


**GLOBAL CLIMATE** 

**OBSERVING SYSTEM** 

**KEEPING WATCH OVER OUR CLIMATE** 

# GCOS and Adaptation: GATT the GCOS Adaptation Task Team

#### Antonio Bombelli, GCOS Secretariat

13<sup>th</sup> ESA CCI colocation - CMUG Integration meeting ESA-ECSAT, 7-9 November 2023









### **PPT Outline**

# 1- (short) intro to GCOS

# **2- GCOS IP and Space Agencies**

# 3. GCOS and Adaptation



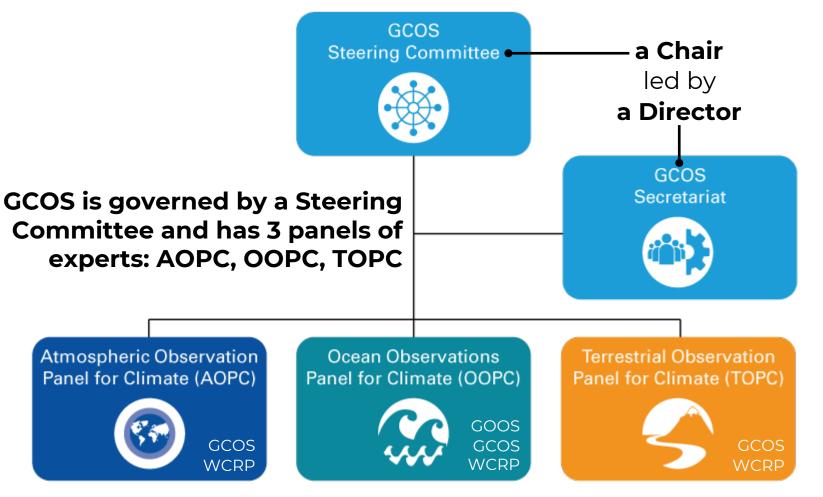
### **GCOS – Global Climate Observing System**



#### GCOS is a Co-Sponsored Programme:

- WMO
- IOC UNESCO
- UNEP
- ISC

GCC




JN 😡

Additional contributors: EU Commission, US State Dept., NOAA, Germany, EUMETSAT

unesco

GCOS was established in 1992 to address the UNFCCC systematic observation agenda



### **GCOS – New Leadership**



New Director of the GCOS Secretariat: Mr Nir Stav Previous Executive Director of the Israeli Meteorological Service

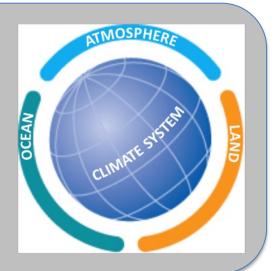
#### New Chair of GCOS Steering Committee: Ms Thelma Krug INPE, National Institute for Space Research of Brazil Previous vice-chair of IPCC





### **GCOS – Global Climate Observing System**

VISION: a world where users have free access to the climate-related information they need


MISSION: GCOS is the authoritative global source of information and advice for planning and developing the global observing system for climate, its networks and data management; and a reference for formulating requirements for space and in situ climate observations

#### ACTIVITIES

Identify user needs for climate monitoring, adaptation, mitigation, sustainable development, UNFCCC and other MEAs

Ensure that climate observations are enhanced and continued into the future

Advocate for **free and open access** to relevant climate data



### **GCOS:** an integrated system of systems

GCOS does not make observations itself, is a system of systems cooperating with а wide range of organizations: National Meteorological and Hydrological Services, Satellite Agencies, in situ networks, National and regional bodies, Research centres, etc.



Other Global Organizations and Networks for specific terrestrial ECV

unesco

GCO



Satellite observations are coordinated by the Joint **CEOS/CGMS Working** Group on Climate

