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2.0 5.1.3.1.2 • New section added to the ATSR/SLSTR detailing new TCWV uncertainty 
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2.0 5.3 • New section about SSM/I and SSMIS 

2.0 6 
• Harmonisation, Drift and Time corrections - this section is entirely new 

containing both IR and MW contributions 
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1. Executive Summary 

This document presents the end-to-end uncertainty budget as applied to the single-sensor Climate Data 
Record (CDR), single-sensor MODIS, SEVIRI and GOES-16 products and the microwave SSM/I and SSMIS 
land surface temperature (LST) data produced within the Climate Change Initiative (LST_cci) project.  The 
CDR is generated using observations from the Along-Track Scanning Radiometer (ATSR) instruments, the 
Moderate Resolution Imaging Spectroradiometer (MODIS) and the Sea and Land Surface Temperature 
Radiometer (SLSTR).  The provision of uncertainty information with LST data is motivated by the concept 
that this information is fundamental to the application of the data, particularly within the field of climate 
science.  The aim is to provide uncertainty information with every datum within the LST_cci datasets, 
building on the work undertaken within the Sea Surface Temperature (SST) CCI project, and first applied 
to LST products within the ESA Data User Element GlobTemperature project.   

The approach taken here is to construct an uncertainty budget for the LST data, recognising that 
uncertainties are introduced at each processing level (from satellite observations through to gridded 
products) and that uncertainties in lower-level products need to be correctly propagated into higher level 
products during the processing. In order to facilitate uncertainty propagation, we group error effects into 
three broad categories according to their correlation length scale: 

❖ Uncertainties due to uncorrelated (random, independent) error effects 

❖ Uncertainties due to locally-systematic (structured) error effects  

❖ Uncertainties due to large-scale systematic (common) error effects 

The methodology for propagating these uncertainties, based on the law of propagation of uncertainty is 
dependent on the correlation between terms used in the measurement equation; and for each of three 
cases identified above, the propagation is done independently.  The uncertainty components once 
propagated can then be added in quadrature to give a total uncertainty for the LST retrieval.  Where 
possible, the full uncertainty budget is provided to data users to enable correct propagation of 
uncertainties into user derived data products. 

Within this document we build upon the metrological concepts for the quantification and propagation of 
uncertainty in Earth Observation developed within the Fidelity and Uncertainty in Climate Data Records 
from Earth Observations (FIDUCEO) project.  These provide a basis for rigorous analysis of the sources of 
error in each data level and means to understand to what degree we can quantify these within our 
uncertainty budget.  Using these principles, we have also been able to recommend areas for future 
development with regards to uncertainty budget calculation and propagation. 

One advantage of providing uncertainty information calculated independently of in-situ datasets is that 
the uncertainties can be validated in addition to the LST retrievals.  This enables data providers to 
understand the degree to which they can correctly characterise and propagate the uncertainties in their 
dataset and processing methodology.  It also provides more detailed uncertainty information (datum 
specific) than is typically possible using comparisons against in-situ datasets. Uncertainties can also be 
used in the validation of the LST data to prescribe upper and lower bounds for measurement differences. 

This document also contains information on the way in which uncertainty information is provided for 
users, and worked examples of how these data can be correctly applied across a few different 
applications.   
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2. Introduction 

The maturity of Earth Observation (EO) products has increased significantly over the last decade with the 
longevity of the data record increasing their relevance for climate applications.  With the development of 
these datasets, there has become an increasing awareness within the EO community of the importance 
of providing uncertainty estimates with data products, essentially informing the user of the degree to 
which these measurements are ‘in doubt’.   This is intuitively important in the context of climate; to 
understand long-term changes in the geophysical world we need to ensure that the observed changes are 
not an artefact of the measurement process itself.  These data now cover a period of time that is 
significant with respect to climate and have the potential to inform policy, adaptation and mitigation 
strategies. 

This focus on quantifying uncertainties in EO products has been reflected in a number of recent research 
programs.  Across the European Space Agency (ESA) Climate Change Initiative (CCI), funding has been 
provided to produce climate data records for twenty-three essential climate variables within the last 
decade, and within all of these projects, it is expected that uncertainties associated with the data be 
provided to the user.  Horizon 2020 projects funded by the European Commission have also had a focus 
on understanding uncertainties in EO data, most notably in the FIDUCEO project [RD-32].  This particular 
project focuses on Level 1 satellite measurements (prior to any geophysical retrieval), providing a 
comprehensive overview of the uncertainties that arise as a function of the instrument and orbit 
characteristics.  These can then feed into any higher-level application of these data in retrieving 
geophysical properties. 

Focusing particularly on the retrieval of surface temperature, many of the concepts developed within the 
sea surface temperature (SST) CCI project [RD-30] are of relevance also to land surface temperature (LST) 
retrieval. Within this document we will take these principles, and apply them within the context of LST 
retrieval, building on work undertaken within the ESA GlobTemperature Data User Element (DUE) project 
[RD-31].  We will also exploit the methods and techniques developed within FIDUCEO to further 
understand the sources of uncertainty in our data products.  

The remainder of this deliverable will be structured as follows: firstly we will define the nomenclature 
appropriate to characterising uncertainties.  We will consider the sources of uncertainties specific to each 
instrument included in our infrared LST climate data record (ATSR2, AATSR, MODIS Terra and SLSTR), to 
the single-sensor products from MODIS, SEVIRI and GOES-16, and the microwave products from SSM/I 
and SSMIS.  We will describe how uncertainties propagate from one level of product to another (i.e. from 
measurement uncertainty in Level 1 data right through to LST uncertainties in gridded Level 3 products).  
We will also consider uncertainties introduced through the process of harmonising instruments to make 
a continuous data record and correcting for differences in time both due to satellite in-orbit drift, and 
when providing continuous time series using data from multiple sensors.  We will make some 
recommendations for future developments and finally we will describe how uncertainty data are provided 
within our products and how this information can be used within climate applications. 
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3. Defining nomenclature for uncertainty budgets 

Only recently has the rigorous discipline of metrology begun to be applied within the domain of Earth 
Observation (EO).  In the application of metrology to EO, the definition of terms is of paramount 
importance to prevent ambiguity and enable comparison of metrics between products.  Unfortunately, 
terms such as ‘error’ are frequently misused within the English language, and very often the user’s 
meaning for the term has to be inferred from the context of its usage.   Within the GlobTemperature 
project that preceded LST_cci, a survey was undertaken asking participants to match common terms used 
within the field of metrology, to their definitions. In the majority of cases, the user community were 
unable to match the correct definitions to each term, reflecting the common incorrect or ambiguous 
usage of many of these terms. Here we begin by defining the nomenclature that we will apply throughout 
the LST_cci project when referring to the uncertainty budgets provided with our data products. 

3.1. Guidelines for defining terms relating to error and uncertainty 

The basis for defining the metrology of uncertainty is the Guide to Uncertainty in Measurement (GUM) 
[RD-1], which should be read with reference to the International Vocabulary of Metrology (VIM) [RD-2].   
These documents have been produced through the collaboration of seven international committees 
(Table 1) over the period of several decades, with regular updates to this documentation as understanding 
of the field has evolved.   These documents aim to provide vocabulary and methods that are applicable 
across many fields of measurement, and the principles of applying metrology to EO build upon these. 

 

BIPM Bureau International des Poids et Mesures 

IEC International Electrotechnical Commission 

IFCC International Federation of Clinical Chemistry 

ISO International Organization for Standardization 

IUPAC International Union of Pure and Applied Chemistry 

IUPAP International Union of Pure and Applied Physics 

OIML International Organization of Legal Metrology 

Table 1: Organisations jointly responsible for the content of the Guide to Uncertainty in Measurement [RD-1] 

and International Vocabulary of Metrology [RD-2]. 

RD-3 provides a comprehensive overview of how the concepts of metrology can be applied within the 
field of Earth observation.  It considers the nature of satellite retrievals and various levels of processing 
required when generating geophysical data, defining the metrological concepts that need to be 
considered at each stage. Within the European Space Agency (ESA) Climate Change Initiative (CCI) 
program, the importance of providing uncertainties with climate data record (CDR) data from essential 
climate variables (ECVs) has been recognised.  The domains covered by these ECV projects are diverse: 
including the biosphere, atmosphere and ocean.  RD-4 is a review paper that includes a definition of terms 
relating to uncertainty estimation as applied consistently across the CCI ECV datasets.  Uncertainty 
nomenclature is also specified within the GCOS Implementation Plan [RD-5], which defines the targets for 
dataset development within each of the ECVs. 
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3.2. Definition of terms 

In this section we define the nomenclature relevant to characterising error and uncertainty within the 
LST_cci project.  The terms defined here will be used consistently throughout this document and in other 
deliverables as appropriate.  Unless explicitly stated otherwise, the definitions given here (and in Section 
3.3) are consistent with those provided in the VIM [RD-2].  

3.2.1. Data Levels 

Retrieval of geophysical variables from satellite processing is a complex process involving a number of 
steps, commonly referred to as data processing levels within the EO community.  These are referred to 
throughout this document so we begin by defining these in Table 2.  The content of this table is extracted 
from RD-3. 

 

Level 0 (L0) Raw telemetry: timings, counts, instrument data etc. 

Level 1 (L1) Calibrated radiances (and/or counts and gain parameters) with location, 
time and viewing geometry. 

Level 2 (L2) Estimates of geophysical variables on the spatio-temporal sampling pattern 
of the L1 radiances (‘swath data’). 

Level 3 (L3) L2 data transformed to a fixed spatio-temporal sampling (‘grid’) often at 
reduced spatio-temporal resolution. 

Level 4 (L4) Spatio-temporally complete fields on a regular grid. 

Table 2: Definitions of processing levels for satellite data.  These are extracted from Table 1 in RD-3. 

3.2.2. Characterisation of error and uncertainty 

Considering now the terms related to the measurement process; firstly, the quantity we measure is the 
measurand: 

❖ measurand : quantity intended to be measured 

In measuring the measurand we then have a measured quantity value:  

❖ measured quantity value: quantity value representing a measurement result 

For Level 1 data this is typically the radiance (or derived reflectance or brightness temperature) but at 
Level 2 or above this is the value of the geophysical retrieval, in this case land surface temperature (LST).  
The value of the measured quantity value is typically different from the true quantity value, which is 
what we would ideally measure. 

❖ true quantity value: quantity value consistent with the definition of a quantity 

The measurand can be compared with a reference quantity value in order to quantify measurement 
error.  The reference quantity value can be either the true quantity value (unknown, and applicable in 
the EO case) or a conventional quantity value (a value attributed by agreement to a quantity for a given 
purpose, eg. a constant such as standard gravity, known). 
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• reference quantity value: quantity value used as a basis for comparison with values of quantities 
of the same kind 

The difference between the measured quantity value and the reference quantity value is the 
measurement error. 

❖ measurement error: measured quantity value minus a reference quantity value 

In EO, we typically do not know the measurement error.  If we did, we would correct for this in order to 
provide the true quantity value.  Where we do not know the measurement error we can instead provide 
the measurement uncertainty. 

❖ measurement uncertainty: non-negative parameter characterising the dispersion of the quantity 
values being attributed to a measurand, based on the information used. 

Within LST_cci we provide the standard measurement uncertainty, which assumes a normal 
distribution of errors. 

❖ standard measurement uncertainty: measurement uncertainty expressed as a standard deviation 

Note here that the definitions of error and uncertainty are different.  Uncertainties are an estimation of 
the spread of the distribution of errors, associated with a given measurement quantity value.  These terms 
should not therefore be used inter-changeably.  

3.2.2.1. A note on the assumption of Gaussian error distributions  

The uncertainty quantification presented in this document assumes that the distribution of each error 
effect is Gaussian.  This assumption underpins the Law of Propagation from the GUM [RD-1, see section 
4] and the mathematical framework presented here.   For each of the error sources considered in this 
document, a Gaussian distribution is a reasonable expectation. 

In the case where an error distribution is non-Gaussian, the definition of the uncertainty would rely on 
the construction and evaluation of a probability density function (PDF).  Calculating the uncertainty on a 
given measurement would then require convolution of the error dispersion PDFs for each error source.  
This could be done by explicit convolution of the PDFs or by Monte Carlo methods [RD-3].   

There is a benefit to the end user of LST products when following the GUM framework as this results in 
uncertainty components that can: 1) be further propagated in new products constructed from CCI data 
and 2) be easily combined in quadrature to provide a total uncertainty budget.  The use of non-Gaussian 
distributions, whilst still enabling the provision of uncertainty components would make forward-
propagation of these uncertainties into user applications significantly more complicated, requiring both 
greater expertise in uncertainty propagation from the data user and the provision of auxiliary information 
on each PDF shape.  Use of Monte Carlo methods also has an associated computational cost, which would 
be an important consideration when processing large volumes of satellite data.  

3.2.3. Product assessment 

Once we have generated a data product we can discuss the quality of this dataset and the degree to which 
it is appropriate to use it for a given application using a number of metrics.  The first of these is the 
measurement accuracy. 

❖ measurement accuracy: closeness of agreement between a measured quantity value and a true 
quantity value of a measurand.   
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It should be noted that the VIM explicitly states, “the concept ‘measurement accuracy’ is not a quantity 
and is not given a numerical quantity value.  A measurement is said to be more accurate when it offers a 
smaller measurement error.” [RD-2]. 

A second metric is measurement precision. 

❖ measurement precision: closeness of agreement between indications or measured quantity values 
obtained by replicate measurement on the same or similar objects under specified conditions. 

Another common concept is measurement bias.  Ideally any known measurement bias is removed from 
a dataset prior to calculating the uncertainty budget (section 3.3), so that this only represents the residual 
error sources that cannot be directly removed from the measurement quantity. 

❖ measurement bias: estimate of a systematic measurement error (defined on page 7). 

We can also consider the stability of a measuring instrument and instrumental drift over time. 

❖ stability of a measuring instrument: property of a measuring instrument, whereby its metrological 
properties remain constant in time. 

❖ instrument drift: continuous or incremental change over time in indication (where indication is the 
quantity value provided by a measuring instrument or a measuring system), due to changes in 
metrological properties of a measuring instrument.  

We may also consider the sensitivity of a measuring system. 

❖ sensitivity of a measuring system: quotient of the change in an indication of a measuring system 
and the corresponding change in a value of a quantity being measured. 

3.2.4. Verification and Validation 

Validation and data verification are typically undertaken together, independently of the dataset 
generation.  Indeed validation is a specific form of verification.  These terms are defined as follows: 

❖ verification: provision of objective evidence that a given item fulfils specified requirements. 

❖ validation: verification, where the specified requirements are adequate for an intended use. 

In the case of a dataset where both the data and associated uncertainties are provided, the uncertainties 
can be validated in addition to the geophysical data. 

3.3. Constructing an uncertainty budget 

Our goal within the LST_cci project is to provide an uncertainty estimate for every datum in all of our 
products.  In order to do this we need to construct an uncertainty budget. 

❖ uncertainty budget: statement of a measurement uncertainty, of the components of that 
measurement uncertainty, and of their calculation and combination. 

