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1 Introduction 

1.1 Executive summary 

This document provides an assessment of the end-to-end uncertainty budget the HRLC ECV products are 
associated with. HRLC products are based on a wide range of input data whose uncertainties propagate at 
different levels of dependency according to the data characteristics and the processing steps involved in the 
production. By taking into account the scarce availability of ground-measured reference information and the 
practical impossibility to collect physical measurements on wide areas as those selected for this project, the 
proposed uncertainty models will be, by necessity, theoretical.  

Many steps of the processing chain (e.g., pre-processing, geolocation, classification, etc.) involve algorithms that 
come with uncertainty models associated to them. For instance, the classification task is able to output 
probabilistic posteriors that can be managed at the fusion level to infer uncertainty score pixel-wise. Both 
uncertainties of input data sets and processing model-related ones must be considered, including error 
propagation dynamics. The nature of the input data sets (discrete classes vs. continuous variables) and the 
associated error characteristics (random error/ bias, error distribution), including potential correlations between 
errors of different input variables should be evaluated. Finally, uncertainties related to the spatial scales of data 
sets, scaling issues related to the validation activity must be accounted for as well. 

1.2 Purpose and scope 
This document provides both a detailed overview of the main sources of uncertainty for each step of the full 
processing chain and representations of pixel-wise uncertainty for the final HRLC and LCC products. 

This document deals with all known potential sources of error, uncertainty and known correlations in the data 
that are seen as potential contributors for the definition of an uncertainty product. The output for classification 
is given as a three layer data-structure that includes: 

• Classification maps associated with both first- and second-best performers, in terms of posterior 
probability, as returned by the classification-fusion model. 

• Actual values of posterior probabilities corresponding to the two above mentioned maps. 

• Input quality index corresponding to the input optical-data quality, which is related to the number and 
temporal distribution of the images acquisitions used in the composite generation step. 

The model uncertainty in Land Cover Change (LCC) reflects the propagation of uncertainties from earlier 
processing steps. The probability of change, representing the estimated occurrence probability of changepoints 
over time, serves as a key source of information for assessing the certainty of LCC products. Additionally, the 
availability of images on a yearly basis influences this uncertainty. When insufficient images are available for a 
given year, the change information is aggregated over a longer time span, resulting in increased uncertainty. 

 

1.3 Applicable documents 
Ref. Title, Issue/Rev, Date, ID 

[AD1] CCI_HRLC_Ph1-D2.3_E3UB, v4.0 

[AD2] CCI_HRLC_Ph2-D2.2_ATDB, latest version 

1.4 Reference documents 
Ref. Title, Issue/Rev, Date, ID 

1.5 Acronyms and abbreviations 

ATBD  Algorithm Theoretical Basis Document 

DL  Deep Learning 

E3UB   End-to-End ECV Uncertainty Budget 

HR  High Resolution 

LC  Land Cover 

S1  Sentinel-1 

SAR  Synthetic Aperture Radar 
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2 Optical processing chain 

The Optical Processing Chain in Phase 2 builds upon the robust methodologies established in Phase 1 to deliver 
high-resolution, high-quality land cover products. This chain plays a critical role in processing Harmonized 
Landsat Sentinel-2 (HLS) data to ensure seamless integration of multi-sensor observations. The focus remains on 
harmonizing data from different platforms while accounting for uncertainties at each processing stage. By 
maintaining consistency with Phase 1, the updates introduced in Phase 2 improve usability and interpretability 
without altering the core uncertainty framework. The two primary components of the Optical Processing Chain 
are: 

• Pre-Processing: Addressing sensor-specific corrections and harmonization to create composite datasets 
that form the basis for downstream analysis. 

• Classification: Leveraging advanced machine learning and deep learning techniques to provide robust, 
pixelwise land cover maps with quantified uncertainties. 

These components, in tandem, ensure the production of reliable land cover products while explicitly propagating 
and quantifying uncertainties from input data through to final outputs. 

