC- 
EXT-IF-
000014 

System Data Lake 
(S3 Storage) 

CCI Portal 
(Obs4MIPs 
Integration) 

HTTPS 
(REST) 

NetCDF, 
JSON 

Final harmonized products 
delivered to the CCI Portal in 
NetCDF format, following 
Obs4MIPs requirements for 
climate research integration. 

Table 4-2: External Interfaces of the CCI-HRLC system 

4.3 User Interaction and Configuration Management 
- Management of Processor Versions, Auxiliary Data, and Parameters 
- Accessibility of Data for Algorithm Developers 
 

5 Deployment Scheme 

5.1 Deployment Approach of Processing Components 
The system ensures automated and consistent deployment of processing components by leveraging Docker for 
containerization, GitLab for code management and CI/CD pipelines, and a Docker Registry for storing and 
distributing built images. The workflow for delivering processing components is designed to package algorithms 
into Docker containers and seamlessly integrate them into the orchestration framework based on RabbitMQ. 
Below is the detailed workflow: 
 
Algorithm Development and Dockerfile Creation 

• Developers implement or update algorithms for processing components (e.g., optical preprocessing, 
SAR preprocessing, classification). 

• Each algorithm is defined within its own repository or directory in GitLab, including a Dockerfile that 
specifies the environment, dependencies, and execution commands. 

• The Dockerfile ensures the portability and reproducibility of the processing component by encapsulating 
all required libraries (e.g., geospatial Python libraries like GDAL, Rasterio) and system dependencies. 

 
Build and Test Automation in GitLab CI/CD 

• A GitLab CI/CD pipeline is configured to automate the building, testing, and deployment of Docker 
containers. 

• When code is pushed to the repository, the CI/CD pipeline is triggered, performing the following steps: 
1. Build the Docker Image: The Dockerfile is used to create a container image for the processing 

component. 
2. Run Unit and Integration Tests: The container undergoes automated testing to validate the 

algorithm’s functionality and compatibility. 
3. Tag and Version the Image: The built image is tagged with a version number (e.g., v1.0.0) and 

a commit SHA to ensure traceability. 
 
Deployment to Docker Registry 

• Once successfully built and tested, the Docker image is pushed to a Docker Registry (e.g., GitLab 
Container Registry, Docker Hub, or a private registry). 

• The registry acts as a centralized repository for container images, enabling easy versioning and retrieval. 

• Image tags (e.g., latest, v1.0.0) are managed to ensure clarity and consistency during deployment. 
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Integration with RabbitMQ-Based Orchestration ([HRLC-TR-12]) 

• After deployment, the containerized processing component becomes available for execution in the 
RabbitMQ-based orchestration system. 

• RabbitMQ serves as the task broker, managing job submissions, load balancing, and message queuing 
for distributed processing pipelines. 

• When a new job is submitted via the openEO API, RabbitMQ dispatches the job to the appropriate 
containerized processor (e.g., optical preprocessing, SAR classification) running on a worker node. 

• The worker nodes pull the required Docker image from the registry and execute the processing task. 
 
Workflow Example: 

1. Job Submission: 
o User submits a job through Jupyter by interfacing the openEO API, specifying parameters and 

the required algorithm. 
2. Task Queuing: 

o RabbitMQ queues the job and sends a message to the corresponding processing worker. 
3. Container Execution: 

o The worker retrieves the relevant Docker image from the registry, pulls the data from S3, and 
runs the algorithm within the containerized environment. 

4. Output Storage: 
o Results are stored back into the S3 Data Lake, and metadata updates are made via the STAC 

API. 
 
Monitoring and Maintenance: 

• Logs and job statuses are continuously monitored using the Status Consumer that tracks RabbitMQ 
messages. 

• Docker image versions are maintained in the registry, allowing for rollbacks or updates. 

• Regular updates to the Dockerfiles and GitLab CI/CD pipelines ensure that the processing components 
remain efficient, scalable, and up to date. 

 

5.2 Deployment Scheme and Resource Allocation 
 
The motivation for the selection of cloud resources is based on following criteria: 

• Data Proximity: e.g. availability of Sentinel 1 and 2 and of Landsat Historical data 

• Computational Resources availability On-Demand 

• Computational Resources available in the form of Spot Instances 
During the first phase, the success of the production was due to the availability of resources and, above all, due 
to data proximity. 
 
Deployment Scheme: 
The following figure describes the deployment scheme of the architecture described in par. 3.1. 
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Figure 8: Deployment Scheme of the CCI-HRLC system 
 
The cloud scheme illustrates a cloud-native architecture for deploying and orchestrating the High Resolution 
Land Cover (HRLC) system on AWS Cloud. The infrastructure is organized into several key layers and components 
within the AWS environment, as described below: 

• Region and Internet Gateway: 
o The architecture operates within an AWS Region and utilizes an Internet Gateway for external 

connectivity, allowing access to public endpoints like Git repositories and registries. 