The uncertainty budget comprises all of the error sources for which we can characterise the error 
distribution either statistically or empirically or determine an uncertainty on the basis of expert analysis.  
These different methodologies fit into Type A and Type B uncertainties as defined below. 

❖ Type A evaluation of measurement uncertainty: evaluation of a component of measurement 
uncertainty by a statistical analysis of measured quantity values obtained under defined 
measurement conditions. 
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❖ Type B evaluation of measurement uncertainty: evaluation of a component of measurement 
uncertainty determined by means other than a Type A evaluation of measurement uncertainty.  
Examples include: 

 Associated with authoritative published quantity values 

 Associated with the quantity value of a certified reference material 

 Obtained from a calibration certificate 

 Obtained from the accuracy class of a verified measuring instrument 

 Obtained from limits deduced through personal experience. 

Within an uncertainty budget, the different error terms can have different correlation length scales.  
Categorising uncertainty components on the basis of the correlation length scales of the error source is 
important to ensure that these can be correctly propagated into higher-level products.  We consider the 
different length scales over which errors sources can be correlated in the following sections (3.3.1 – 3.3.2). 

3.3.1. Uncorrelated uncertainties 

Uncorrelated uncertainties are those that arise from random measurement error effects. 

❖ random measurement error: component of measurement error that in replicate measurements 
varies in an unpredictable manner. 

These sources of uncertainty are treated independently of correlated uncertainties, because when 
gridded products are constructed (L3) these uncertainties cancel out to a certain degree whereas 
correlated uncertainties do not. 

3.3.2. Correlated uncertainties 

Correlated uncertainties arise from systematic measurement error sources. 

❖ systematic measurement error: component of measurement error that in replicate measurements 
remains constant or varies in a predictable manner. 

Within LST_cci as with other projects that have produced surface temperature data from satellite 
retrievals (e.g. SST CCI and Eustace) we intend to differentiate between locally systematic uncertainties  
(structured) and large-scale (common) uncertainties.  The difference between the two is that locally 
systematic uncertainties are only correlated over a limited spatial or temporal range, beyond which they 
will behave like uncorrelated uncertainties, and will need to be treated as such in any uncertainty 
propagation.  Large scale systematic uncertainties are correlated over much longer time or space scales, 
for example the lifetime of a given instrument, so are almost always treated as fully correlated in 
uncertainty propagation activities (with the exception of considering harmonisation between sensors). 

3.4. Example definition of terms in relation to LST 

The terms defined above follow their strict metrological definitions, which can feel quite abstract on first 
presentation, particularly for those without a background in metrology.  To that end, the following 
example is provided (Table 3), which highlights one possible explanation of these terms in relation to LST.  
Please note, this is an illustrative example only and is not an attempt to redefine any metrological terms.   
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Measurand LST 

Measured quantity value Satellite LST retrieval 

True quantity value True LST 

Reference quantity value Unknown 

Measurement error Satellite LST – reference (unknown) 

Measurement uncertainty Dispersion of error in the possible satellite LST values for a 
given retrieval  

Standard measurement uncertainty Standard deviation of the dispersion of error in the 
possible LST values for a given retrieval (68 % of the PDF) 

Measurement accuracy Conceptually the mean difference between satellite LST 
retrieval and the true LST, but unquantifiable as the true 
LST is unknown and this value is not assigned a quantity 

Measurement precision Level of agreement between repeated satellite LST 
retrievals for the same location and conditions 

Measurement bias Systematic offset in satellite LST retrieval in relation to the 
true LST 

Stability of a measuring instrument Consistency in error characteristics related to instrument 
performance and conditions 

Instrument drift Incremental change in the instrument over time (e.g. 
changes in calibration) 

Sensitivity of a measurement system Ratio of the change in satellite LST retrieval in relation to a 
change in the true LST 

Verification Checking that satellite LST measurement fulfils the 
requirements 

Validation Assurance that the satellite LST is good enough for its 
intended use, by comparison with reference data 

Uncertainty budget Satellite LST total uncertainty comprised of the different 
uncertainty components 

Type A evaluation of measurement 
uncertainty 

Uncertainty components determined through statistical 
evaluation e.g. atmospheric errors, land surface errors 

Type B evaluation of measurement 
uncertainty 

Determined by expert definition or calibration information 
e.g. instrument noise, large-scale (calibration) errors 

Random measurement error Uncorrelated changes in satellite LST errors e.g. instrument 
noise 

Systematic measurement error Errors that are correlated or vary in a predictable way e.g. 
those associated with retrieval through the atmosphere 

and parameterisation of the land surface. 

Table 3: Illustrative example of what the metrological terms presented above might represent in the retrieval of 

LST 
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4. Expression and Propagation of Uncertainty 

As summarised in Table 2, there are a number of different processing levels for satellite data.   At each 
new level of processing there are two sources of uncertainty: 

1. The uncertainty already inherent in the data from the previous processing level will feed into the 
uncertainty budget for the new processing level. 

2. Modification of the data introduces new sources of uncertainty (for example, making a retrieval 
of surface temperature through the atmosphere at Level 2).   

The process described in (1) is known as ‘propagation of uncertainty’, which will be defined 
mathematically within this chapter.  These concepts are illustrated in Figure 1, which shows a simplified 
version of the satellite data processing chain from levels 1 through to 4, with the propagation of 
uncertainties from one level to another and addition of new uncertainty sources at each level. 

 

Figure 4-1: Illustration of uncertainty propagation through different satellite processing levels with the addition 

of new sources of uncertainty at each processing level. 
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4.1. Expression of uncertainty in a measurement equation 

Here it is useful to introduce some generalised notation for defining measurement equations and 
uncertainties with a view to being able to express uncertainty calculations in matrix form [RD-14].  The 
advantage of this notation is the simplicity of the resulting equations, but it is understood that many 
people are more familiar with the traditional textbook expressions used in the GUM [RD-1].  Therefore 
the relationship between the two will be clearly explained here, so that the simplified matrix expressions 
can be used in later sections. 

The focus of this project is on the retrieval of geophysical data from satellite observations.  The 
measurement equation for a single pixel can therefore be expressed as a function (g) of the observations 
(y) and retrieval parameters (β), where z is the retrieved quantity [RD-13].   

𝑧 = 𝑔(𝒚, 𝜷)+0 (4.1) 

There are three overall sources of uncertainty that contribute to the uncertainty in the retrieved quantity 
z [RD-13]: 

1. Uncertainty in the observations (y) propagated through g into the retrieved value z. 

2. Uncertainty in the retrieval parameters (β) propagated through g into the retrieved value z. 

3. Uncertainty in the retrieved value z, that is not directly traceable via y or β (resulting for example 
from approximations or assumptions made in the retrieval). 

This equation includes a (+ 0) term to represent the uncertainties that we cannot trace through the 
retrieval process (point 3 in the above list).   

Considering the case where the single pixel data are averaged to provide a gridded product, the 
measurement equation defines the weighted combination 〈𝑧〉 of the n values of z that contribute to the 
averaged product [RD-13].  〈𝑧〉 is a function (h) of the input retrieved quantities, z, and the parameters γ. 

〈𝑧〉 = ℎ(𝒛, 𝜸)+0 (4.2) 

In this example, the parameters, γ, could consist of weights, correlation length scales and correlation 
coefficients to give some examples [RD-13].  As with the measurement equation for single pixel retrieval, 
there are three sources of uncertainty associated with the calculation of an averaged product. 

1. Uncertainty in the retrieved values (z) propagated through h into the averaged value 〈𝑧〉. 

2. Uncertainty in the gridding parameters (γ) propagated into the averaged value 〈𝑧〉. 

3. Uncertainty in the averaged value 〈𝑧〉, which is introduced by incomplete sampling of the domain 
that the averaged value is said to represent (in either space or time).   

 

4.2. Defining sources of uncertainty in a measurement equation 

Each of the terms in a measurement equation has an associated uncertainty, which is comprised of 
contributions from one or more error effects.  In the example of the measurement equation for the single 
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pixel retrieval (4.1), the terms are the observations in vector y and the parameters in vector β.  We can 
index these using the subscript ‘j’.  For each term (indexed using j), the error effects contributing the 
uncertainty in that term can be indexed using the subscript ‘k’.   An example of this indexing using an 
uncertainty analysis tree diagram is provided in Figure 4-2 [RD-14].   Here only the observation vector, y, 
is expanded within the measurement equation but this is sufficient for illustrative purposes.  Both the 
terms, j, and error effects, k, are numbered sequentially. 

 

 

 

 

 

 

 

 

Figure 4-2: Example of error effect indexing (k) with reference to terms (j) in the measurement equation.  Figure 

is reproduced from RD-14. 

Having identified the effects, k, that relate to the terms, j, these can be further categorised according to 
their spatial correlation.  This is important in the context of providing spatially or temporally averaged 
data (eg. equation 4.2) where the correct propagation of uncertainties is dependent on understanding 
their correlation length scale.  Three further subscripts can be used to categorise the spatial correlations 
of error effects.   

❖ ‘i’ denoting independent error effects.  The uncertainties arising from these error effects are 
uncorrelated between pixels.  These are often given the label ‘random’ in uncertainty products. 

❖ ‘s’ denoting structured error effects.  The uncertainties arising from these error effects are 
correlated between pixels.  For these effects, there will be an associated correlation coefficient and 
length scale.  These are often labelled as ‘locally systematic’ in uncertainty products as they are 
correlated over a defined ‘local’ scale.  

❖ ‘c’ denoting common effects.  These uncertainties are correlated over large spatio-temporal scales, 
and are typically in common over the entire data record for a given sensor.  These are often labelled 
as ‘large-scale systematic’ uncertainties in data products. 

Table 4 provides an example of how error effects can be grouped according to terms and spatial 
correlation.  This is an imaginary case and not representative of any particular measurement equation. 
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j 1 2 3 

k 1 2 3 4 5 6 7 8 9 10 11 12 

i 1  2 3     4   5 

s  1   2 3 4 5  6 7  

Table 4: An example table showing ‘j’ terms and ‘k’ associated effects.  ‘i’ denotes independent (uncorrelated) 

error effects and ‘s’ structured (locally systematic) error effects. 

We can use this notation to define sets of error effects.   For example, the valid values of k, given j = 3 
would be as follows: 

𝑘|(𝑗 = 3) = {7,8,9,10,11,12} (4.3) 

Similarly we can group error effects given their spatial correlation. 

𝑘|𝑖 = {1,3,4,9,12} (4.4) 

𝑘|𝑠 = {2,5,6,7,8,10,11} (4.5) 

From this table we can see that the sum over all error effects is equal to the sum over all independent 
effects plus the sum over all structured effects.  This is true as each error effect, k, can be classified either 
as independent or structured but not both. 

4.3. Principles of propagating uncertainty 

Taking the two examples outlined in section 4.1, let us consider the propagation of uncertainty into: 

i. A single pixel retrieval, z. 

ii. An averaged product, 〈𝑧〉. 

The full equation for the propagation of uncertainty as given in the GUM [RD-1], can be defined firstly for 

the single pixel retrieval (equation 4.1), where u(z) is the uncertainty in z.  

𝑢(𝑧)2 = ∑ (
𝜕𝑔

𝜕𝑦𝑖
)

𝑛

𝑖

2

𝑢𝑖
2(𝑦𝑖) + 2 ∑ ∑ (

𝜕𝑔

𝜕𝑦𝑖
) (

𝜕𝑔

𝜕𝑦𝑗
) 𝑢(𝑦𝑖𝑦𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 
 

(4.6) 

The propagation of uncertainty assumes that the errors in z arising from errors in y are proportional to 
the derivative of the measurement equation (4.1) with respect to y.  The first term in equation 4.6 relates 
to the propagation of uncertainties uncorrelated between the observations in the vector y. The second 
term represents the propagation of uncertainties that are correlated between observations, where pairs 
of observations are denoted by yi and yj.   Note here that this is textbook notation from the GUM and ‘i’ 
and ‘j’ do not have the same definitions as those introduced in section 4.2.  

Similarly we can apply the equation for the propagation of uncertainty to the case of an averaged product 
(equation 4.2). 
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𝑢(〈𝑧〉)2 = ∑ (
𝜕ℎ

𝜕𝑧𝑖
)

2𝑛

𝑖
𝑢𝑖

2(𝑧𝑖) + 2 ∑ ∑ (
𝜕ℎ

𝜕𝑧𝑖
) (

𝜕ℎ

𝜕𝑧𝑗
) 𝑢(𝑧𝑖𝑧𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 
 

(4.7) 

In this case, the first term in equation 4.7 relates to the propagation of uncertainties uncorrelated 
between the retrievals, z.  The second term represents the propagation of uncertainties that are 
correlated between retrieved values, where pairs of retrieved values are denoted as zi  and zj. 

4.3.1. Introducing matrix notation for propagation of uncertainties: an example for 
propagating a Level 1 independent error effect for single pixel retrieval 

We can use matrix notation to significantly simplify the uncertainty propagation equation.  Taking 
equation 4.6 as the example here, lets consider the propagation of radiance uncertainty (an   independent 
error effect) into a Level 2 per pixel product.  The equation for the propagation of uncertainty can be 
written in matrix notation under the following assumptions [RD-13]: 

• Errors in y propagate linearly into errors in z, in proportion to the derivative of the function g with 
respect to y. 

• Independent errors combine in quadrature. 

Under these assumptions, equation 4.8 expresses the uncertainty in a single pixel retrieval u(z) from 
independent errors in y, as a function of the sensitivity coefficient matrix, C, and the error covariance 
matrix, Sε.  

𝑢(𝑧) = √𝑪𝑺𝝐𝑪𝑇 (4.8) 

C represents the sensitivity of the measurand with respect to the observation vector, y. This sensitivity 
coefficient matrix can be expressed in terms of the retrieval function (g) and observation vector (y). 

𝑪 = [
𝜕𝑔

𝜕𝑦1
…

𝜕𝑔

𝜕𝑦𝑛
] 

(4.9) 

In this case, errors are assumed to be independent and uncorrelated between observations in y. Sε 

therefore becomes a diagonal matrix with off-diagonal terms of zero.    A more traditional expression of 
the uncertainty under these conditions, relating back to equation 4.6, is: 

𝑢(𝑧) = √∑ (
𝜕𝑔

𝜕𝑦𝑖
𝑢(𝑦𝑖))

𝑖

2

 

(4.10) 

We can further decompose the error covariance term, Sε, expressing this in terms of the uncertainty matrix 
(U) and the correlation matrix (R).  

𝑺𝝐 = 𝑼𝑹𝑼𝑻 (4.11) 

The uncertainty matrix, U, is diagonal, with an uncertainty associated with each term in y. The off-diagonal 
terms in the correlation matrix, R, are equal to zero in this example (and therefore the off-diagonal terms 
in Sε are also equal to zero).  In this case, R is the identity matrix I.  We can use equation 4.11 to expand 
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equation 4.8 which gives the uncertainty in the retrieved value for a single pixel, considering only the 
propagation of radiance uncertainty in the observations, y. 