2.1 Optical pre-processing 
The pre-processing stage is dedicated to preparing the optical data for classification. The data used in Phase 2 
have been already processed for radiometric correction, cloud and shadow masking, and spectral harmonization. 
Phase 2 further process these data for composite generation. Each step incorporates well-established 
methodologies to minimize and quantify uncertainties [1]: 
 

• Radiometric Correction: Radiometric correction is critical for standardizing reflectance values across 
different sensors (Landsat and Sentinel-2). Using the LaSRC algorithm, corrections consider atmospheric 
properties like aerosol optical thickness, column water vapor, and ozone levels. This ensures consistent 
surface reflectance values, with uncertainties quantified using in situ comparisons. Reflectance 
uncertainty varies between 0.11% and 1.4%, depending on the spectral band. 

• Cloud and Cloud-Shadow Detection: Probabilistic approaches are used to mask clouds and their 
shadows. Each pixel is assigned a likelihood of being affected by cloud contamination, minimizing 
misclassifications. While physical measurements for validation are impractical, posterior evaluations 
rely on synthetic and observational benchmarks, allowing for refined accuracy metrics. 

• Spectral Harmonization: HLS data processing requires addressing differences in spectral responses and 
solar-view geometries between Landsat and Sentinel-2. This step employs BRDF models to normalize 
illumination and observation conditions, particularly in areas with strong seasonal or angular variability. 
While this normalization enhances data consistency, residual uncertainties remain tied to the limitations 
of BRDF modeling. 

• Composite Generation: Composite datasets are created by synthesizing multi-temporal observations 
into a single representative mosaic (representing a single month, a season, or a whole year). This process 
ensures consistent spatial and temporal coverage, weighted by the Input Quality Index (IQIX). The IQIX 
is strictly related to the number of composites in a given year that are generated with at least three 
valid acquisitions (i.e., non saturated, cloud and shadow free pixels). In the case of annual composites, 
the input quality is proportional to the number of valid acquisitions of the only composite. 

2.2 Optical classification 
The classification stage in Phase 2 introduces deep learning (DL) models for robust feature extraction and land 
cover mapping. This step generates full posterior probability distributions for all thematic classes, enabling a 
comprehensive understanding of classification uncertainty. Advanced DL architectures (e.g., Temporal CNNs, 
Swin-Transformers, Transformer Encoder) are utilized to model complex relationships within the HLS data. These 
models effectively handle diverse land cover scenarios, providing detailed classification outputs at high spatial 
resolution. 
We can model the posterior probabilities using 𝑚 linear classifiers on top of the extracted deep features. Each 
linear classifier implements a hyperplane that separates its corresponding class from the other classes. The 
equation of each hyperplane is 

𝑓𝑗(𝒙) = 𝒘𝑗 ∙ 𝒙 + 𝑏𝑗  

where 𝒘𝑗  is a weight vector and 𝑏𝑗  is a bias term. Each class-specific posterior probability is typically computed 

using the softmax function:  
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𝑃(ℓ̂𝑖|𝒙𝑛; 𝝑𝑖) =
exp(𝑓𝑖(𝒙𝑛))

∑ exp(𝑓𝑘(𝒙𝑛))𝑚
𝑘=1

  

Hence, the parameter set 𝝑𝑖 = (𝒘𝑖 , 𝑏𝑖). For any probabilistic-based classifier, plugging the posterior probabilities 
into the cross-entropy function and solving the equation (gradient methods) is at the core of the well-known 
learning rules and or backpropagation algorithms. Pixelwise uncertainty can be derived directly from the 
posterior probabilities, highlighting regions of low classification confidence. In particular, areas with overlapping 
class probabilities are identified as high-uncertainty zones, providing critical input for subsequent decision fusion 
processes. Classification uncertainties are influenced by the quality and representativeness of training datasets. 
Underrepresented land cover types, such as forested wetlands and shrublands, and inconsistencies in temporal 
coverage contribute to model uncertainties. These are mitigated through techniques like data augmentation, 
cross-validation, and balanced sampling. 
The outputs of the optical classification module are designed to seamlessly integrate into downstream decision 
fusion steps. Key deliverables include: 

• Full Posterior Probability Distributions: These provide a pixelwise representation of classification 
confidence across all thematic classes. 