• VPC (Virtual Private Cloud): 
o A VPC is provisioned to create a logically isolated network for the system. It contains all the 

processing and database components within a private environment. 

• Availability Zone and Private Subnet: 
o The infrastructure is deployed in an Availability Zone within a Private Subnet to enhance 

security by isolating critical components from direct public access. 

• Elastic Load Balancer and Elastic IP: 
o An Elastic Load Balancer distributes incoming traffic across services deployed within the 

Kubernetes Cluster, ensuring high availability and fault tolerance. 
o The Elastic IP provides a static address for communication with external components or users. 

• Kubernetes Cluster: 
o Within the private subnet, the Kubernetes Cluster hosts all core components, including APIs 

(OpenEO, STAC), messaging services (RabbitMQ), status consumers, and processors. This 
enables container orchestration, resource scaling, and workload distribution in the cloud. 

• Databases: 
o The PG STAC DB and Training DB are deployed within the private environment to securely store 

metadata, training data, and job states. These databases use PostgreSQL with pgSTAC for 
efficient geospatial metadata management. 

• CCI-HRLC Bucket (S3 Storage): 
o AWS S3 buckets are used as storage for both raw and processed data, ensuring durability and 

scalability for large datasets. This bucket serves as an interface between local development 
environments and the cloud processing infrastructure. 

• AWS open data Bucket (S3 Storage): 
o AWS Open Dataa buckets are provided as part of the Open Data strategy of Amazon Web 
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Services, described here: https://registry.opendata.aws/  

• Local Development and Validation: 
o Users perform local development and validation before pushing Docker images or code 

updates to the Registry (e.g., GitLab or Docker Registry) and CCI-HRLC Bucket. 

• Registry and Git: 
o A container Registry and Git repository serve as the source for Docker containers and 

application code. These components are integrated into the Kubernetes Cluster for 
deployment and execution. 

 
Current Physical resources: 

• Virtual Private Networks (VPC): 10.3.0.0 Management Network (Orchestrator Component deployed on 
CLEOS), 10.3.3.0 Processing Network (dynamic resources in an isolated VPC) 

• Orchestrator: the orchestrator component deployed on CLEOS (see later the general description) is able 
to spin-up and spin-down EC2 resources based on specific Templates of VMs. According to the 
availability of specific resources, the orchestrator is able to change the Instance Type according to a 
predefined list (e.g. if instances of type r5.xlarge are not available in the required number, the 
orchestrator is able to try with similar instances like r4.xlarge or even with bigger instances like 
r5.2xlarge).  

• Dynamic resources: up to AWS available resources. The project required the generation of large areas 
of Africa (about 1/3 of total area), South America (about 1/3 of total area) and Siberia (1/5 of total area) 
at 10 m resolution (related to year 2019) and at 30 m resolution (related to years 1990, 1995, 2000, 
2005, 2010 and 2015). About 100000 images (from Sentinel 1, Sentinel 2, Envisat, ERS and Landsat) have 
been processed as source data using extreme parallelism in few days. 

 
Here is the screenshot of the current resources (final phase of classification steps): 

 
Figure 9: CCI HRLC current operational resources 
 

5.3 Long-Term Archiving and Distribution 
The final output package will adhere to the CCI Data Standards as described in the applicable document [AD2]. 
During phase 1, it has to be noted that for large coverage at 10m like in the case of CCI-HRLC, GeoTIFF is the 
preferred encoding format.  
The final datasets will incorporate essential metadata for discoverability and compatibility with geospatial 
catalogs and tools. Directory structures will follow a hierarchical format, enabling users to navigate the data 
efficiently. This adherence ensures the seamless integration of outputs into the CCI Portal and other external 
climate research systems, fostering long-term usability, accessibility, and compliance with international 
standards for Essential Climate Variable (ECV) data. 
Also, phase 2 will focus on providing tools to translate outputs to be suitable for Obs4MIPs (Observations for 
Model Intercomparison Projects). Obs4MIPs is an initiative designed to facilitate the use of observational data 
in climate model evaluation and intercomparison projects, such as those conducted under the Coupled Model 
Intercomparison Project (CMIP) framework. It provides a standardized, accessible archive of observational 

https://registry.opendata.aws/
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datasets that are formatted and organized in a way that aligns with climate model outputs, making it easier for 
scientists to compare observations with model simulations. Converting land cover raster data into a format 
compatible with Obs4MIPs will involve the adaptation of the data to meet the specific standards and 
requirements of Obs4MIPs, including its alignment with CF (Climate and Forecast) conventions, netCDF-4 
format, and adherence to metadata and variable naming conventions used in climate modeling projects. Here is 
a step-by-step hypothesis for the conversion process. 
 
  