𝑢(𝑧) = √𝑪𝑼𝑹𝑼𝑻𝑪𝑇 (4.12) 

4.3.2. Considering uncertainty propagation for structured error effects in single pixel 
retrievals 

Considering the ‘CURUC’ notation established in equation 4.12 for the propagation of radiance 
uncertainty, the same approach can be taken for any error effect.  The terms are all fully transferable to 
structured error effects with the exception of the correlation matrix, R.  When error effects are fully 
correlated between input vectors (e.g. observations in y) all terms in R will be equal to 1.  For convenience 
we define this as the J matrix where all values are equal to 1.  As a result, correlated and uncorrelated 
error effects have to be treated separately in the propagation of uncertainty (as represented by the 
second term in equation 4.6).  

4.3.3. Relating the matrix notation to the definitions of terms and error effects 

It is useful now to link this derivation back to the notation discussed in section 4.2.  Equation 4.12 is valid 
where we consider one single error effect, k, for a single term, j (remembering that term can be a vector, 
for example the satellite observations, y).  More strictly, this can be written with the appropriate 
subscripts to represent this. 

𝑢(𝑧)𝑘 = √𝑪𝒋𝑼𝒌𝑹𝒌𝑼𝒌
𝑻𝑪𝒋

𝑻 
(4.13) 

The sensitivity coefficient matrix, C, is dependent on the term, j, whilst the uncertainty and correlation 
matrices (U and R) are defined for the effect, k.  In the case where the total uncertainty in z is comprised 
of a number of error effects, k, relating to different terms, j, (as exemplified in Table 4), we can define the 
full error covariance matrix for all of the effects k.  

𝑢(𝑧) = √∑ ∑ 𝑪𝒋𝑼𝒌𝑹𝒌𝑼𝒌
𝑻𝑪𝒋

𝑻

𝒌|𝒋𝒋

 
(4.14) 

Here 𝑢(𝑧) is the total uncertainty from all of the contributing error effects (arising from terms in the y 
vector in the measurement equation).  

The calculation is a sum over all of the effects, k, within all of the terms, j (which include the observations, 
y). Therefore, the uncertainty and correlation matrices do not average over effects and the sensitivity 
coefficient matrix does not average over terms.  This means that each error effect, k, affecting each term, 
j, can have a unique correlation matrix R.  A similar process could also be undertaken with the terms in 
the β matrix, to derive the uncertainty in the retrieved variable, z, from the parameters used in the 
function, g.   

Having calculated the uncertainties associated with each error effect, it is then helpful to group them 
according to spatial correlation scale (independent, locally systematic (structured) and large-scale 
systematic (common)).  This ensures that the different error sources can be properly propagated into 
higher-level data.  Note that as shown in Figure 4-1, some uncertainties at Level 2 may be propagated 
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from Level 1 data whilst others may be introduced at Level 2 (e.g. uncertainties associated with the 
retrieval process). 

4.3.4. Propagation of uncertainties in averaged products 

As the processing level increases, the data are typically provided at coarser resolutions (e.g. regularly 
gridded products as opposed to datasets on the satellite image grid), usually because these are the data 
formats that users can most easily exploit.  Generation of data at higher levels typically involves averaging 
of higher resolution data (either spatially or temporally).  Consider the case where we propagate 
uncertainties into an averaged product (eg. equation 4.7), the total uncertainty on the average value can 
be expressed as: 

𝑢(〈𝑧〉) = √𝑪𝑺𝜺𝑪𝑇 (4.15) 

In this case the sensitivity coefficients are now the derivative of h with respect to the retrieved values, z, 
which contribute to the average. 

𝑪 = [
𝜕ℎ

𝜕𝑧1
…

𝜕ℎ

𝜕𝑧𝑛
] 

(4.16) 

𝑺𝜺 is the error covariance matrix of the pixels, z, being averaged.  The propagation methodology in this 
averaging process is dependent on the correlation length scale of the uncertainty component.  In the 
simplest case, where the errors in each retrieved pixel are independent, when calculating the average the 

total uncertainty is reduced by a factor of 1/√𝑛. This is under the assumption that the errors have a 
Gaussian distribution (zero mean), and will on average cancel out as the sample size increases.  The 
opposing case is when the errors in each retrieved pixel are fully correlated.  Under these conditions the 
uncertainty is essentially the ‘average uncertainty’ of all contributing points (i.e. these uncertainties do 
not reduce on averaging). 

It is also possible for the correlation to vary as a function of the spatial or temporal separation of the 
retrieved pixels.  The construction of the error covariance as the product URUT allows the appropriate 
correlation matrix to be used in these cases.   

Let us consider the construction of the uncertainty budget for a Level 3 product.  We separate the error 
effects into independent (i), structured (s) and common (c) groupings, considering j uncertainty inputs 
into the uncertainty calculation (from j L2 observations).  On this basis we can define three uncertainty 
components, 𝑢(〈𝑧〉)𝑖, 𝑢(〈𝑧〉)𝑠 and 𝑢(〈𝑧〉)𝑐.  We construct this equation, as it would be applied within 
LST_cci; the uncorrelated and common uncertainty components are propagated using a single value per 
pixel as provided with the Level 2 data.  The structured uncertainties have an additional summation as 
two locally systematic uncertainties are provided with LST_cci Level 2 data.  

𝑢(〈𝑧〉)𝑖
2

= ∑ 𝑪

𝑗

𝑺𝒊𝑪𝑻  

(4.17) 

𝑢(〈𝑧〉)𝑠
2

= ∑ 𝑪 (∑ 𝑼𝒔𝑹𝒔𝑼𝒔
𝑻

𝒌|𝒔

) 𝑪𝑻

𝒋

 

 

(4.18) 
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𝑢(〈𝑧〉)𝑐
2

= ∑ 𝑪

𝑗

𝑺𝒄𝑪𝑻  

(4.19) 

 

As the uncertainty components are additive in quadrature, these can be combined in a single equation to 
give a total uncertainty for an averaged product.  Note that the part of the equation that is dependent on 
the correlation length scale of the uncertainty component is R, the correlation matrix.  The URUT products 
for each component (independent, locally-systematic (atmosphere and surface), and large-scale 
systematic) can be added inside the multiplication by the sensitivity matrix, C. 

𝑢(〈𝑧〉)2 = ∑ 𝑪𝒋

𝒋

(𝑼𝒊𝑹𝒊𝑼𝒊
𝑻 + ∑ 𝑼𝒔𝑹𝒔𝑼𝒔

𝑻

𝒌|𝒔

+ 𝑼𝒄𝑹𝒄𝑼𝒄
𝑻) 𝑪𝒋

𝑻 

(4.20) 

4.4. Reviewing the matrix notation for uncertainty propagation 

The previous sections have introduced both new language and notation for the expression and 
propagation of uncertainties.  In this section we summarise these concepts in tables that can be easily 
referenced within the LST_cci project.  Considering first the framework we outline for defining an 
uncertainty budget, we define the key terminology for this in Table 5. 

 

Measurement Equation The equation that defines how to calculate the desired 
quantity e.g. A single pixel retrieval or gridded average. 

Terms The quantities used within the measurement equation. 

Observations The input quantities in the measurement equation e.g. 
brightness temperatures for single pixel retrievals or 

retrieved values for the calculation of averaged products. 

Parameters Information used in the measurement equation in addition 
to the input values.  

Error effects A single source of error, affecting a single term in the 
measurement equation. 

Correlation length scale:  

i. Independent (‘random 
uncertainty’) 

ii. Structured (‘locally systematic 
uncertainty’) 

iii. Common (‘large scale 
uncertainty’) 

Separation of uncertainty components on the basis of 
spatial correlation: 

i. no correlation between input values 
ii. local correlation between input values 

 
iii. large-scale correlation between input values 

Uncertainty budget Statement of a measurement uncertainty, of the 
components of that measurement uncertainty, and of their 

calculation and combination [RD-2]. 

Table 5: Summary of terminology used in constructing an uncertainty budget. 
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Matrix notation is presented as a way of simplifying the equations for the propagation of uncertainty.  The 
matrices used in these equations are defined in Table 6. 

 

C Sensitivity matrix – matrix of sensitivity coefficients, non-square and filled in the 
contexts discussed in this document. 

Sε Error covariance matrix – measurand covariance matrix 

U Uncertainty matrix – diagonal matrix of standard uncertainties relevant to a 
multi-variate measurand.  If indexed with respect to k this refers to the 

uncertainty matrix for a particular effect.   

R Error correlation matrix – matrix of correlations of errors in a vector variable.  If 
indexed with respect to k this refers to the error correlation matrix for a 

particular effect.   

y Vector of observations used as input to a single pixel retrieval. 

z Vector of single pixel retrievals used as input to an averaged product. 

β Vector of parameters used in the single pixel retrieval measurement equation. 

γ Vector of parameters used in the averaged product measurement equation. 

I Identity matrix 

J Matrix of ones 

Table 6: Definition of matrix notation introduced in section 4.3 (in part specified from RD-14]). 

In relation to the matrix notation described in this section and measurement equation construction, a 
number of variables have been defined, some used in equations and some as indices.  These, along with 
their definition are summarised in Table 7.  A few additional indices are included here for completeness 
(e.g. ‘p’ for pixel). 

 

k A single error effect 

j A single term in the measurement equation 

p Denotes ‘pixel’, used to specify cross-pixel matrices 

i Independent error effect (spatially uncorrelated) 

s Structured error effect (locally spatially correlated) 

c Common error effect (spatially correlated over large scales) 

z Retrieved value (single pixel) 

〈𝑧〉 Averaged value (from sample of single pixel retrievals from one or more 
sensors) 

g Function for retrieving single pixel values 

h Function for retrieving averaged products 

Table 7: Definition of variables and notation introduced in sections 4.1-4.3. 
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4.5. Combining uncertainty components 

Components of the uncertainty budget grouped according to the correlation length scale of the 
contributing error sources (uncorrelated, locally systematic or large-scale systematic) can be combined in 
quadrature to give a total uncertainty for the measurement.  Mathematically this can be expressed as 
follows, where u denotes uncertainty and subscripts ‘i’, ‘s, and ‘c’ refer to independent (random), locally 
systematic, and large-scale uncertainties respectively.   

 

𝑢 = √𝑢𝑖
2 + 𝑢𝑠

2 + 𝑢𝑐
2 

 

(4.21) 

4.6. Propagation of uncertainties to Level 4 products 

Level 4 products are at the top of the satellite processing chain, usually consisting of blended, gap-filled 
datasets.  LST_cci as a project will only provide products at levels 2 and 3. Therefore the propagation of 
these uncertainties to level 4 products is not considered here, but this note is included for completeness. 
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5. Constructing an Uncertainty Budget  

Within the sea surface temperature (SST) climate change initiative project (CCI), a framework was 
established for calculating an uncertainty budget for SST retrievals [RD-6].  This approach has since been 
adopted within the land surface temperature and lake surface water temperature communities through 
the ESA DUE GlobTemperature and Horizon 2020 EU Surface Temperature for All Corners of Earth 
(EUSTACE) projects [RD-7, RD-8].    In LST_cci we build upon the approach taken in GlobTemperature, 
applying this to LST’s from a wider range of instruments and improving consistency in how we calculate 
and present uncertainty information to users.  In this section we focus on the instruments used to 
construct the climate data record (CDR) from polar orbiting sensors.   

5.1. ATSR-2, AATSR and SLSTR 

Within the single sensor climate data record, three of the instruments used share the same heritage; the 
(Advanced) Along Track Scanning Radiometers (ATSR-2 and AATSR) and the Sea and Land Surface 
Temperature Radiometer (SLSTR).  These are dual-view instruments, all designed to measure surface 
temperature, and fly in sun-synchronous polar orbits with an equator overpass time of 10 or 10.30 am.  
The main characteristics of these instruments are presented in Table 8.   These instruments have a 
relatively narrow swath, with nadir viewing angles between 0-23 degrees.  Each instrument also has an 
oblique view at 52-55 degrees, in the forward direction for ATSR-2 and AATSR, and in the backward 
direction for SLSTR.  The objective of the dual-view instrument was to facilitate surface temperature 
retrieval by better characterising atmospheric effects, using the two views, and this has proven very useful 
in sea surface temperature retrieval [eg. RD-11].  For LST retrieval, using two views becomes increasingly 
complex (although not impossible) due to the surface orography and directional effects of emitted and 
reflected radiance [RD-12], so nadir-view only retrievals are employed here. 

 

ATSR-2 0.55, 0.67, 0.87, 1.6, 3.7, 10.8, 
12 

Restricted telemetry results in 
reduced availability of visible channels 
and transmission swapping between 
the 1.6 and 3.7 μm channels. Ground 
segment problems lead to a data gap 

over part of Asia. 

10:30, 22:30 

AATSR 0.55, 0.67, 0.87, 1.6, 3.7, 10.8, 
12 

All channels available 10:00, 22:00 

SLSTR 0.55, 0.66, 0.87, 1.38, 1.61, 
2.25, 3.7, 10.85,12 (plus two 
fire channels, 3.7 and 10.85). 

All channels available 10:00, 22:00 

Table 8: Instrument characteristics for ATSR-2, AATSR and SLSTR. 

Given the commonality in design and orbit between this series of instruments, we apply a consistent LST 
retrieval methodology to these sensors and construct the uncertainty budget associated with this retrieval 
in the same way.  In order to bridge the gap between the in-orbit communications failure of Envisat in 
April 2012 and the routine provision of data from SLSTR in 2016 (launched in February 2016) we use the 
Moderate Resolution Imaging Spectroradiometer (MODIS) Terra instrument.  This instrument is 
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sufficiently different in its characteristics to the ATSRs that we apply a different retrieval scheme in this 
case for single sensor and merged products, and as our measurement equation is different we construct 
our uncertainty budget in a different way.  Within the CDR, a consistent LST retrieval algorithm is applied 
to all instruments.  In this section we will describe the uncertainty budget for the ATSR-2, AATSR and SLSTR 
retrievals (used also for the full CDR including MODIS), and consider the MODIS single-sensor data record 
uncertainty budget separately (Section 5.2). 

5.1.1. Land Surface Temperature Retrieval 

The LST retrieval applied to the ATSR-2, AATSR and SLSTR sensors is a split window algorithm developed 
by F. Prata [RD-23] and modified for use in this context by the University of Leicester [RD-7].  It differs 
from the generalized split window approach due to non-explicit dependence on surface emissivity, as 
emissivity is included in the coefficient fitting process [RD-7].  The measurement equation (5.1) is 
dependent on brightness temperatures in two infrared channels; one at 10.8 μm (T11) and one at 12 μm 
(T12). 

𝐿𝑆𝑇 = 𝑎𝑓,𝑖,𝑡𝑐𝑤𝑣 + 𝑏𝑓,𝑖(𝑇11 − 𝑇12)𝑛 + (𝑏𝑓,𝑖 + 𝑐𝑓,𝑖)𝑇12 (5.1) 

‘a’, ‘b’ and ‘c’ are the retrieval coefficients which have dependencies on fractional vegetation cover (f),  
biome (i) and total column water vapour (tcwv).  Relating this back to equation 4.1, z is the retrieved LST, 
y are the observations (T11 and T12) and β the retrieval coefficients; a, b and c.  