• Input Quality Index: Reflecting the reliability of the input HLS data, the IQIX supports the interpretation 
of classification results. 

3 SAR processing chain 

High-Resolution (HR) Land Cover (LC) maps, derived from the processing of Sentinel-1 (S1) Synthetic Aperture 
Radar (SAR) time series using deep learning (DL) architectures such as Swin-Unet, provide critical insights for 
environmental monitoring across large areas. However, various sources of uncertainty can degrade the quality 
and reliability of these maps. 
The land cover classification pipeline based on SAR data relies on a multi-stage processing chain to generate high-
resolution (10m) maps. This process includes pre-processing, feature extraction, classification, and post-
processing steps, which introduce specific sources of uncertainty at each stage. Details from the Algorithm 
Theoretical Basis Document (ATBD) [AD2] have been incorporated to enrich the understanding of these 
uncertainties.  
Identifying and mitigating sources of uncertainty is crucial for improving the accuracy and reliability of land cover 
maps derived from SAR data using DL networks. 
This paragraph explores these uncertainties in the context of high-resolution land cover mapping, focusing on 
the key stages of the classification process and their impacts on the final outputs. However, all those aspects 
concerning potential sources of uncertainty which are common to the Phase 1 processing chain are already 
documented in the End-to-End ECV Uncertainty Budget (E3UB) deliverable [AD1] and will be included only in 
summary here. 

3.1 Input Data 
The accuracy of land cover maps is directly influenced by the quality of the input SAR data. Several factors can 
introduce errors into the SAR data, affecting the final classification: 

• Noise and Artefacts: The inherent noise in SAR data, such as speckle noise, can significantly reduce the 
clarity of the images and make it more difficult to distinguish between different land cover types. 

• Temporal Resolution and Coverage Gaps: Inconsistent temporal coverage or insufficient data over 
specific time periods can cause gaps in the data, leading to a loss of continuity and making it difficult to 
track seasonal changes in land cover. 

3.2 Pre-Processing 
The pre-processing steps, including radiometric calibration, geometric correction, and filtering, introduce 
potential sources of uncertainty: 

• Radiometric Calibration: Inaccuracies during calibration may result in variations in pixel intensity values, 
impacting the classification of land cover types. 

• Geometric Correction: The process of aligning SAR images to a common coordinate system can lead to 
distortions, especially in areas with significant terrain relief. 

• Speckle Noise Filtering: While speckle noise can be reduced through advanced filtering techniques, the 
chosen method must balance noise suppression with the preservation of important image features. 
Over-filtering may result in a loss of critical information. 
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Errors in these steps, such as improper noise removal or inaccuracies in terrain correction, can propagate into 
the final land cover maps. The inherent speckle noise in SAR data adds to the complexity, with advanced filters 
like multitemporal despeckling providing significant improvements but also introducing potential loss of critical 
texture information. 

3.3 Feature Extraction Uncertainties 

Feature extraction relies on techniques such as mean, median, and max-min filtering, which aim to enhance 
relevant details while suppressing noise. However, the balance between noise reduction and feature 
preservation is critical. Additionally, seasonal compositing used to generate 'super-images' may fail to adequately 
capture dynamic or abrupt changes, particularly in regions with strong seasonal variability like Amazonia or 
Siberia. 

3.4 Deep Learning Architecture and Training 

DL models, such as Swin-Unet, are transformative tools in remote sensing applications like land cover 
classification. However, their performance is influenced by uncertainties arising from the quality and diversity of 
training data, hyperparameter optimization, and model generalization. The following paragraphs elaborate on 
these issues. 

• Imbalanced Training Datasets The lack of adequate representation for all land cover types in the 
training dataset may skew the learning process. For instance, underrepresented classes such as forested 
wetlands in the Amazon region may lead to systematic misclassification all over the world in similar 
ecoregions. Addressing this issue requires balancing datasets through data augmentation or targeted 
sampling techniques [2]. 

• Inconsistent Spatio-Temporal Coverage: Temporal dynamics, such as seasonal floodings in Amazonia 
or vegetation cycles in Siberia, necessitate diverse temporal snapshots for robust training. Insufficient 
data coverage may result in poor model adaptation to temporal variations [3]. 