**Ecosystem Research Infrastructure** 

Examples of national and regional networks tern

JN 🏟

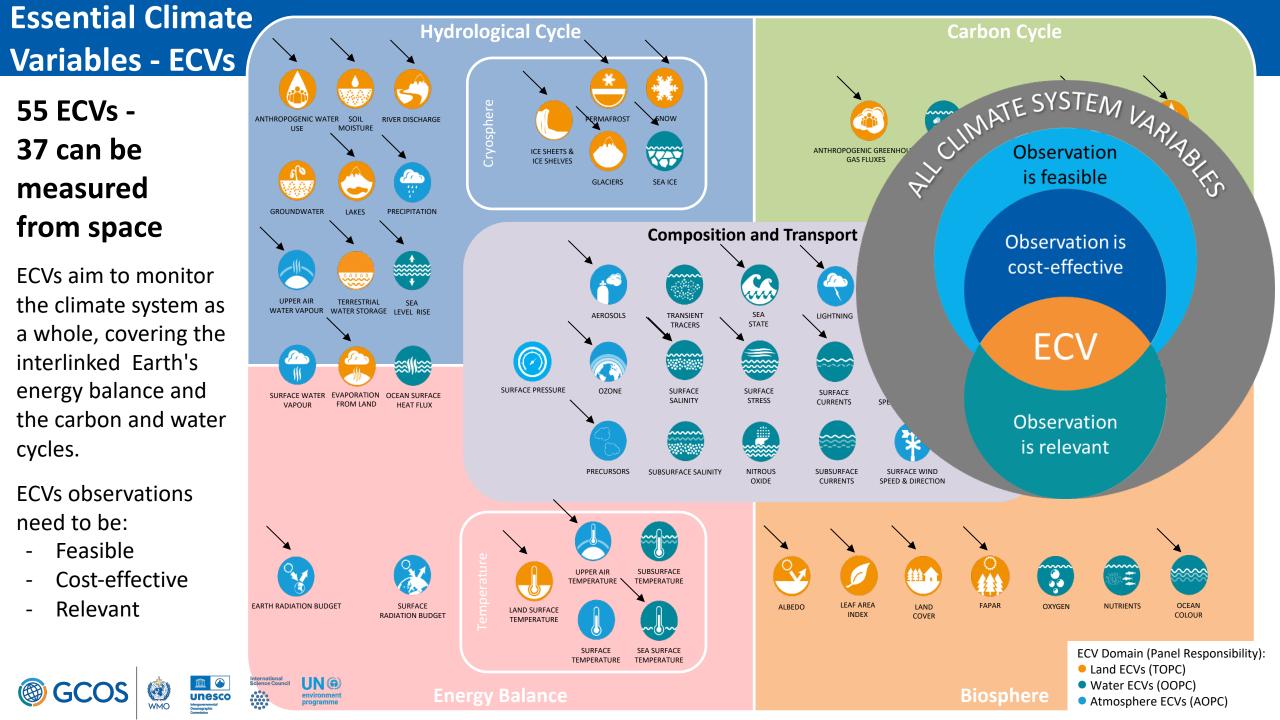
Meteorological related networks, like: WIGOS, GSN, GUAN, GRUAN, GBON



a number of different ocean climate-related networks, in collaboration with GOOS

Network for







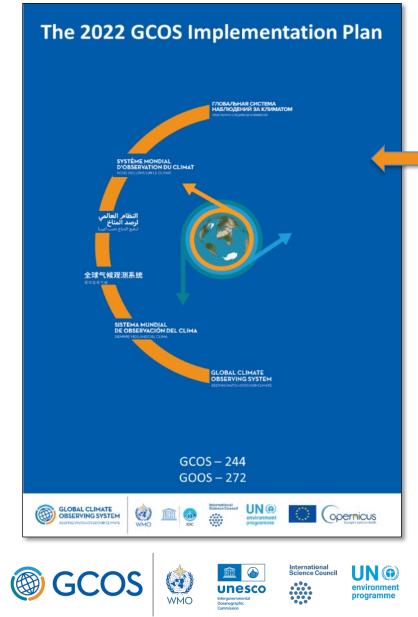




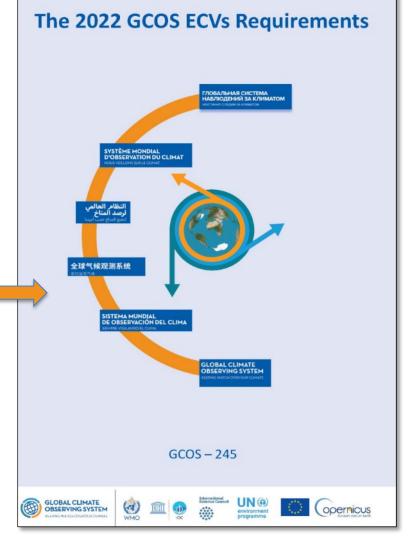

and a wide range of other partners who support GCOS, host data centres, etc



### **PPT Outline**


# 1- (short) intro to GCOS

# **2- GCOS IP and Space Agencies**


### 3. GCOS and Adaptation



### The GCOS Implementation Plan and ECVs REquirements



- Published every  $\cong$  5 years
- Submitted to UNFCCC
- Actions for addressing gaps
   and improvements of a fit for purpose Global Climate Observing System
- Published jointly with the 2022 GCOS IP
- Provides the observational requirements for 55 ECVs (and more ECV products)