The variable n is related to the satellite zenith view angle (θ) via a parameter m.  This introduces a weak 
non-linearity in the brightness temperature difference between T11 and T12 as this difference is dependent 
on the total column water vapour.  T12 has greater attenuation as function of water vapour than T11, which 
is important because the atmospheric path length of the retrieval increases with satellite zenith angle 
[RD-7].  

𝑛 =
1

cos (𝜃
𝑚⁄ )

 
 

(5.2) 

The coefficients are also dependent on the satellite zenith angle and time of day (partitioned into 
day/night).  Each coefficient is constructed from two components with subscripts ‘v’ for ‘fully-vegetated’ 
and ‘s’ for ‘bare soil’ corresponding to f=1 and f=0 respectively.  Each coefficient component (‘v’ and ‘s’) 
is determined as a function of biome and time of day (as in equations 4.3-4.5). 

𝑎𝑓,𝑖,𝑝𝑤 = 𝑑(sec(𝜃) − 1)𝑡𝑐𝑤𝑣 + 𝑓𝑎𝑣,𝑖 + (1 − 𝑓)𝑎𝑠,𝑖  (5.3) 

𝑏𝑓,𝑖 = 𝑓𝑏𝑣,𝑖 + (1 − 𝑓)𝑏𝑠,𝑖 (5.4) 

𝑐𝑓,𝑖 = 𝑓𝑐𝑣,𝑖 + (1 − 𝑓)𝑐𝑠,𝑖 (5.5) 

The derivation of coefficient ‘a’ is also dependent on a fourth coefficient ‘d’, which accounts for changes 
in atmospheric attenuation of water vapour in both channels due to the increase in atmospheric path 
length at higher satellite zenith angles [RD-7].  Coefficient ‘d’ is also dependent on biome and time of day. 
‘d’ is determined with regression from the radiative transfer modelling under different viewing zenith 
angles. 

Given the definition of the measurement equation for single pixel retrieval (equation 5.1), the error effects 
associated with each of the terms in this equation can be determined.  It is not possible to quantify all of 
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these effects within the uncertainty budget at present, but it provides a good indication of how far we 
can currently go in characterising uncertainties in LST retrieval.  A breakdown of the error effects for each 
of the terms in the measurement equation is provided in Table 9.  The measurement terms in the first 
column relate back to the specification of the measurement equation for single pixel retrievals in 4.1 
where 𝑧 = 𝑔(𝒚, 𝜷).  Those error effects that cannot be quantified at present are indicated by ‘not 
attributed’ in the penultimate column of the error effects tables.  

 

 
 
 
 
 
 
 
 
 
β 

 
 

a 

1 Fractional vegetation 
error 

s FCOVER 
uncertainty 

𝜕𝑔

𝜕𝑓
 

2 Fitting error 
(atmospheric and 

emissivity) 

s Fitting 
residual  

* 

3 Total column water 
vapour error  

s Ensemble 
spread of 

total column 
water vapour 

𝜕𝑔

𝜕𝑡𝑐𝑤𝑣
 

 
b 

4 Fractional vegetation 
error 

s FCOVER 
uncertainty 

𝜕𝑔

𝜕𝑓
 

5 Fitting error 
(atmospheric and 

emissivity) 

s Fitting 
residual 

* 

 
c 

6 Fractional vegetation 
error 

s FCOVER 
uncertainty 

𝜕𝑔

𝜕𝑓
 

7 Fitting error 
(atmospheric and 

emissivity) 
 

s Fitting 
residual 

* 

 
 
 
 
 
 

y 

 
T11 

8 Noise i 0.05 K 𝜕𝑔

𝜕𝑇11
 

 

9 Calibration error c Not 
attributed 

𝜕𝑔

𝜕𝑇11
 

 

 
T12 

10 Noise i 0.05 K 𝜕𝑔

𝜕𝑇12
 

 

11 Calibration error c Not 
attributed 

𝜕𝑔

𝜕𝑇12
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+ 0 

 
 

Geolocation 

12 Correction of known 
geolocation 
mismatch 

s Delta LST 
weighted by 

biome 
classification 

in 
neighbouring 

pixels 

 
 

* 

13 Re-projection of 
native instrument 
grid to image grid 

s 

Cloud 
Detection 

14 Undetected cloud s Not 
attributed 

* 

 
RTM 

15 Error in RTM 
simulation (trace gas 

profiles, 
parameterisation). 

c  
 
 
 

0.03 K 

𝜕𝑔

𝜕𝑇11
 

 
NWP 

16 Error in RTM inputs 
(surface 

temperature and 
total column water 

vapour). 

c 𝜕𝑔

𝜕𝑇12
 

Table 9: Error effects for single pixel LST retrieval.  Effects are categorised according to the measurement 

equation term.  Where quantified, the values propagated for each effect are specified for AATSR. *denotes cases 

where the uncertainty is modelled rather than propagated using a sensitivity coefficient. 

 

From Table 9 we can see that there are 7 error effects associated with the parameter vector, β.  The 
parameter vector contains three coefficients, ‘a’, ‘b’ and ‘c’.  Each coefficient has a dependence on the 
fractional vegetation cover and the radiative transfer model (RTM) simulations used to calculate the 
coefficients.  Both of these errors are explicitly specified in the uncertainty budget, one by calculating the 
sensitivity of the retrieval to the fractional vegetation cover, and the other using the residuals from the 
retrieval fitting process.  Coefficient ‘a’ has a further error effect associated with it, as it is directly reliant 
on the total column water vapour (TCWV) quantification.  The TCWV uncertainty is estimated via the 
ensemble spread of the Numerical Weather Prediction model used to provide the atmospheric data. 

The observation vector, y, containing the brightness temperatures T11 and T12, has four associated error 
effects.  Two of these are related to instrument noise, which is specified individually for each channel.  
This is propagated through the retrieval equation according to the sensitivity of the retrieved quantity to 
the observations.  The other two are related to instrument calibration of each channel and these are not 
quantified in the uncertainty budget as the information is not provided with the L1 data. 

The ‘+0’ term contains any error effects not explicitly related to the observation or parameter vectors.  
Five additional error effects fall into this category.  First there are geolocation errors.  These are 
decomposed into two error effects; 1) error in the correction of a known geolocation mismatch, and 2) 
error in the re-projection from the native instrument grid to the image grid [RD-7].  Both are quantified 
within the uncertainty budget.  Two other error effects arise from the RTM simulation; 1) errors in the 
model parameterisation and 2) errors in the boundary conditions (e.g. input numerical weather prediction 
fields including surface temperature and total column water vapour).  These are error effects with a 
structure common across all retrievals and are characterised in the uncertainty budget together.  The 
parameterisation used here is calculated with reference to sea surface temperature retrievals [RD-15], 
where the surface conditions are more uniform and stable than over land, so this is likely to be an 
underestimate of the true value when applied to land surface temperature retrievals.  The last error effect 
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is the result of cloud detection errors.  If a cloud is undetected in a retrieval, it has the potential to affect 
the retrieved surface temperature (often biasing this cold).  At present this error effect is not quantified 
within the uncertainty budget.  

In the next sections we describe in detail the error effects that we can propagate through the 
measurement equation to provide an uncertainty budget with our single pixel retrieval (sections 5.1.2 and 
5.1.3).  The measurement equation for averaged products is considered separately in section 5.1.4. 

5.1.2. Level 1 data 

Level 1 data that are used to retrieve Level 2 geophysical variables (e.g. LST) have an associated 
uncertainty comprised of error effects that arise from the instrument characteristics and measurement 
process.  Constructing an uncertainty budget for Level 1 data requires detailed knowledge of the 
instrument and in-orbit characteristics, and to make the propagation of such information into a 
geophysical retrieval feasible, these uncertainties should be provided with the Level 1 data themselves 
[RD-13].  In the absence of a rigorous expression of the uncertainties in Level 1 data, we can propagate 
only the information that is routinely provided with the data into our geophysical retrieval. 

5.1.2.1. Uncertainties due to random error effects 

One source of uncertainty due to a random error effect in Level 1 data is instrument noise (effects 8 and 
10 in Table 9).  Each of the channels y (T11 and T12) used in the LST retrieval has an associated instrument 
noise, and this is propagated through the retrieval equation to calculate the uncertainty due to noise in 
the retrieved LST. 

In this case, the sensitivity coefficient matrix, C, (equation 4.9) becomes: 

𝑪 = [
𝜕𝑔

𝜕𝑇11

𝜕𝑔

𝜕𝑇12
] 

(5.6) 

where: 

𝜕𝑔

𝜕𝑇11
=

𝜕𝐿𝑆𝑇

𝜕𝑇11
= 𝑛𝑏𝑓,𝑖(𝑇11 − 𝑇12)𝑛−1 

(5.7) 

𝜕𝑔

𝜕𝑇12
=

𝜕𝐿𝑆𝑇

𝜕𝑇12
= (−1)𝑛𝑏𝑓,𝑖(𝑇11 − 𝑇12)𝑛−1 + (𝑏𝑓,𝑖 + 𝑐𝑓,𝑖) 

(5.8) 

The error covariance matrix, Sε, is diagonal with each non-zero element representing the variance due to 
instrument noise in each channel.  At present this is specified as the square of the prescribed noise 
equivalent delta temperature (NEdT) at 300 K for each channel (T11 and T12) given in the instrument 
specification.  The values used for each instrument are detailed in Table 10. 

 

 

 

 



 

End-To-End ECV Uncertainty Budget 
 

WP2.5– DEL-2.3  

Ref.:  LST-CCI-D2.3-E3UB 

Version: 3.0 

Date:  10-Feb-2023 

Page:  24 

 

© 2023 Consortium CCI LST 

ATSR-2 (0.036)2 (0.034)2 

AATSR (0.033)2 (0.034)2 

SLSTR A (0.011)2 (0.017)2 

SLSTR B (0.014)2 (0.016)2 

Table 10: T11 and T12 diagonal elements in the Sε matrix for the ATSR-2, AATSR [RD-25] and SLSTR [RD-26, RD-27] 

instruments. 

5.1.3. Level 2 data 

Level 2 data are the retrieved geophysical variable, z, in this case LST.  As illustrated in Figure 4:1, each 
level of data processing introduces new sources of error that should be quantified within the uncertainty 
budget for the data product.  In this section, the error sources introduced in the retrieval process and the 
corresponding uncertainty parameterisation are described. 

5.1.3.1. Uncertainties due to locally systematic error effects 

5.1.3.1.1 Uncertainty due to fractional vegetation cover 

The LST retrieval (equation 5.1) is dependent on the specification of the surface fractional vegetation 
cover in the calculation of the retrieval coefficients (equations 5.3-5.5).  Within the retrieval, fractional 
vegetation cover is specified using the Copernicus Global Land Services FCOVER dataset [RD-16, RD-17].  
This product is available globally at a 1/112 degree resolution, close to the desired 1 km resolution of the 
ATSR and SLSTR sensor observations.  The fractional vegetation cover used within the retrieval is matched 
to the satellite observations using a nearest neighbour approach [RD-7].  The fractional vegetation cover 
product provides an uncertainty on a per datum basis, using a theoretical model based on the residuals 
in a comparison against a validation dataset [RD-18]. 

For this uncertainty (effects 1, 4 and 6 in Table 9), the sensitivity coefficient matrix, C, consists of the 
differential of the LST retrieval equation with respect to fractional vegetation cover (f). 

𝑪 = [
𝜕𝑔

𝜕𝑓
] 

(5.9) 

The differential can be calculated using equations 5.3, 5.4 and 5.5, where the retrieval coefficients, ‘a’, ‘b’ 
and ‘c’ are defined with respect to fractional vegetation cover (f), in the retrieval equation (5.1). 

𝜕𝑔

𝜕𝑓
=

𝜕𝐿𝑆𝑇

𝜕𝑓
= (𝑎𝑣,𝑖 − 𝑎𝑠,𝑖) + (𝑏𝑣,𝑖 − 𝑏𝑠,𝑖)(𝑇11 − 𝑇12)𝑛 + ((𝑏𝑣,𝑖 − 𝑏𝑠,𝑖) + (𝑐𝑣,𝑖 − 𝑐𝑠,𝑖))𝑇12 

(5.10) 

The uncertainty matrix, U, is a single value, comprising of the uncertainty specified for the FCOVER 
dataset.  This error effect is not channel dependent.  
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5.1.3.1.2 Uncertainty due to total column water vapour 

The retrieval algorithm (equation 5.1) is also dependent on the specification of the total column water 
vapour in the calculation of one of the retrieval coefficients (equation 5.3). The TCWV estimate at a given 
instant and location is obtained from Numerical Weather Prediction (NWP) models. A commonly used 
measure of uncertainty in NWP models is the ensemble spread that is generally available together with 
the variable best estimate. The ensemble systems consist of a set of model runs with perturbed initial 
conditions; some systems also include perturbations to the model physics, more than one model within 
the ensemble or different physical parameterisation schemes [RD-45]. Processing of ensemble data can 
be quite demanding, and therefore we currently approximate the instantaneous TCWV spread to a 
climatology of this spread that depends on actual TCWV, latitude and month.   

Here the sensitivity coefficient matrix, C, consists of the differential of the retrieval equation with respect 
to total column water vapour (TCWV). 

𝑪 = [
𝜕𝑔

𝜕𝑡𝑐𝑤𝑣
] 

(5.11) 

The differential can be calculated using equation 5.3, since only the retrieval coefficient ‘a’ is defined with 
respect to TCWV in the retrieval equation. 

𝜕𝑔

𝜕𝑡𝑐𝑤𝑣
=

𝜕𝐿𝑆𝑇

𝜕𝑡𝑐𝑤𝑣
= 𝑑(sec(𝜃) − 1) 

(5.12) 

The uncertainty matrix, U, is a single value, comprising the value obtained from the TCWV LUT based on 
TCWV, latitude and month.  This error effect is not channel dependent.  

5.1.3.1.3 Uncertainty due to geolocation 

Uncertainties due to geolocation (error effects 12 and 13 in Table 9), fall into two categories [RD-7]: 

i. Errors in the correction of the known geolocation offset 

ii. Errors in the re-projection of the satellite data from the native grid to the image grid. 

The uncertainty in the geolocation is estimated to be 0.5 km [RD-19], and this is propagated into the LST 
retrieval by calculating the probability that the biome assigned to a given 1km pixel (when matching the 
observations and GlobCover dataset) is correct [RD-7].  To do this requires analysis of the eight pixels 
surrounding the pixel for which the retrieval is being made (a 3x3 pixel block centred on the retrieved 
pixel).  For each of these pixels the delta LST is calculated in response to the specified biome (whilst 
observations, atmospheric and radiative transfer components remain constant).  Therefore if the biome 
in one of the surrounding pixels is the same as that assigned to the central pixel, the delta LST for this 
pixel will be zero.   
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Figure 5-1: Example of pixel selection for calculating geolocation uncertainty.  The retrieval is made for the 

central pixel (marked with an X), and the delta LST is calculated for the eight surrounding pixels.  The retrieval 

for all pixels is consistent with the exception of the biome specification (indicated by the different colours). 