• Overfitting and Underfitting: Overfitting occurs when the model learns noise or minor details specific 
to the training data, limiting its generalization ability. Conversely, underfitting results stem from 
insufficient model complexity or inadequate training, and may miss critical patterns for classification 
[4]. 

• Hyperparameter Selection: Parameters such as the learning rate and dropout rate need fine-tuning to 
achieve an optimal balance between model complexity and data representation. Automatic 
optimization techniques, including Bayesian optimization or grid search, can assist in this process [5]. 

• Diverse Land Cover Types: Complex regions like the mixed land cover of African savannas or urban-rural 
interfaces are a tough challenge for model generalizability. Utilizing multi-sensor data or region-specific 
pretraining may enhance the model adaptability. 

• Climatic and Environmental Variability: Extreme conditions, such as frozen landscapes in Siberia or 
dense tropical canopies in the Amazon region, introduce variability that standard models may not 
capture well. 

3.5 Local Conditions 

Regions such as Amazonia, Africa, and Siberia introduce unique challenges. Seasonal floodings in the Amazon 
region, sparse vegetation in African savannas, and extreme climatic conditions in Siberia are examples of 
situation that impact data quality and model performance, significantly contributing to uncertainties: 

• Amazonia: The seasonal variations in vegetation and flooding patterns may introduce challenges in 
accurately identifying land cover types. Additionally, cloud cover is a common issue in tropical regions, 
which may interfere to the following Sar + optical data fusion or multi-sensor classification approaches. 

• Africa: Sparse vegetation and diverse land cover types, such as savannas, forests, and agricultural areas, 
can create ambiguities in classification. The low resolution of some of the available SAR data may also 
limit the model's ability to distinguish between fine-scale land cover types 

• Siberia: Extreme climatic conditions and frozen landscapes add another layer of complexity, especially 
when it comes to identifying land cover changes in snow-covered or permafrost regions. SAR data's 
sensitivity to moisture and surface roughness can make it difficult to discern between different types of 
land cover in these environments. 
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3.6 Validation and Ground Truth Data 

The accuracy of the final land cover maps depends heavily on the availability and quality of ground truth data. 
Several challenges affect this validation process: 

• Limited Availability of Ground Truth Data: In remote or inaccessible regions such as Siberia or large 
parts of Africa, ground truth data may be sparse or entirely unavailable, making it difficult to assess the 
accuracy of the classification results. 

• Spatial and Temporal Mismatches: Ground truth data may not always align spatially or temporally with 
SAR data sets , leading to errors in classification accuracy during model validation. 

• Labelling Errors: Errors in the manual or automated labelling of training or validation datasets may 
introduce bias, leading to misclassification or inaccurate assessment of land cover types. 

4 Decision Fusion 

The Decision Fusion processing chain in Phase 2 receives the classification results from both the optical and SAR 
processing chains along with their uncertainties, which are expressed by the pixel-wise posterior probabilities. 
The multi-sensor pixel-wise fusion process in Phase 2 uses the same approach as Phase 1 i.e., the logarithmic 
opinion pool (LOGP) which calculates the fused probability distribution that directly indicates the pixel-wise 
measure of uncertainty after the fusion (refer to Phase 1 E3UB v4.0 [AD1] for more detailed information). On the 
contrary, the subsequent multi-temporal fusion and spatial fusion steps are modified and improved in Phase 2 
taking into account this uncertainty. In both cases, the improved formulations are probabilistic and Bayesian, a 
methodological approach that makes it possible to endow the resulting mapping product with an accompanying 
pixelwise posteriors, which takes into account the related spatial and temporal models. 
The following subsections discuss the uncertainty related to the improvement of the multi-temporal model by 
the Hidden Markov Model (HMM) and spatial fusion model by the Conditional Random Field (CRF). 