### **GCOS IP and Space Agencies**

|        | Theme                         | Actions                                                                                                                                   | Implementing Bodies 💡 |      |              |      |              |               |              |              |               |          |              |      |
|--------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|--------------|------|--------------|---------------|--------------|--------------|---------------|----------|--------------|------|
|        |                               | 31 actions                                                                                                                                |                       |      |              |      | enters       | Centers       | anizatio     | ncies        | FCCC          |          | ncies        |      |
|        |                               | 16 (>50%) relevant to Space Agencies                                                                                                      | OMM                   | SHMN | Space agenci | coos | Reanalysis C | Global Data ( | Research org | National Age | Parties to UN | Academia | Funding Ager | gcos |
|        | A: ENSURING<br>SUSTAIN BILLTY | A1. Ensure necessary levels of long-term funding support for in situ networks, from observations to data<br>delivery                      | x                     | ×    | V            |      |              |               | ×            |              |               | ×        | x            | ×    |
|        |                               | A2. Address gaps in satellite observations likely to occur in the near future                                                             |                       |      | x            |      |              |               |              |              |               |          |              |      |
|        |                               | A3. Prepare follow-on plans for critical satellite missions                                                                               |                       |      | x            |      |              |               |              |              |               |          |              |      |
|        | B: TILLING DATA               | B1. Development of reference networks (in situ and satellite Fiducial Reference Measurement (FRM) programs)                               | x                     | x    | x            |      |              |               | x            |              |               |          | x            | ×    |
|        |                               | B2. Development and implementation of the Global Basic Observing Network (GBON)                                                           | x                     | x    |              | x    |              |               |              |              |               |          |              | x    |
|        |                               | B3. New Earth observing satellite missions to fill gaps in the observing systems                                                          |                       |      | x            |      |              |               |              |              |               |          |              |      |
|        |                               | B4. Expand surface and in situ monitoring of trace gas composition and aerosol properties                                                 |                       | x    |              |      |              |               | x            | x            |               |          | x            |      |
|        |                               | B5. Implementing global hydrological networks                                                                                             | x                     | ×    | x            |      |              | ×             |              |              |               |          |              |      |
|        |                               | B6. Expand and build a fully integrated global ocean observing system                                                                     |                       | x    | x            | х    |              |               | x            | х            |               | x        |              |      |
|        |                               | B7. Augmenting ship-based hydrography and fixed-point observations with biological and biogeochemical<br>parameters                       |                       |      |              | x    |              |               | x            |              |               |          |              |      |
|        |                               | B8. Coordinate observations and data product development for ocean CO2 and N2O                                                            | x                     |      |              | x    |              |               | x            | x            |               |          |              |      |
|        |                               | B9. Improve estimates of latent and sensible heat fluxes and wind stress                                                                  |                       | ×    | x            | х    |              |               | x            |              |               | x        |              |      |
|        |                               | B10. Identify gaps in the climate observing system to monitor the global energy, water and carbon cycles                                  |                       |      |              |      |              |               | x            |              |               |          | x            | x    |
|        |                               | C1. Develop monitoring standards, guidance and best practices for each ECV                                                                | x                     |      | x            | х    |              |               |              |              |               |          |              | x    |
|        | DATA QUALITA                  | C2. General improvements to satellite data processing methods                                                                             |                       |      | x            |      |              |               | X            |              |               | x        |              |      |
|        | AVAILABILIT AND<br>UTILITY,   | C3. General improvements to in situ data products for all ECVs                                                                            |                       | x    |              | _    |              |               | х            |              |               | x        |              |      |
|        | INCLUDING                     | C4. New and improved reanalysis products                                                                                                  |                       |      | x            |      | x            |               |              |              |               | x        |              |      |
|        | REPROCESSING                  | C5. ECV-specific satellite data processing method improvements                                                                            |                       |      | x            |      | x            |               |              |              |               |          |              |      |
|        | D: MANAGENG                   | D1. Define governance and requirements for Global Climate Data Centres                                                                    | x                     |      |              |      |              | x             |              |              |               |          |              | x    |
|        | DATA                          | D2. Ensure Global Data Centres exist for all in situ observations of ECVs                                                                 | x                     | x    |              | x    |              |               |              | x            |               |          | x            | x    |
|        |                               | D3. Improving discovery and access to data and metadata in Global Data Centres                                                            |                       |      |              |      |              | x             |              |              |               |          | x            | x    |
|        |                               | D4. Create a facility to access co-located in situ cal/val observations and satellite data for quality assurance<br>of satellite products | e x                   | x    | x            |      |              |               | x            |              |               |          |              |      |
|        |                               | D5. Undertake additional in situ data rescue activities                                                                                   | x                     | x    |              |      |              |               |              |              | x             |          | x            | x    |
|        | E: SNG GING WITH              |                                                                                                                                           | x                     |      |              | х    |              |               |              |              | x             |          |              | x    |
|        | COUNTRILS                     | E2. Promote national engagement in GCOS                                                                                                   |                       | x    |              |      |              |               |              |              | x             | x        |              | x    |
|        |                               | E3. Enhance support to national climate observations                                                                                      |                       |      |              |      |              |               |              |              | x             |          | x            | ×    |
|        | F: OTNER                      | F1. Responding to user needs for higher resolution, real time data                                                                        | x                     | x    | X            |      |              |               | x            |              |               | X        |              | x    |
|        | EMERGINT NEEDS                | F2. Improved ECV satellite observations in polar regions                                                                                  |                       |      | х            |      |              |               | x            |              |               | X        |              |      |
|        |                               | F3. Improve monitoring of coastal and Exclusive Economic Zones                                                                            |                       | х    | X            | X    |              |               | x            |              |               | X        |              |      |
| W GCUS |                               | F4. Improve climate monitoring of urban areas                                                                                             | x                     | x    |              |      |              |               | x            | х            |               | x        |              | x    |
|        |                               | F5. Develop an Integrated Operational Global GHG Monitoring System                                                                        | X                     |      | X            |      |              |               | X            | X            |               | X        |              | X    |