The Haversine function is used to calculate the distance between each of the surrounding pixels (pn) and 
the central pixel (c) (equations 5.13 – 5.15).  Please note that this definition uses constants a, c and d which 
are different from the ones defined above (this is a self-contained derivation). 

𝑑 = 𝑒𝑎𝑟𝑡ℎ𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 𝑐 (5.13) 

𝑐 = 2 ∗ arctan (√𝑎, √1 − 𝑎) (5.14) 

𝑎 = 𝑠𝑖𝑛2 (
𝜑𝑐 − 𝜑𝑝𝑛

2
) + cos(𝜑𝑐) ∗ cos(𝜑𝑝𝑛

) ∗ 𝑠𝑖𝑛2 (
𝜆𝑐 − 𝜆𝑝𝑛

2
) 

(5.15) 

The mean radius of the Earth is 6,371 km.  𝜑𝑐 is the latitude of the central pixel, and 𝜑𝑝𝑛
the latitude of 

the pixel to which the distance is being calculated.  Here the subscript ‘c’ denotes ‘centre’ and the 
subscript ‘pn’ the nth pixel.  Similarly, 𝜆𝑐 and 𝜆𝑝𝑛

denote the longitude of the central pixel and the one to 

which the distance is calculated respectively.  Each of the eight surrounding pixels (1 to n) are assigned a 
weight (w), which is used in the calculation of geolocation uncertainty. 

𝑤𝑛 =
1

𝑑𝑛
2  

(5.16) 

The geolocation uncertainty (ug) is specified as: 

𝑢𝑔 = ∑
𝑤𝑛 ∗ Δ𝐿𝑆𝑇𝑛

∑ 𝑤
 

(5.17) 

Where Δ𝐿𝑆𝑇𝑛 is the LST delta for each pixel (n) and ∑ 𝑤 is the sum over all of the weights.  The Δ𝐿𝑆𝑇 
calculated between each biome ‘pair’ is stored in a look-up table, which is read during the retrieval. 

5.1.3.1.4 Uncertainty due to coefficient fitting (atmospheric effects) 

The uncertainty due to coefficient fitting (error effects 2, 5 and 7 in Table 9) arises primarily from 
limitations in the model structure in fully representing the physical system (in this case, the radiative 
transfer between TOA and surface).  Part of this uncertainty will also be associated with errors in the 

X 
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atmospheric state (dominated by the specification of the water vapour column) and errors in the surface 
emissivity, used within the radiative transfer model simulations to derive the retrieval coefficients.   The 
combined uncertainties from these components can be estimated empirically using the residuals from the 
fitting process.  The uncertainties are derived as the standard deviation (σ) of the double differences 
between the retrieved and input surface temperatures [RD-7]. 

𝜎 = √
∑(𝑥 − �̅�)2

𝑛
 

(5.18) 

Where                                   𝑥 = (𝐿𝑆𝑇𝑠𝑖𝑚 − 𝐿𝑆𝑇𝑟𝑒𝑡) − (𝐿𝑆𝑇𝑠𝑖𝑚 − 𝐿𝑆𝑇𝑁𝑊𝑃) (5.19) 

The double difference is defined in equation 5.19 where the subscripts ‘sim,’ ‘ret’, and ‘NWP’ denote 
simulated, retrieved and input (numerical weather prediction) surface temperatures respectively.  The 
standard deviations are calculated as a function of biome, day/night, water vapour and satellite viewing 
angle.  The binning resolution for each of these factors is provided in Table 11, with the resolution  chosen 
to adequately capture the dependence on these factors.  More information on the specification of the 
look-up tables used in the code is provided in Section 6. 

 

Biome Biome 

Day/night 90 degrees solar zenith angle 

Water vapour Not banded by TCWV 

Satellite viewing angle 5 degrees 

Table 11: Binning resolution of the factors used to define the coefficient fitting uncertainty. 

5.1.3.2. Uncertainties due to large-scale systematic error effects 

Large-scale systematic uncertainties are correlated over long spatio-temporal scales, for example over the 
lifetime of an instrument.  Two sources of large-scale uncertainty include [RD-7]: 

1. Uncertainty in the calibration of the measuring instrument. 

2. Uncertainty in the radiative transfer modelling used to simulate radiances in the retrieval 
coefficient derivation. 

The uncertainty (1) is what remains following the correction of any known bias in the data.  At present, 
these uncertainties are assumed to be negligible in the absence of more detailed information from the 
data producer.  The uncertainty (2) can be estimated by assessing the sensitivity of the radiative transfer 
model to perturbations in the input data.  Following RD-15, the radiative transfer modelling is found to 
be consistent to within 0.03 K for the 11 μm channel over ocean, and this value (although likely to be an 
underestimation over land) is used for both T11 and T12. 

The uncertainty is propagated using the sensitivity matrix with respect to the observation vector, y, which 
is described by equations 5.6-5.8. 
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5.1.3.3. Correlation length scales of Level 2 uncertainty components 

At Level 2, the contributing uncertainty components are grouped according to their spatial correlations 
to facilitate correct propagation to higher data levels.  The correlation length scales of all the error effects 
discussed in this section and included in the uncertainty budget are summarised in Table 12. 

 

Instrument noise Uncorrelated 

Fractional vegetation cover Biome dependent 

Geolocation Biome dependent 

Atmospheric fitting 5 km  / 5 minutes [RD-28, RD-29] 

Radiative Transfer Modelling Instrument record 

Table 12: Correlation length scales for the error effects characterised in Level 2 data.  

 
For the purposes of data distribution, at Level 2, four uncertainty components are provided (see Section 
9).  These are comprised of uncorrelated (random) uncertainty, large-scale systematic uncertainty and 
two locally systematic uncertainty components: surface and atmosphere.  The surface component 
includes the fractional vegetation cover and geolocation uncertainties whilst the atmospheric component 
includes the atmospheric fitting uncertainty.   

For the locally systematic atmospheric uncertainty component, the spatial and temporal correlation 
length scales are currently assumed to be 5 km and 5 minutes respectively [RD-28, RD-29]. These 
correlation length scales differ to those used over the ocean for sea surface temperature retrieval (100 
km and 1 day).  The values used over land are taken from the literature [RD-28, RD-29] and more localised 
metrological conditions can exist over the land than over the ocean.  However, given the nature of 
weather systems, which develop on synoptic timescales, these correlation length scales may be too short, 
even at mid-latitudes.  An in-depth study of the most appropriate correlation length scales for this 
application is recommended for Phase II of LST CCI.  It is possible that correlation length scales need to 
vary latitudinally or longitudinally. 

Updating the correlation length scales for the atmospheric uncertainty component would impact the 
generation of Level 3 products.   Increasing the spatial length scale would require this component to be 
propagated as a systematic uncertainty over a larger area, which would need to be considered when 
generating coarser resolution products.  Increasing the temporal correlation length scale would impact 
the L3C and L3S generation methodology, as LST retrievals close in time would have correlated 
atmospheric uncertainties. 

5.1.4. Level 3 data 

Level 3 products are those where data are placed onto a common grid at 0.01 or 0.05-degree resolution.  
Three types of Level 3 products can be produced in any given processing chain: 1) L3U – these are 
‘uncollated’ products, where a single L2 orbit or full disk observation is placed on a regular latitude-
longitude grid.  2) L3C – these are ‘collated’ products, where two or more orbits/disks are combined from 
the same instrument. 3) L3S – these are ‘synthesised’ products, which combine L3 data from two or more 
sensors. 
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The LST value within any given grid box is typically calculated as the arithmetic mean of all LST retrievals 
that fall within the geographical limits of the box (up to 25 for ~1km data gridded at 0.05-degree 
resolution).  For the 0.01 resolution data, typically only 1-2 pixels fall into any given grid cell, sometimes 
with fractions of pixels overlapping the defined bounds of the cell.  In this case the partially overlapping 
observations are also averaged, weighted by their fractions.  Similarly, the uncertainties are propagated 
following the methodology described here, but weighted by their fraction.   

𝐿𝑆𝑇𝑔𝑟𝑖𝑑 =
1

𝑛
∑ 𝐿𝑆𝑇𝑖

𝑛

𝑖=1

 
 

(5.20) 

We can use the form of the measurement equation given in 4.2, 〈𝑧〉 = 𝑔(𝒛, 𝜸), along with equation 5.20 
to define the error effects associated with the averaged LST product.  These are shown in Table 13. 

 

 

 

 

 

 

 

z 

 
 
 
 
 
 
 

zn 

1 LST noise i Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

2 Retrieval error– 
surface effects 

(fractional 
vegetation, 

geolocation). 

s Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

3 Retrieval error – 
atmospheric effects 
(coefficient fitting). 

s Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

4 RTM and NWP 
simulation error 

c Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

5 Cloud Detection s Not 
attributed 

* 

 

γ 

 
Weighting 

6 Weighting of 
retrieved pixels 
contributing to 

averaged product 

s 0 * 

+0 Sampling 
uncertainty 

7 Clear-sky pixel 
representivity of LST 

across gridded 
domain 

s Modelled * 

Table 13: Error effects for averaging LST products.  Effects are categorised according to the measurement 

equation term.  Where quantified, the values propagated for each effect are specified. *denotes cases where the 

uncertainty is modelled rather than propagated using a sensitivity coefficient. 

At Level 3, there are five error effects associated with the single pixel input vector, z.  These consist of 
four uncertainties that are quantified in the Level 2 data that can be propagated into the gridded product 
(instrument noise, retrieval uncertainty from surface effects, retrieval uncertainty from atmospheric 
effects and the RTM/NWP simulation uncertainty).  One further effect (5 in Table 13) from cloud detection 
error is not quantified within the Level 2 data.  
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There is one error effect associated with the measurement equation parameters, γ, which is the weighting 
associated with the LST retrievals contributing to the gridded average.  There are two options available 
for calculating the mean: 

i. A simple arithmetic mean with equal weight given to each contributing LST estimate (currently 
used). 

ii. A weighted mean reflecting the difference in the uncertainties associated with each contributing 
LST estimate. 

An argument can be made for either approach as follows: 

i. If significant LST variability were expected across the 0.05-degree cell, the first approach would 
ensure that all contributing LST estimates are evenly represented in the average. 

ii. If minimum uncertainty in the LST estimate across the 0.05-degree domain is required, assuming 
that LST variability across the cell is negligible then the 25 LST estimates are essentially repeated 
measurements of the same LST. 

For LST, it is likely that (i) may be the best approach in heterogeneous regions where the biome varies 
rapidly, but (ii) may be more appropriate in regions where the land cover is more homogeneous.  Applying 
a weighting (as in option ii) would result in another source of error that should be quantified in the 
uncertainty budget.  Using option 1 gives the same weight to all pixels and the attributed uncertainty from 
this approach is zero.  This is the approach currently used. 

At Level 3 the ‘+0’ term includes the sampling uncertainty [RD-9] introduced when a gridded domain is 
not fully observed due to the limitation of having clear-sky observations only (for infrared LST retrievals).  

5.1.4.1. Propagated Uncertainties 

There are four uncertainty components in Level 2 data that are propagated into Level 3 data; uncorrelated 
(random) uncertainty, locally systematic surface parameter uncertainty, locally systematic atmospheric 
uncertainty and large-scale systematic uncertainty.  When propagating the locally systematic uncertainty 
components from Level 2 to Level 3, the correlation length scales of the surface and atmosphere 
components differ and these have to be propagated independently.  In this section we describe the 
propagation for each component. 

5.1.4.1.1 Uncorrelated (random) uncertainties 

The sensitivity coefficient for the propagation of uncertainty in z into 〈𝑧〉 is the derivative of the 
measurement function with respect to z.  This is consistent across all of the uncertainty components.  

𝑪 = [
𝜕ℎ

𝜕𝑧1
…

𝜕ℎ

𝜕𝑧𝑛
] 

(5.21) 

The uncorrelated (random) uncertainty component is provided for each LST retrieval at Level 2 and the R 
matrix is the identity matrix, I, as these uncertainties are uncorrelated between pixels.  The sensitivity 
coefficient is obtained by differentiating h with respect to z, resulting in an uncertainty scaled by the 

familiar 1/√𝑛 (equation 5.20). 
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𝜕ℎ

𝜕𝑧
=

1

𝑛
 

(5.22) 

𝑢(〈𝑧〉)𝑖 =
1

√𝑛
∑ 𝑢(𝑧)𝑖

𝑛

 
(5.23) 

5.1.4.1.2 Fully correlated large-scale uncertainties  

The large-scale uncertainty component is fully correlated over the gridded domain.  The sensitivity 
coefficient matrix in this case is the same as that defined in equation 5.21.  The correlation matrix, R, will 
be equal to J, i.e. all values are equal to 1 as the uncertainties are full correlated.  The resultant propagated 
uncertainty is an average of the input large-scale uncertainties. 

𝑢(〈𝑧〉)𝑐 =
1

𝑛
∑ 𝑢(𝑧)𝑐

𝑛

 
(5.24) 

5.1.4.1.3 Locally systematic uncertainties  

For the locally systematic uncertainties, gridding data at a resolution of 0.05 degrees requires the 
atmospheric and surface components to be propagated separately.  The correlation length scale of the 
atmospheric uncertainty component is 5 km, so this is assumed fully correlated across a grid cell at this 
resolution.  For this component, the sensitivity coefficient matrix, C, is defined in equation 5.21 and the 
correlation matrix, R, is equal to J.  The atmospheric uncertainty component at Level 3 is therefore given 
by equation 5.25 (using the subscript ‘atm’ to represent ‘atmosphere’). 

𝑢(〈𝑧〉)𝑎𝑡𝑚 =
1

𝑛
∑ 𝑢(𝑧)𝑎𝑡𝑚

𝑛

 
(5.25) 

The given spatial correlation length scale of the atmospheric uncertainty component is 5km.  This may be 
an underestimate as atmospheric effects can be correlated over longer spatial scales corresponding to 
synoptic systems.  However, given the value currently adopted, this means that this uncertainty 
component becomes uncorrelated (random) for the purpose of further propagation into derived products 
by users.  As such, this component is then added to 𝑢(〈𝑧〉)𝑖 (see equation 5.28). 

For the surface uncertainties, the assumption is made that these are correlated where the biome is 
consistent, but uncorrelated between biomes.  In this case the correlation matrix in the uncertainty 
calculation would include off-diagonal terms dependent on the underlying biome of the pixels included in 
the average.  This is illustrated for example data in Figure 5.2.  
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Figure 5-2: Example correlation matrix for a set of pixels (1-10) with associated biomes (A-D).  The correlation 

matrix has off-diagonal non-zero elements where pixels share the same underlying biome. 

 

The current approach is to do the uncertainty propagation in two stages.  This does not strictly follow the 
law of propagation of uncertainty and this would be relatively easy to update in the uncertainty budget 
calculation.  In the current approach, all of the contributing LST retrievals in z are first grouped by their 
biome.  Within each biome grouping, the uncertainties are fully correlated.  The sensitivity matrix is as 
equation 5.17 and the correlation matrix is equal to J.  For each biome ‘group’, an uncertainty estimate is 
calculated by averaging the contributing uncertainties. 