4.1 Uncertainty in Hidden Markov Model 

The Hidden Markov Model (HMM) is a probabilistic-based model to consider the information from the whole 
time series, improving the cascade model which only takes into account the information of a pair of time steps. 
Given the joint fused posterior probability on each pixel, 𝑃𝐹(𝓵|𝒙) = 𝑃𝐹(ℓ1, ℓ2, … , ℓ𝑇|𝒙1, 𝒙2, … , 𝒙𝑇) of the vector 
of all labels 𝓵 = (ℓ1,ℓ2, … , ℓ𝑇), where 𝒙 = (𝒙1, 𝒙2, … , 𝒙𝑇) refers to the collection of feature vectors of all time 

steps. A first-order HMM follows these two conditions: 
 

𝑃(ℓ𝑡|ℓ𝑡−1, ℓ𝑡−2, … , ℓ1) = 𝑃(ℓ𝑡|ℓ𝑡−1)          ∀𝑡 ∈ {2,3, … , 𝑇} 

𝑃(𝒙|𝓵) = ∏ 𝑃(𝒙𝑡|𝓵𝑡)

𝑡

 

 
where the first condition ensures the Markovianity of the labels along the time, and the second one assumes the 
conditional independence on the relationship between observations and labels. Under these constraints, the 
posterior distribution 𝑃(ℓ𝑡|𝒙) of the label ℓ𝑡 at each time given all observations in the time series can be 
computed in closed form through a sequential iterative algorithm (forward-backward algorithm). This 
multitemporal pixelwise distribution simultaneously determines the output predicted land cover label and 
encodes the associated uncertainty. This process intrinsically expresses uncertainty in the form of probabilities. 
Indeed, it is worth emphasizing that, as compared to the fused pixelwise posterior obtained separately by LOGP 
on each date, 𝑃(ℓ𝑡|𝒙) takes explicitly into account the whole time series associated with the pixel in the 
modelling of uncertainty as well. 

4.2 Uncertainty in Conditional Random Fields 

Conditional Random Fields (CRFs) are a family of probabilistic graphical models allowing the inclusion of 
contextual information by considering the interactions between neighbouring pixels. Correspondingly, the 
uncertainty associated with the predicted class labels can also be computed from the energy function of the CRF 
model. The energy function of the CRF model that considers up to non-zero pairwise clique potentials can be 
written as: 
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𝑈(𝐋|𝐗) = − ∑  𝛼 log 𝑃𝐹(ℓ𝑠|𝒙𝑠)

𝑠∈𝑆

− ∑ 𝑉𝑠𝑟(ℓ𝑠, ℓ𝑟|𝐗)
𝑠∈𝑆

𝑟∈𝜕𝑠

, 

 
where 𝐋 indicates the predicted label map and 𝐗 refers to the input image data. 𝑆 is the pixel lattice, 𝑠 is a 
notation for a generic pixel location (𝑖, 𝑘), and 𝜕𝑠 ⊂ 𝑆 is the set of the corresponding neighbouring pixels. 

𝑃𝐹(ℓ𝑠|𝒙𝑠) specifies the fused posterior probability of label ℓ𝑠 (obtained through LOGP, as mentioned before), 𝛼 
is a positive weight, and 𝑉𝑠𝑟(ℓ𝑠, ℓ𝑟|𝐗) defines the pairwise potential function, which is defined in detail in 
ATBD(Phase 2) v1.1 and combines a spatial Potts regularization with a contrast function based on the pixelwise 
posteriors. 
The uncertainty in CRF can be estimated using a softmax function based on its local posterior energy: 
 

�̃�𝐶𝑅𝐹(ℓ𝑠|𝒙𝑠, {ℓ𝑟}𝑟∈𝜕𝑠 ) =
exp [−𝑈(ℓ𝑠|𝒙𝑠, {ℓ𝑟}𝑟∈𝜕𝑠 )]