### **GCOS IP Actions with relevance for Space Agencies**

Action A2: Address gaps in satellite observations likely to occur in the near future Action B1: Development of reference networks (in situ and satellite Fiducial Reference Measurement (FRM) programs)

Action B6: Expand and build a fully integrated global ocean observing system

Action A3: Prepare followon plans for critical satellite missions

unesco

Action B3: New Earth observing satellite missions to fill gaps in the observing systems Action B9: Improve estimates of latent and sensible heat fluxes and wind stress

Action B5: Implementing global hydrological networks

### **GCOS IP Actions with relevance for Space Agencies**

| Action C1: Develop<br>monitoring                                              | Action C5: ECV-<br>specific Satellite     | Theme D                                                                                                                                  | D: Managing Data                                                                   |                |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| standards, guidance<br>and best practices<br>for each ECV                     | Data Processing<br>Method<br>Improvements | Action D4: Create a database of co-located in si<br>cal/val observations and satellite data for quali<br>assurance of satellite products |                                                                                    |                |  |  |  |  |  |  |
| Action C2: General<br>Improvements to<br>Satellite Data<br>Processing Methods |                                           | Action F1: Responding<br>to user needs for<br>higher resolution, near<br>real time data                                                  | Action F2: Improved<br>ECV satellite<br>observations in polar<br>regions           | Theme F: Em    |  |  |  |  |  |  |
| Action C4: New and<br>improved reanalysis<br>products                         |                                           | Action F3: Improve<br>monitoring of coastal<br>and Exclusive<br>Economic Zones                                                           | Action F5: Develop an<br>Integrated Operational<br>Global GHG<br>Monitoring System | Emerging Needs |  |  |  |  |  |  |

**Theme C: Improving Data Utility** 

**GCO** 

JN @

unesco

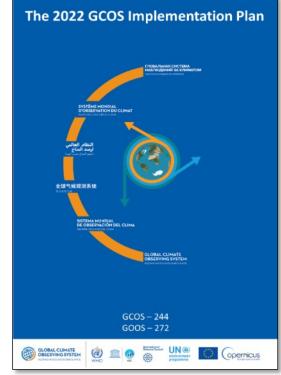
#### Space Agency Response to the GCOS IP

#### WGClimate\* is coordinating the Space Agency Response to the GCOS IP

- A collaborative effort between WGC and GCOS experts
- Partially shared membership: WGC ex-officio members in GCOS Panels
- GCOS rapporteurs for each satellite actions have been identified
- Regular interactions between WGClimate chairs and GCOS Secretariat
- Regular reporting on progress on actions by WGC to GCOS, using an agreed template
- \* the Joint Committee on Earth Observation Satellites (CEOS) and Coordination Group for Meteorological Satellites (CGMS) Working Group on Climate.