𝑢(〈𝑧〉)𝑏𝑖𝑜𝑚𝑒 = √
1

𝑛2
∑ 𝑢(𝑧|𝑏𝑖𝑜𝑚𝑒)

𝑛

2

 
(5.26) 

Following this process we now have ‘m’ uncertainties (one for each biome) where 𝑚 ≠ 𝑛 unless each 
contributing LST retrieval in z has a different biome.  The subset of uncertainties in ‘m’ is now independent 
as the surface uncertainty component is correlated only as a function of biome.  These then average as a 

function of 1/√𝑚 to give the surface component of uncertainty at Level 3, denoted by the subscript ‘surf’.   

𝑢(〈𝑧〉)𝑠𝑢𝑟𝑓 = √
1

√𝑚
∑ 𝑢(𝑧)𝑏𝑖𝑜𝑚𝑒

2

𝑚

 
(5.27) 

The surface uncertainty component is the only contributor to the locally systematic uncertainty at Level 
3. 

𝑢(〈𝑧〉)𝑠 = 𝑢(〈𝑧〉)𝑠𝑢𝑟𝑓 (5.28) 

5.1.4.1.4 Propagation of locally-systematic surface uncertainty component 

The assumption made about the correlation length scale of the locally systematic surface uncertainty 
component is that it is: 
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❖ Perfectly correlated for pixels with the same underlying biome 

❖ Uncorrelated between pixels with differing biomes 

As outlined throughout this document, uncertainties should be propagated using the law of the 
propagation of uncertainty.  In this case, the R matrix contains a mix of terms depending on the biomes 
of the contributing pixels.  The current implementation of uncertainty propagation in pre-cursor studies 
does not use this R matrix in a single calculation, but instead uses a two-step process to calculate the 
uncertainty.  The two approaches are not consistent, and give different answers as shown in the worked 
example below.  The metrological method would be to do a single calculation using the correct R matrix, 
for which all of the required information is available, and this is recommended for implementation, 
improving the state-of-the-art for LST uncertainty calculation.   This is particularly relevant to the 
regridding tool, planned for implementation in Phase 2.  Please refer to Table 31 for more information. 

5.1.4.1.4.1 Worked example 

Let us consider a worked example for the case where there are five clear-sky LST observations contributing 
to an averaged LST (using the data mean).  In this example, the surface component of the uncertainty 
associated with these five observations will be as follows: 
 

U = [0.3, 0.35, 0.2, 0.4, 0.6] 
 

As the LST is calculated as an arithmetic mean, the measurement equation is as follows (used in the L3U 
LST calculations): 

〈𝑧〉 =
1

𝑛
∑ 𝐿𝑆𝑇𝑖

𝑛

𝑖=1

 
 

(5.29) 
 
For which the derivative of the measurement equation with respect to the input LST is: 
 

 
𝜕〈𝑧〉

𝑧𝑖 
=

1

𝑛
 

 

(5.30) 
We can then substitute this into the law for the propagation of uncertainty to give the equation for the 
locally systematic uncertainty component as follows: 
 

𝑢(〈𝑧〉)2 = Σ𝑖
𝑛 (

1

𝑛
)

2

𝑢𝑖
2(𝑧𝑖) + 2 ∑ ∑ (

1

𝑛
) (

1

𝑛
) 𝑢(𝑧𝑖)𝑢(𝑧𝑗)𝑟

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 
 

(5.31) 

r is the correlation coefficient between pixels i and j. Now, lets assume that in this example, the 1st and 
2nd observation in the sample share the same biome and the 3rd and 5th also share a biome (but one that 
differs from that of observations 1 and 2).  Following the law of propagation of uncertainty (8.3), the 
propagated locally systematic uncertainty can be calculated. 

𝑢(〈𝑧〉)2 =
1

52
Σ𝑖

𝑛𝑢𝑖
2(𝑧𝑖) + 2 (

1

52
) (0.3)(0.35) + 2 (

1

52
) (0.2)(0.6) 

 

(5.32) 

𝑢(〈𝑧〉)2 = 0.0489 (5.33) 
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The method currently applied within LST_cci is a two-step process: 

1. The uncertainty for pixels with the same biome is calculated using a simple average. 

2. The uncertainty for each biome group is then propagated assuming independence between 
biomes. 

In taking this approach, the measurement equation is no longer the arithmetic mean but equivalent to: 

〈𝑧〉 =

𝑧1 + 𝑧2
2 +

𝑧3 + 𝑧5
2 + 𝑧4

3
 

 

(5.34) 

Calculating the uncertainty using this equation yields the following result. 

𝑈(1) =  
𝑢(𝑧1) + 𝑢(𝑧2)

2
, 𝑈(2) =

𝑢(𝑧3) + 𝑢(𝑧5)

2
, 𝑈(3) =  𝑢(𝑧4)  

 

(5.35) 

𝑢(〈𝑧〉)2 =
∑ 𝑈2

9
 

 

(5.36) 

𝑢(〈𝑧〉)2 = 0.0472917 (5.37) 

The current implementation underestimates the true uncertainty in the surface component.  The 
magnitude of the difference between using the metrological propagation and the current implementation 
will depend on the magnitude of the surface uncertainty component in the LST data (with larger 
uncertainties resulting in greater discrepancies).  Changing the approach to the metrological propagation 
is recommended for Phase 2 of the project to progress the ‘state of the art’ LST uncertainty estimation.  
This is only relevant for L3 products that are coarser than the native satellite resolution (i.e. coarser than 
0.01 degree for LEO products and coarser than 0.05 degree for GEO products).  Please refer to Table 31 
for more details. 

 

5.1.4.1.4.2 Retention of biome information for uncertainty propagation to higher level products 

At present, information about the underlying biome for each retrieved LST is used in the propagation of 
the surface component of the locally systematic uncertainty from L2P to L3U data.  Following this 
propagation, this information is no longer retained, but is of relevance when generating higher-level 
products including both synthesised datasets (L3C or L3S) and for gridding at coarser resolutions than 0.05 
degrees.   
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Figure 5-3: Schematic showing the averaging steps for post-processing LST L2 retrievals to L3U and L3C. 

Figure 5.3 shows the processing steps for generating L3C data from L2P data.  There are two averaging 
steps: 

1. Averaging L2P observations for a single grid cell (instantaneous time frame) to generate L3U. 

2. Averaging L3U observations over a given time window to generate temporally averaged L3C 
products (daily, monthly or annually). 

In the first step, the biome information is used to inform the propagation of uncertainty for the surface 
component into the L3U data.  For the second step, these data are no longer available.  This is problematic 
for uncertainty propagation, as each of the L3U observations contributing to the average in the second 
step is itself an average over a number of L2P observations.  The number and location of these L2P 
observations is dependent on data quality and cloud cover.  As a result, where the underlying surface is 
heterogeneous across the grid cell, the combination of available L2P observations represents different 
surface types to different degrees. 

Without information about the biomes of the L2P pixels contributing to each L3U average, the surface 
uncertainty component is propagated as if it were uncorrelated between L3U observations.  Given the 
assumption that the uncertainty will be systematic over regions of consistent biome, treating the 
uncertainties as independent in the averaging to L3C will underestimate of the propagated surface 
uncertainty component. 

The implementation of a strict metrological process here is complicated by the requirement to carry 
around additional data in the L3U products.  For each L3U observation, the biome and associated surface 
uncertainty component from each of the contributing L2P observations would need to be stored, 
increasing file size and complexity.  This has been done in an offline capacity and is recommended for 
consideration as an output product.  It is also recommended that these L3U products are made available 
to data users. 

In the case of gridding the L3U data at a coarser resolution (a task that may well need to be done by a 
data user for their application if not disseminated directly by the data supplier), the information from the 
L2P data on the biome and associated surface uncertainty component would again be required.  It is also 

L2P LST observations 

L3U average LST for a given 
location and time 
(instantaneous) 

L3C average LST for a given 
location over a time window 

(daily, monthly, annual) 

L3C data are an average of 
all available L3U data in 

the given time window so 
the number of 

observations averaged will 
vary for each grid cell 
(coverage and cloud)  

For a 0.05-degree grid, a 
maximum of 25 LST L2P 

retrievals are averaged to 
give an L3U LST. 
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worth considering here the underlying assumption that the error effects are correlated by biome and 
whether there is a better method of propagation.  There is both in-biome variability within the 
classification scheme and latitudinal variations in biome composition. 

5.1.4.2. New uncertainties relevant to the processing level 

Calculation of the arithmetic mean to represent the average gridded LST is based on the assumption that 
the contributing LST observations representatively sample the LST variation across the grid box.  In 
practice, this is rarely true for infrared LST retrievals as retrievals are only possible under clear-sky 
conditions.  As a consequence, in all cases where cloud obscures some of the grid box, sampling 
uncertainty is introduced into the averaged LST [RD-9].   This sampling uncertainty is modelled for LST_cci 
data using the following parameterisation. 

𝑢(〈𝑧〉)𝑠𝑎𝑚𝑝 =
𝑛𝑐𝑙𝑑𝜎𝒛

2

𝑛 − 1
 

(5.38) 

Here, n is the total number of contributing observations to the gridded LST, and 𝑛𝑐𝑙𝑑 is the number of 
these that are cloudy.  𝜎𝒛

2 is the variance in LST observations in the vector z.  This current parameterisation 
for sampling uncertainty has some limitations as it is dimensionally inconsistent and does not account for 
cases where there are few clear-sky pixels available, which have consistent LSTs but are not representative 
of the LST variability within the cell. At present an estimate of the variability within a cell has been used, 
but to improve further would require a significant investigation, planned under Phase II (see Table 31). 

This uncertainty component is uncorrelated between Level 3 grid cells and is therefore added to the 
uncorrelated (random) uncertainty component as defined in equation 5.23 (along with the atmospheric 
uncertainty component). 

𝑢(〈𝑧〉)𝑖 = √𝑢(〈𝑧〉)𝑖
2

+ 𝑢(〈𝑧〉)𝑠𝑎𝑚𝑝
2

+ 𝑢(〈𝑧〉)𝑎𝑡𝑚
2
 

(5.39) 

 

5.1.5. L3C and L3S products 

L3C and L3S products are ‘collated’ and ‘synthesised’ Level 3 datasets respectively.  L3C data are provided 
on a common grid (as with L3U), with daily L3C products containing the L3U observation closest to the 
nominal overpass time of the given sensor.  Monthly and annual LST products are temporal averages of 
the daily L3C products.  L3C products contain data only from a single sensor, whereas L3S products contain 
data from two or more different sensors.  L3C and L3S products are both produced from L3U inputs, 
propagating the uncertainty components to give uncertainty components for both L3C and L3S.  In this 
case, the atmospheric fitting uncertainty is propagated as an uncorrelated uncertainty (it is added to the 
uncorrelated uncertainty component as assumed temporal correlation is very short at 5 minutes – eq. 
5.30).  However, given the propagation of weather systems at synoptic scales, this temporal correlation 
length scale could be an underestimate.  For the locally systematic uncertainty component (containing 
the uncertainty from the surface specification), the biome information is not retained for use in the 
propagation, and it is treated as uncorrelated – this will likely result in an underestimation of this 
uncertainty component for the 0.05 degree data.  At 0.01 degree, it is assumed that any given pixel only 
covers one biome as this is commensurate with the resolution of the global land cover data.   The large-
scale uncertainty component is propagated in the same manner as described above for L3U products.  For 
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L3S products there will also be an uncertainty component related to the homogenisation of different 
satellite products to a common overpass time. 

5.2. MODIS, SEVIRI, GOES-16/ABI, HIMAWARI/AHI and Metop-A AVHRR 

Five instrument series use the generalized split window (GSW) algorithm as described in this section.  The 
Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument payload aboard two polar 
orbiting satellites: Terra (Earth Observing System AM) and Aqua (Earth Observing System PM).  Terra has 
an equator overpass time of 10.30am and Aqua an equator overpass time of 1.30pm.  The Terra satellite 
was launched in 1999 and the Aqua satellite in 2002.  Both MODIS instruments are still making 
observations 20 years later, despite an anticipated lifetime of 6 years.  Only over recent years have 
additional calibration methods been required to account for instrument degradation.   

MODIS Terra has been selected to bridge the gap in the ATSR-SLSTR climate data record between April 
2012 with the failure of the Envisat platform, and the subsequent launch of SLSTR in 2016.  MODIS 
instruments make observations in 36 spectral channels, across the infrared and visible spectrum. Of these, 
29 channels have a spatial resolution of 1 km at nadir consistent with the ATSR and SLSTR instruments.  
Channels 31 and 32 provide observations at 11 and 12 microns respectively, which can be used to retrieve 
LST.  MODIS has a much wider swath width (2330 km) than the ATSR and SLSTR instruments.  For the 
purpose of the CDR, both the MODIS and SLSTR data will be made to look ‘ATSR like’ by cropping the 
swath appropriately.   The instrument characteristics for MODIS Terra are shown in Table 14. 

 

MODIS 0.66, 0.87 250 m resolution All channels 
available. 

10:30 (Terra) 
14:30 (Aqua) 

0.47, 0.56, 1.24, 1.64, 
2.13 

500 m resolution 

0.42, 0.44, 0.49, 0.53, 
0.57, 0.65, 0.68, 0.75, 
0.87, 0.91, 0.94, 1.38, 
3.75, 3.96, 4.05, 4.47, 
4.52, 6.72, 7.33, 8.55, 

9.73, 11.03, 12.02, 
13.34, 13.64, 13.94, 

14.24 

1 km resolution 
 

Table 14: Instrument characteristics for MODIS Aqua and MODIS Terra. 

The MODIS instrument has sufficiently different characteristics from the ATSR instrument series that using 
a GSW retrieval algorithm is more appropriate for the single sensor product than the University of 
Leicester (UoL) algorithm.  For the CDR, the UoL algorithm will be used for consistency with the ATSR and 
SLSTR instruments.   As such, the measurement equation is different from that used for the ATSR 
instruments and the uncertainty budget needs to be constructed from this baseline.  In this section we 
discuss the formulation of an uncertainty budget for instruments using the generalised split window 
retrieval algorithm. 
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The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments fly aboard the Meteosat Second 
Generation platforms (MSG1-4).   These platforms are geostationary, in orbit close to 0 N, 0 E, observing 
the same part of the globe with a high temporal resolution (15 minute complete cycle time).   MSG1 was 
launched in 2002, MSG2 in 2005, MSG3 in 2012 and MSG4 in 2015.  SEVIRI observations are used within 
LST CCI to produce both a single-sensor time series, and as part of the LST CCI merged products.   Table 
15 details the instrument characteristics for SEVIRI. 

 

SEVIRI 0.635, 0.81, 1.64, 3.92, 
6.25, 7.35, 8.70, 9.66, 

10.8, 12.0, 13.4 

4.8 km IFOV, 3 km 
sampling 

All channels 
available. 

15 minute 
sample time 

Table 15: Instrument characteristics for SEVIRI aboard MSG1-4. 