∑ exp [−𝑈(ℓ𝑠 = 𝜔𝑘|𝒙𝑠, {ℓ𝑟}𝑟∈𝜕𝑠 )]𝜔𝑘

, 

 

where 𝜔𝑘 indicates 𝑘-th class, 𝑘 = 1,2, . . , 𝒞, where 𝒞 is the number of classes. 𝑈(ℓ𝑠|𝒙𝑠, {ℓ𝑟}𝑟∈𝜕𝑠 ) expresses 

the local posterior energy function, which additively collects the energy contributions associated with pixel 𝑠 in 
relation to its pixelwise fused posterior (unary term) and its spatial context (pairwise potential). Weights exist in 
the energy function, such as 𝛼 and other weight parameters inside the pairwise potential function 𝑉𝑠𝑟(⋅). Such 

weights also generally affect the resulting uncertainty estimate �̃�𝐶𝑅𝐹(⋅). For this reason, an additional 
parameterization on the uncertainty estimation is used, similar to what was done in Phase 1, by introducing a 
further tuneable parameter 𝜇 so that the output of the uncertainty reflects the spatial structure of the CRF 
output. The value of 𝜇 is determined experimentally to match the distribution of the posterior values after the 
fusion, so that the resulting product correctly propagate the uncertainty measures received from the optical and 
SAR processing chains. Hence the output CRF uncertainty is defined as: 
 

�̃�𝐶𝑅𝐹(ℓ𝑠|𝒙𝑠, {ℓ𝑟}𝑟∈𝜕𝑠 ) =
exp [−𝜇𝑈(ℓ𝑠|𝒙𝑠, {ℓ𝑟}𝑟∈𝜕𝑠 )]

∑ exp [−𝜇𝑈(ℓ𝑠 = 𝜔𝑘|𝒙𝑠, {ℓ𝑟}𝑟∈𝜕𝑠 )]𝜔𝑘

. 

 
 

4.3 Uncertainty Output 

In Phase 1, taking into account storage constraints and readability for climate users and a possibly broader public, 
the final output of uncertainty did not contain the complete set of the posterior probabilities of all 𝒞 classes – 
which is reasonable even in general terms, because the least probable classes may be associated with probability 
values close to zero. On the contrary, the largest posterior and the second largest posterior are stored. The 
former expresses the confidence of the selected land cover class, whereas the gap with respect the latter 
emphasizes an uncertainty margin. By default, we shall keep this formulation in Phase 2 as well, which makes 
the format output of uncertainty consist of: 

• Classification maps containing the best and second-best thematic classes, that indicate the most 
probable class and the second most probable class on each individual pixel. 

• Posterior probabilities that correspond to the best and second-best thematic classes. 

• Input quality index corresponding to the optical input quality which is associated to the number and 
temporal distribution of the optical data acquisitions used in the composite generation step. 

5 LandCover Change Detection 

The final stage of the CCI HRLC processing chain, involving landcover change detection, is significantly influenced 

by uncertainties propagated from earlier steps, such as decision fusion, classification maps, and multisensor 

geolocation. These uncertainties also extend to abrupt change detection. DL models for feature extraction and 

land cover change detection introduced in Phase 2 (where advanced DL architectures, such as 3D CNNs, Swin-

Transformers) are used to model complex relationships in multi-temporal multispectral data. These models 

provide posterior probabilities for land cover change detection, effectively capturing diverse land cover 

transitions and delivering detailed change detection outputs where a break point detector is employed. The 

break point detector decomposes time series data into trend (𝑇𝑡), seasonal (𝑆𝑡) and noise (𝑒𝑡) components, 
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identifying breakpoints that denote potential changes, along with their associated confidence intervals. The 

general model for decomposition is in the form of: 

 

𝑌𝑡 =  𝑇𝑡 + 𝑆𝑡 + 𝑒𝑡  (𝑡 = 1, 2, … , 𝑛) 

 

In which 𝑌𝑡 is the observed data at time 𝑡. The method outputs breakpoints and confidence intervals for changes 

in the trend component. The magnitude and direction of changes, derived from the slope of consecutive linear 

models, help distinguish real abrupt changes from signal noise. By iteratively adjusting confidence levels, a 

probability for the change date is derived, indicating the uncertainty of the detected changes.  

Another factor reported as the uncertainty of the detected changes is the reliability of the change. When 

sufficient data is available, changes are reported for consecutive years. If data is insufficient, the algorithm 

searches for reliable acquisitions within a six-year span, reporting the change year along with a reliability value 

indicating the temporal distance between the years used for change detection. This reliability value serves as an 

uncertainty measure for the reported change year 
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