### **PPT Outline**


- 1- (short) intro to GCOS
- **2- GCOS IP and Space Agencies**
- 3. GCOS and Adaptation



### **GCOS IP and Adaptation**

The 2022 GCOS Implementation Plan has planned collective actions focusing on different aspects of adaptation and involving a wide range of stakeholders, including Space Agencies:

- C4. New and improved reanalysis products
- E1. Foster regional engagement in GCOS
- F1. Responding to user needs for higher resolution, real time data
- F3. Improve monitoring of coastal and Exclusive Economic Zones
- F4. Improve climate monitoring of urban areas





#### Why GATT?

GC(

The GATT was established in 2021 as a GCOS response to the growing importance of adaptation in the frame of multilateral international agreements, especially the Paris Agreement.

#### From Global to Local

- GCOS is intrinsically and traditionally focused on global or regional scale
- impacts of extremes and adaptation are primarily at the local scale
- the GATT initiated a study to assess how global climate observations can best support climate-resilient development through adaptation to climate change





### **GATT – 3 Case Studies**

#### **Three Case Studies**

The suitability, in terms of spatial and temporal resolution, of existing ECVs for adaptation application (observations for and of adaptation) was investigated across 3 case studies in 3 different critical sectors:

- 1) forest wildfire management
- 2) pluvial flood risk assessment in urban areas

IN 🙃

3) ocean extremes

unesco



### **GATT results – Wildfire case study**

| 17 atmospheric and terrestrial ECVs, and 27 ECV   |
|---------------------------------------------------|
| related products, were identified as relevant for |
| forest wildfire adaptation.                       |

| ECV                   | ECV product                                    |  |  |  |  |  |
|-----------------------|------------------------------------------------|--|--|--|--|--|
| Terrestrial ECVs      |                                                |  |  |  |  |  |
| Above-Ground Biomass  | Above-Ground Biomass                           |  |  |  |  |  |
| Evaporation from Land | Transpiration                                  |  |  |  |  |  |
| FAPAR                 | FAPAR, Fraction of Absorbed Photosynthetically |  |  |  |  |  |
|                       | Active Radiation                               |  |  |  |  |  |
| Fire                  | Active Fire                                    |  |  |  |  |  |
|                       | Burned Area                                    |  |  |  |  |  |
|                       | Eiro Dadiativa Dawar                           |  |  |  |  |  |

| An example of the exercise: Fire Danger Modelling |                               |                                             |                 |                                 |  |
|---------------------------------------------------|-------------------------------|---------------------------------------------|-----------------|---------------------------------|--|
| ECV                                               | ECV Products                  | Spatial resolution requirements*            |                 | nporal resolution requirements* |  |
| Land Surface Temperature                          | Land Surface Temperature      | <1 km (G); <1 km (B); 1 kn                  | n (T) <1 h      | (G); 1 h (B); 6 h (T)           |  |
| Precipitation                                     | Accumulated Precipitation     | 50km (G); 125 km (B); 250 resolution needed | ) km (T) 1 day  | y (G); 1 month (B); 1 year (T)  |  |
| Soil Moisture                                     | Surface Soil Moisture         | 1 km (G); 10 km (B); 50 kn                  | n (T)     6 h ( | G); 24 h (B); 48 h (T)          |  |
| Surface Wind Speed and                            | Wind Direction (near surface) | 10 km(G); 100 km(B); 500                    | km (T) <1 h     | (G); 1 h (B); 3 h (T)           |  |
| Direction                                         | Wind Speed (near surface)     | 10 km(G); 100 km(B); 500                    | km (T) <1 h     | (G); 1 h (B); 3 h (T)           |  |
|                                                   |                               | Precipi                                     | itation         | Accumulated Precipitation       |  |

 help evaluate whether wildfire risk and impacts have changed over time in response to adaptation actions. <u>observations of adaptation</u>