The Advanced Baseline Imager (ABI) flies aboard the Geostationary Operational Environment Series 
(GOES)-16 satellite platform, and observes the western hemisphere every 10 minutes, centred on the 
equator at 72.5 degrees west.  GOES-16 was launched in 2016 and replaced GOES-13 as the operational 
GOES East satellite in December 2017.  Within LST CCI the ABI on GOES-16 is used both as a single-sensor 
product and in the merged GEO+LEO infrared products. Table 16 summarises the ABI instrument 
characteristics. 

 

ABI 0.47, 0.64, 0.86, 1.37, 
1.6, 2.2, 3.9, 6.2, 6.9, 

7.3, 8.4, 9.6, 10.3, 11.2, 
12.3, 13.3 

2 km  All channels 
available. 

10 minute 
sample time 

Table 16: Instrument characteristics for ABI aboard GOES-16. 

 
Advanced Himawari Imagers (AHI’s) fly aboard the HIMAWARI 8 and HIMAWARI 9 platforms.  These are 
geostationary satellites, orbiting above the west Pacific and following on from the Multi-Functional 
Transport Satellite (MTSAT) series.  Himawari 8 was launched in July 2015 and Himawari 9 in November 
2016.  Full disk observations are made every 10 minutes, with higher frequency data over selected areas 
including Japan.  Data have a spatial resolution of 0.5-1 km in the visible part of the spectrum and 1-2 
km in the infrared.   Table 17 summarises the AHI instrument characteristics. 
 

AHI 0.47, 0.51, 0.64  0.5-1 km All channels 
available. 

10 minute 
sample time 0.86, 1.6, 2.3, 3.9, 6.2, 

6.9, 7.3, 8.6, 9.6, 10.4, 
11.2, 12.4, 13.3 

1-2 km 

Table 17: Instrument characteristics for AHI aboard Himawari 8 and 9 
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The Advanced Very High Resolution Radiometer (AVHRR) flies aboard the Metop-A satellite, which was 
launched in October 2006.  The satellite is in a sun-synchronous polar orbit with equator overpass times 
of the satellite are 09.30 and 21.30.  The original purpose of the AVHRR sensor was remote sensing for 
weather forecasting and vegetation studies, but this sensor can also be used to retrieve surface 
temperature.  Observations are made at six wavelengths, covering the visible and infrared parts of the 
spectrum (Table 18) at a spatial resolution of 1 km.   AVHRR has a swath width of 3000 km, wider than 
both the ATSR and MODIS instruments.   The AVHRR instrument aboard Metop-A is a third generation 
instrument (AVHRR/3). 
 

AVHRR 0.63, 0.87, 1.61, 3.74, 
10.8, 12.0 

1 km All channels 
available. 

09:30 

Table 18: Instrument characteristics for AVHRR/3 sensors 

5.2.1. Land Surface Temperature Retrieval 

The generalised split window retrieval algorithm [RD-33] is applied to MODIS, SEVIRI and GOES-16/ABI.  
The measurement equation is shown in equation 5.40 and this is dependent on the brightness 
temperatures at wavelengths of 11.03 and 12.02 μm at 1 km resolution.  

 

𝐿𝑆𝑇 = (𝐴1 + 𝐴2 (
1 − 𝜀

𝜀
) + 𝐴3

∆𝜀

𝜀2
)

𝑇11 + 𝑇12

2
+ (𝐵1 + 𝐵2

1 − 𝜀

𝜀
+ 𝐵3

∆𝜀

𝜀2
)

𝑇11 − 𝑇12

2
+ 𝐶 

(5.40) 

 

The retrieval is dependent on the mean land surface emissivity (ε) for the two channels used in the 
retrieval (ε11 and ε12) and the difference between the land surface emissivity at the two wavelengths (Δε) 
[RD-34].   

𝜀 = 0.5(𝜀11 + 𝜀12) (5.41) 

 

△ 𝜀 = 𝜀11 − 𝜀12 (5.42) 

Surface emissivity is specified in the retrieval using data from the Combined ASTER MODIS Emissivity over 
Land (CAMEL) atlas [RD-60].  The data are provided at a spatial resolution of 0.01 degrees at thirteen 
wavelengths between 3.6 and 14.3 μm.  These wavelengths are used as hinge points for the full emissivity 
spectra and a base fit can be used to interpolate between them.  For the MODIS, SEVIRI and GOES-16/ABI 
retrievals, emissivity at 10.1 and 12.1 μm is used. 

The retrieval uses a number of coefficients Aj, Bj (j=1,2,3) and C, which have a dependency on satellite 
viewing angle and water vapour [RD-34].  The coefficients are banded by both total column water vapour 
and satellite zenith angle.  Satellite zenith angle is divided into 13 bands of width 5° spanning 0-65° and 
total column water vapour into 8 bands of width 7.5 kg m-2 (covering the range 0-60 kg m-2) [RD-34].    
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Given the definition of the measurement equation in 5.40, the error effects associated with each term 
can be determined.   To do this, error effects are grouped by the measurement term following equation 
4.1 where 𝑧 = 𝑔(𝒚, 𝜷) + 0, where y is the observation vector, β is the retrieval parameter vector and the 
‘+0’ term encompasses error effects not directly associated with either of these vectors.  Although at 
present it may not be possible to quantify the uncertainty associated with every error effect, this 
methodology provides a means to assess progress in characterising the uncertainties in the LST retrieval 
and identifying remaining gaps. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
β 

 
 
 
 

A1 

1 Satellite zenith angle 
variability error 

s Not 
attributed 

* 

 
2 

Total column water 
vapour error 

s TCWV 
ensemble 

spread  

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
 

 
3 

Total column water 
vapour and solar 

zenith angle binning 

s Fitting 
residual 

* 

4 Fitting error s Fitting 
residual 

* 

 
A2 

5 Satellite zenith angle 
variability error 

s Not 
attributed 

* 

 
6 

Total column water 
vapour error 

s TCWV 
ensemble 

spread 

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
 

 
7 

Total column water 
vapour and solar 

zenith angle binning 

s Fitting 
residual 

* 

8 Fitting error  s Fitting 
residual 

* 

 
A3 

9 Satellite zenith angle 
variability error 

s Not 
attributed 

* 

 
10 

Total column water 
vapour error 

s TCWV 
ensemble 

spread 

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
 

 
11 

Total column water 
vapour and solar 

zenith angle binning 

s Fitting 
residual 

* 

12 Fitting error  s Fitting 
residual 

* 

 
B1 

 

 

13 Satellite zenith angle 
variability error 

s Not 
attributed 

* 

 
14 

Total column water 
vapour error 

s TCWV 
ensemble 

spread 

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
 

 
15 

Total column water 
vapour and solar 

zenith angle binning 

s Fitting 
residual 

* 
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16 Fitting error  s Fitting 
residual 

* 

 
B2 

17 Satellite zenith angle 
variability error 

s Not 
attributed 

* 

 
18 

Total column water 
vapour error 

s TCWV 
ensemble 

spread 

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
 

 
19 

Total column water 
vapour and solar 

zenith angle binning 

s Fitting 
residual 

* 

20 Fitting error  s Fitting 
residual 

* 

 
B3 

21 Satellite zenith angle 
variability error 

s Not 
attributed 

* 

 
22 

Total column water 
vapour error 

s TCWV 
ensemble 

spread 

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
 

 
23 

Total column water 
vapour and solar 

zenith angle binning 

s Fitting 
residual 

* 

24 Fitting error  s Fitting 
residual 

* 

 
C 

25 Satellite zenith angle 
variability error 

s Not 
attributed 

* 

 
26 

Total column water 
vapour error 

s TCWV 
ensemble 

spread 

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
 

 
27 

Total column water 
vapour and solar 

zenith angle binning 

s Fitting 
residual 

* 

28 Fitting error  s Fitting 
residual 

* 

 
 

 
ε11 

 
29  

  
Emissivity error 

s CAMEL 
emissivity 

uncertainty 

𝜕𝑔

𝜕𝜀11
 

 
30 

Temporal 
interpolation of 
emissivity data 

s Not 
attributed 

𝜕𝑔

𝜕𝜀11
 

 
 

ε12 

 
31 

 

Emissivity error s CAMEL 
emissivity 

uncertainty 

𝜕𝑔

𝜕𝜀12
 

 

 
32 

Temporal 
interpolation of 
emissivity data 

s Not 
attributed 

𝜕𝑔

𝜕𝜀12
 

 
 

 
 

33 Noise i 0.03 K 𝜕𝑔

𝜕𝑇11
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y 

 
T11 

34 Calibration error c Not 
attributed 

𝜕𝑔

𝜕𝑇11
 

 
 

T12 

 
35 

Noise i 0.04 K 𝜕𝑔

𝜕𝑇12
 

 

 
36 

Calibration error c Not 
attributed 

𝜕𝑔

𝜕𝑇12
 

 
 
 
 
 
 
 
 

+0 

 
Geolocation 

 
37 

Re-projection of 
native instrument 
grid to image grid 

s Not 
attributed 

* 

Cloud 
Detection 

38 Undetected cloud s Not 
attributed 

* 

 
RTM 

 
39 

Error in RTM 
simulation (trace gas 

profiles, 
parameterisation). 

c  
 
 
 

0.03 K 

𝜕𝑔

𝜕𝑇11
 

 
NWP 

 
40 

Error in RTM inputs 
(surface 

temperature and 
total column water 

vapour). 

c 𝜕𝑔

𝜕𝑇12
 

Table 19: Error effects for single pixel LST retrieval.  Effects are categorised according to the measurement 

equation term.  Where quantified, the values propagated for each effect are specified for MODIS TERRA. 

*denotes cases where the uncertainty is modelled rather than propagated using a sensitivity coefficient. 

Table 19 shows that there are 34 error effects associated with the retrieval parameter vector (β).   The 
first 28 of these are associated with the retrieval coefficients A, B (j=1,2,3) and C.  Each coefficient has 
four associated error effects: the first two arise from the use of binned data to parameterise the 
coefficients.  Uncertainties arise both in the data used to select the coefficient bin and the use of a non-
continuous function in solar zenith angle and total column water.   The total column water vapour 
uncertainties are specified using an ensemble and propagated through the retrieval equation.  The solar 
zenith angle uncertainties are expected to be small and are not currently attributed.  The effects 
associated with the binning of the coefficients are all fully correlated between coefficients.  The third error 
effect is the uncertainty associated with the bins of total column water vapour and solar zenith angle 
chosen for the calibration.  This error effect is assumed to be folded into the retrieval fitting error at 
present.  Finally, the retrieval model structure does not fully represent the physical system and therefore 
the fourth error effect is the uncertainty in the retrieval fitting process, parameterised using the fitting 
residual.   

The emissivity estimates in the 11 and 12 μm channels are also part of the retrieval parameter vector.  
Each emissivity estimate has two error effects associated with it: 1) emissivity estimate error and 2) 
temporal interpolation error. The first is the error associated with the emissivity estimation process itself, 
and the second is the error associated with interpolating these estimates to the time of the retrieval.  The 
first is explicitly propagated through the retrieval equation whilst the second is not estimated at present. 
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There are four error effects associated with the observation vector, y.  These are the instrument noise 
and calibration errors associated with each channel.  The instrument noise is propagated through the 
retrieval equation according to the sensitivity of the retrieved surface temperature to the observations 
and accounted for explicitly in the uncertainty budget.   The calibration error is not quantified, as this 
information is not made available in the Level 1 data. 

The ‘+0’ term contains the error effects not directly related to the retrieval parameters (β) or the 
observations (y).   Four sources of error fit into this category for MODIS, SEVIRI and GOES-16/ABI.  The 
first is the geolocation error arising from propagation of the native instrument grid to an image grid.   This 
is not explicitly accounted for in the uncertainty budget.  The second is the error due to an imperfect 
method for detecting clouds.  Where clouds remain undetected this will bias the LST retrieval (typically 
cold).  At present this source of uncertainty is not quantified.  The final two sources of error are related 
to the use of a radiative transfer model (RTM) to calculate the retrieval coefficients.  The first source of 
error is in the model simulation itself, specifically in the parameterisations used, and the second is in the 
numerical weather prediction data used by the RTM to set the boundary conditions.  These two sources 
of error are combined and propagated using the sensitivity of the retrieval to the observations.  The 
quantification of this uncertainty is likely to be an underestimate as it uses a value calculated over ocean 
surfaces [RD-15] where conditions are more stable than over land. 

5.2.2. Level 1 data 

Level 1 data are used as input into Level 2 retrievals of geophysical variables (e.g. LST).  These Level 1 data 
have uncertainties associated with them that arise both from the instrument characteristics and the 
measurement process.  Quantifying the uncertainty budget for Level 1 data requires an in-depth analysis 
of the measurement process, in-orbit conditions and instrument construction [RD-13].  Unfortunately, 
this type of analysis is not routinely undertaken, and an uncertainty budget is rarely provided with Level 
1 data.  As such, it is only possible to propagate the uncertainty information routinely provided with the 
Level 1 data into the retrieval, which is usually limited to an estimate of the retrieval noise in each channel. 

5.2.2.1. Uncertainties due to random error effects 

5.2.2.1.1 Uncertainties due to instrument noise 

One source of uncertainty in the Level 1 data is the noise associated with each channel used in the retrieval 
equation (errors 21 and 23 in Table 19).  In order to propagate this through the retrieval equation the 
sensitivity coefficient matrix, C, is required (please refer back to equation 4.9 for more details).  In this 
case, C can be defined as: 

𝑪 = [
𝜕𝑔

𝜕𝑇11
 

𝜕𝑔

𝜕𝑇12
] 

(5.43) 

where: 

𝜕𝑔

𝜕𝑇11
=

(𝐴1 + 𝐵1)

2
+

(𝐴2 + 𝐵2)(1 − 𝜀)

2𝜀
+

(𝐴3 + 𝐵3)∆𝜀

2𝜀2
 

(5.44) 

 

𝜕𝑔

𝜕𝑇12
=

(𝐴1 − 𝐵1)

2
+

(𝐴2 − 𝐵2)(1 − 𝜀)

2𝜀
+

(𝐴3 − 𝐵3)∆𝜀

2𝜀2
 

(5.45) 
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ε and Δε are defined in equations 5.41 and 5.42 respectively.  The error covariance matrix, Sε, is diagonal.  
Each non-zero element represents the variance due to the instrument noise in each channel.  For MODIS, 
SEVIRI and GOES-16/ABI this follows the same approach used for the ATSR instrument and is specified as 
the square of the noise equivalent delta temperature (NEdT) at 300 K for each channel.  The values used 
for these instruments are shown in Table 20. 

 

MODIS AQUA (0.02)2 (0.03)2 

MODIS TERRA (0.03)2 (0.04)2 

MSG1 (0.11)2 (0.15)2 

MSG2 (0.11)2 (0.16)2 

MSG3 (0.11)2 (0.15)2 

MSG4 (0.11)2 (0.16)2 

GOES-16/ABI (0.1)2 (0.1)2 

Himawari 8/AHI (0.1)2 (0.1)2 

Himawari 9/AHI (0.1)2 (0.1)2 

AVHRR-3 (Metop-A) (0.12)2 (0.12)2 

Table 20: T11 and T12 diagonal elements in the Sε matrix for the MOIS AQUA, MODIS TERRA, MSG1, MSG2, 

MSG3, MSG4, GOES-16/ABI, HIMAWARI 8/9 AHI and AVHRR instruments. 