UN 🎯

unesco

GCO

| Precipitation            |           | Accumulated Precipitation                     |
|--------------------------|-----------|-----------------------------------------------|
| Surface Water Vapour     |           | Relative Humidity (near surface)              |
| Surface Wind Speed and D | Direction | Wind Direction (near surface)                 |
|                          |           | Wind Speed (near surface)                     |
| Upper Air Wind Speed and |           | Wind (horizontal) in the Boundary Layer       |
| Direction                |           |                                               |
| Upper-Air Temperature    |           | Atmospheric Temperature in the Boundary Layer |
| Upper-Air Water Vapour   |           | Relative Humidity in the Boundary Layer       |
|                          |           | Specific Humidity in the Boundary Layer       |
|                          |           | Water Vapour Mixing Ratio in the Upper        |
|                          |           | Troposphere and Lower Stratosphere            |
|                          |           |                                               |

### **GATT** – results

#### Many ECVs are relevant for adaptation.

Long-term global datasets of ECVs can complement local information in a consistent framework, by feeding regional and global climate models as well as reanalysis.

However, to be more effective for local adaptation:

- the quality of climate datasets, in terms of completeness, accuracy, resolution, interoperability and accessibility, has to be improved

unesco

- climate datasets should be integrated with nonclimatic information, i.e. socio-economic, demographic, technological, environmental, etc. GCOS







# GCOS and Adaptation – Conclusions and Way Forward

#### **Conclusions**

- GCOS is a global system and cannot support all the various local needs that are better determined and responded to at a local level.
- A complete assessment cannot be done by GCOS alone: key adaption stakeholders and experts need to be involved.



#### Way Forward

GCOS

- Workshop: GCOS to organize workshop(s) involving major adaptation implementers and thematic experts, to identify ECVs, global datasets and climate information, including spatial and temporal specifications, needed for adaptation.
- Paper: GCOS to lead the preparation of a paper on improving the accuracy and reliability of reanalysis and climate models to be used for tailoring adaptation to the expected regional and local changes.
- Satellites: promote the use of high-resolution space-based observations (~10m) for monitoring changes at local level and planning adaptation measures.

#### **The GATT Team**

Bombelli A.<sup>1</sup>, Cagnazzo C.<sup>2</sup>, Desanker P.<sup>3</sup>, Dolman A.J.<sup>4</sup>, Eggleston S.<sup>1</sup>, Fiorino C.<sup>3</sup>, Herold M.<sup>5</sup>, Hollmann R.<sup>6</sup>, Kent E.<sup>7</sup>, Koll R.M.<sup>8</sup>, Kremer H.<sup>9</sup>, Krug T.<sup>10</sup>, Martín Míguez B.<sup>1</sup>, Post J.<sup>3</sup>, Rea A.<sup>1</sup>, Rodrigues R.<sup>11</sup>, Rusticucci M.<sup>12</sup>, Seitzinger S.<sup>13</sup>, Speich S.<sup>14</sup>, Tapper N.<sup>15</sup>, Tassone C.<sup>1</sup>

#### Affiliations

<sup>1</sup>World Meteorological Organization (WMO), GCOS Secretariat, Switzerland; <sup>2</sup>European Centre for Medium-Range Weather Forecast (ECMWF), Germany; <sup>3</sup>United Nations Framework Convention on Climate Change (UNFCCC), Germany; <sup>4</sup>Royal NIOZ, Netherlands Institute for Sea Research, Netherlands; <sup>5</sup>GFZ Potsdam, Germany; <sup>6</sup>Deutscher Wetterdienst (DWD), Germany; <sup>7</sup>National Oceanography Centre (NOCS), UK; <sup>8</sup>Indian Institute of Tropical Meteorology (IITM), India; <sup>9</sup>United Nations Environment Programme (UNEP), Kenya; <sup>10</sup>National Institute for Space Research (INPE), Brazil; <sup>11</sup>Federal University of Santa Catarina, Brazil; <sup>12</sup>Universidad de Buenos Aires, Argentina; <sup>13</sup>University of Victoria, Canada; <sup>14</sup>Ecole Normale Supérieure, France; <sup>15</sup>Monash University, Australia.



#### GLOBAL CLIMATE OBSERVING SYSTEM KEEPING WATCH OVER OUR CLIMATE







# Thanks!