5.2.3. Level 2 data 

Level 2 data are the retrieved geophysical variable, e.g. LST.  Uncertainties in the Level 2 data arise both 
from uncertainties propagated from the Level 1 data (as discussed in the previous section) and 
uncertainties introduced during the retrieval process itself.  In this section we characterise the 
uncertainties in the latter.   
 

5.2.3.1. Uncertainties due to locally systematic error effects 

5.2.3.1.1 Uncertainties due to total column water vapour 

In the generalised split window algorithm coefficients are calibrated over bands of satellite zenith angle 
and total column water vapour. An estimate of TCWV a priori is required for LST retrieval and is used to 
select the appropriate coefficients.  The uncertainty in this estimate is then propagated through the LST 
retrieval. The uncertainty is parameterised using the ensemble spread in the Numerical Weather 
Prediction data that is made available together with the TCWV best estimate.  The ensemble systems 
consist in a set of model runs with perturbed initial conditions; some systems also include perturbations 
to the model physics, more than one model within the ensemble or different physical parameterisation 
schemes [RD-45]. Processing of ensemble data can be quite demanding and therefore we currently 
approximate the instantaneous TCWV spread to a climatology of this spread that depends on actual 
TCWV, latitude and month. 

For this uncertainty (effects 2, 6, 10, 14, 18, 22 and 26 in Table 19), the sensitivity coefficient matrix, C, 
consists of the differential of the LST retrieval equation with respect to total column water vapour (TCWV). 
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𝑪 = [
𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
] 

(5.49) 

Since the dependence of the measurement equation on TCWV is implicit through all of the coefficients, 
the differential can be calculated as: 

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
= ∑

𝜕𝑔

𝜕𝛽𝑗
𝑗

𝜕𝛽𝑗

𝜕𝑇𝐶𝑊𝑉
 

(5.50) 

Where 𝛽 = (𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3, 𝐶) is the vector of coefficients and j represents the j-th class of TCWV. 
However, 𝛽𝑗 is a piece-wise linear function and therefore cannot be differentiated. Instead, we 

approximate uncertainty propagation to finite differences: 

𝜕𝑔

𝜕𝑇𝐶𝑊𝑉
≅ ∑

∆𝑔

∆𝛽𝑗
𝑗

∆𝛽𝑗

∆𝑇𝐶𝑊𝑉
 

(5.51) 

In this case, the LST uncertainty due to TCWV, 𝑢(𝑇𝐶𝑊𝑉), will not be computed through the matrix 
notation, instead: 

𝑢(𝑇𝐶𝑊𝑉)2 ≅ ∑ (
∆𝑔

∆𝛽𝑗
)

2

(
∆𝛽𝑗

∆𝑇𝐶𝑊𝑉
)

2

∆𝑇𝐶𝑊𝑉2

𝑗

= [∆𝑔|∆𝑇𝐶𝑊𝑉]2 
(5.52) 

Where [∆𝑔|∆𝑇𝐶𝑊𝑉] represents variation in 𝑔 due to all possible variations in TCWV.  

Each coefficient 𝛽𝑗, cannot vary with TCWV independently of the remaining coefficient (i.e., we have a 

fixed set of 𝛽𝑗 per class of TCWV) and as such the sum in 𝑗 is dropped.  Since each 𝛽𝑗 takes a finite number 

of values, instead of considering all possible values of ∆𝑇𝐶𝑊𝑉, we need only to consider 𝑔 for the valid 
values of 𝛽 and their error probability distribution, which is determined by the TCWV distribution: 

𝑢(𝑇𝐶𝑊𝑉)2 = ∑[𝑔(𝑦, 𝛽(𝑅𝑘)) − 𝑔(𝑦, 𝛽)]
2

𝑃(𝑇𝐶𝑊𝑉 ∈ 𝑅𝑘)

𝑘

 (5.53) 

Where 𝑅𝑘 is the region of the water vapour domain where the k-th value of 𝛽 is valid. The TCWV error 
probability distribution is obtained from the ensemble run. Let us assume that the ensemble estimates of 
TCWV have a normal distribution, 𝑁(𝜇𝐸𝑁𝑆, 𝜎𝐸𝑁𝑆), where 𝜇𝐸𝑁𝑆 is the ensemble mean and 𝜎𝐸𝑁𝑆 is the 
ensemble standard deviation (or spread). The interval probability is then given by: 

𝑃(𝑇𝐶𝑊𝑉 ∈ 𝑅𝑘) = 𝐹(𝑅𝑘
𝑢) − 𝐹(𝑅𝑘

𝑙 ) (5.54) 

Where 𝐹 is the cumulative density function of the generic normal distribution 𝑁(𝜇𝐸𝑁𝑆, 𝜎𝐸𝑁𝑆), and 𝑅𝑘
𝑢 and 

𝑅𝑘
𝑙  are the upper and lower bounds of the TCWV region 𝑅𝑘. The normal distribution takes values ∈

]−∞, +∞[, but the TCWV variable takes only positive values and, in the case of the generalised split 
window algorithm is effectively limited by the upper limit of the higher TCWV region. It is therefore 
necessary to normalize the probability 𝑃(𝑇𝐶𝑊𝑉 ∈ 𝑅𝑘) to the effective range of possible TCWV values: 

𝑃(𝑇𝐶𝑊𝑉 ∈ 𝑅𝑘) =
𝐹(𝑅𝑘

𝑢) − 𝐹(𝑅𝑘
𝑙 )

𝐹(𝑅𝑁
𝑢) − 𝐹(𝑅1

𝑙 )
 

(5.55) 
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Where N is the number of TCWV regions considered. 

5.2.3.1.2 Uncertainties due to coefficient fitting (atmospheric effects) 

Uncertainties due to coefficient fitting (error effects 1-14 in Table 19) arise primarily from limitations in 
the model structure in fully representing the physical system (in this case, the radiative transfer between 
TOA and surface) and from the coefficient binning based on SZA and TCWV. There is also an uncertainty 
component associated with the specification of the atmospheric state in the radiative transfer simulations 
used to calculate the coefficients and the satellite viewing geometry.  The combined uncertainty from all 
of these error effects can be estimated empirically using the residuals from the coefficient fitting process.  
In the retrieval these are characterised as a function of satellite zenith angle and total column water 
vapour, both of which are categorized using bands.  The satellite zenith angle bands are five degrees in 
width, spanning angles of 0-65 degrees and the total column water vapour bands are 7.5 kg m-2 in width, 
ranging from 0-60 kg m-2.    

The uncertainties are the standard deviation of the double differences between the retrieved and input 
surface temperatures in the fitting process [RD-7].  This standard deviation (σ) is calculated as:   

𝝈 = √
∑(𝑥 − �̅�)2

𝑛
 

(5.56) 

Where 

𝒙 = (𝐿𝑆𝑇𝑠𝑖𝑚 − 𝐿𝑆𝑇𝑟𝑒𝑡) − (𝐿𝑆𝑇𝑠𝑖𝑚 − 𝐿𝑆𝑇𝑁𝑊𝑃) (5.57) 

Here the subscripts to equation 5.57 refer to the simulated (‘sim’), retrieved (‘ret’) and input (numerical 
weather prediction, ‘NWP’) surface temperatures respectively.  ‘n’ is the number of surface temperature 
pairs.  The standard deviations calculated using this method are presented in Table 21 for each satellite 
zenith angle and total column water vapour band. 

 

0-5 0.1397374 0.1906502 0.3269909 0.4201471 0.5520666 0.5255013 0.4376333 0.4180112 

5-10 0.1400361 0.1913468 0.3282242 0.4213339 0.5538996 0.5272474 0.4388275 0.4194894 

10-15 0.1412796 0.1933246 0.3313085 0.4249771 0.5597443 0.5325294 0.44360938 0.4247408 

15-20 0.1436432 0.1968351 0.3362969 0.4312518 0.5695301 0.2417954 0.4518316 0.433856 

20-25 0.1472791 0.2009236 0.3432307 0.4406297 0.5838836 0.5551182 0.4638663 0.4476363 

25-30 0.1542108 0.2062539 0.3525505 0.4537698 0.6025053 0.5738518 0.4804446 0.4662907 

30-35 0.1593711 0.2134587 0.3650315 0.472076 0.6277122 0.5983022 0.5032856 0.4918718 

35-40 0.1678901 0.2265631 0.3822142 0.495861 0.6622258 0.6300033 0.5342761 0.5269526 

40-45 0.1811672 0.2423774 0.4007928 0.526875 0.7066834 0.6722192 0.5762372 0.5745986 

45-50 0.1951527 0.2536512 0.4262932 0.5671594 0.7645003 0.7287358 0.6341143 0.6402901 

50-55 0.2110682 0.2748969 0.4624019 0.6182972 0.8512186 0.8066604 0.7155972 0.7333723 

55-60 0.2352481 0.3066246 0.5101285 0.6893211 0.9967552 0.918269 0.8352454 0.8690413 
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60-65 0.2643704 0.3460157 0.5765274 0.7919971 1.194713 1.083928 1.015079 1.07252 

Table 21: Residual uncertainties in the coefficient fitting process.  Uncertainties are presented as standard 

deviations and would be squared when used as diagonal elements of the error covariance matrix, Sε. 

5.2.3.1.3 Uncertainties due to emissivity estimation 

Land surface emissivity in the 11 and 12 μm channels is input into the measurement equation (5.40) to 
retrieve LST from MODIS, SEVIRI and GOES-16/ABI.  Any error associated with the estimate of these values 
will propagate through the retrieval equation, resulting in a source of uncertainty in the retrieved LST 
(error effects 29 and 31 in Table 19).  The emissivity retrieval itself has a physical basis, but the errors 
associated with this emissivity estimate are likely to be locally correlated with an assumed correlation 
length scale of 0.05 degrees.   The sensitivity coefficient matrix for the propagation of this uncertainty is 
given in (5.58): 

𝑪 = [
𝜕𝑔

𝜕𝜀11
 

𝜕𝑔

𝜕𝜀12
] 

(5.58) 

The derivatives of the retrieval equation by which these uncertainties are propagated are given in 5.47 
and 5.48.  The error covariance matrix, Sε is diagonal, with each non-zero element representing the 
variance of the error distribution associated with each emissivity estimate.  These values are taken from 
the Combined ASTER and MODIS Emissivity over Land (CAMEL) atlas, and incorporate spatial, temporal 
and algorithm variability uncertainties [RD-61]. 

5.2.3.2. Uncertainties due to large-scale systematic error effects 

There are two sources of error that are correlated over long spatio-temporal scales, for example the 
lifetime of the instrument. 

1. Calibration errors in the instrument which may have a channel dependence 

2. Errors arising from using radiative transfer modelling to simulate radiance in the retrieval 
coefficient derivation. 

The uncertainty from (1) is what remains after correcting for any known bias in the data.  Propagation of 
calibration uncertainties is usually reliant on the provision of this information by the Level 1 data 
producers.  In the absence of this information and given assessments of very low systematic errors in the 
T11 and T12 observations [RD-37, RD-38] this uncertainty is not attributed at present (and assumed to be 
small).  The uncertainty from the radiative transfer modelling can be estimated by assessing the sensitivity 
of the model to perturbations in the input data.   This is done in the context of AATSR sea surface 
temperature retrievals in RD-15 for the 11 μm channel and found to be of order 0.03 K.   This value is 
adopted here for MODIS also, and applied to both the T11 and T12 observations.  As this was estimated 
with reference to sea surface temperature simulations, it is likely to be an underestimation over land. 

This value of 0.03 K for both the 11 and 12 μm channels is propagated using the sensitivity matrix with 
respect to the observation vector as given in equation 5.43.  The sensitivity terms are given in full in 
equations 5.44 and 5.45.  
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5.2.3.3. Correlations length scales of Level 2 uncertainty components 

In the Level 2 data products, uncertainty components are grouped together according to their correlation 
length scales in order to facilitate correct propagation to higher-level products (which may undergo spatial 
and/or temporal averaging).  The correlation length scales associated with all of the uncertainty 
components discussed in this section are shown in Table 22. 

 

Instrument noise Uncorrelated 

Sub-pixel emissivity variability Uncorrelated 

Emissivity estimation Biome dependent 

Atmospheric fitting 5 km  / 5 minutes [RD-28, RD-29] 

Radiative Transfer Modelling Instrument record 

Table 22: Correlation length scales for the error effects characterised in Level 2 MODIS, SEVIRI and GOES-16/ABI 

data. 

 
The provision of uncertainty information in the Level 2 products follows the same template as that 
described for the ATSR and SLSTR products.  The total uncertainty is provided along with four individual 
uncertainty components: 1) uncorrelated uncertainty, 2) large-scale systematic uncertainty, 3) locally 
correlated atmospheric uncertainty and 4) locally correlated surface uncertainty.  The two locally 
correlated systematic uncertainties are split because there are different correlation length scales 
associated with each. 
 
The correlation length scales assumed for the atmospheric uncertainty component are consistent with 
the ATSR products, with a spatial and temporal length scale of 5 km and 5 minutes respectively [RD-28, 
RD-29].  These correlation length scales are significantly shorter than those assumed over the ocean (100 
km and 1 day, which are more similar to synoptic scales).  This is due to the concept that more localised 
meteorological conditions develop over the land than the ocean.  As discussed previously, the validity of 
these assumptions is recommended for further investigation in Phase II of LST CCI to see whether the local 
or synoptic atmospheric conditions are the dominant factor and whether these correlation length scales 
should vary as a function of latitude or longitude.   

5.2.4. Level 3 data 

Level 3 products are produced on a common grid at 0.01 or 0.05 degree resolution. Three types of Level 
3 products can be produced in any given processing chain: 1) L3U – these are ‘uncollated’ products, where 
a single L2 orbit or full disk observation is placed on a regular latitude-longitude grid.  2) L3C – these are 
‘collated’ products, where two or more orbits/disks are combined from the same instrument. 3) L3S – 
these are ‘synthesised’ products, which combine L3 data from two or more sensors. 

The LST L3U value in any given grid cell is calculated using the arithmetic mean of LST observations falling 
within geographical limits of the grid cell.  This can consist of up to 25 observations when re-gridding 1 
km resolution data (for 0.05 degree products), but the total will be dependent on both cloud cover (all L3 
products) and over-lapping orbits (L3C and L3S products only).  For the 0.01 resolution data, typically only 
1-2 pixels fall into any given grid cell, sometimes with fractions of pixels overlapping the defined bounds 
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of the cell.  In this case the partially overlapping observations are also averaged, weighted by their 
fractions.  Similarly, the uncertainties are propagated following the methodology described here, but 
weighted by their fraction.     The LST in any given grid cell is calculated using: 

𝐿𝑆𝑇𝑔𝑟𝑖𝑑 =
1

𝑛
∑ 𝐿𝑆𝑇𝑖

𝑛

𝑖=1

 
 

(5.59) 

We can use the measurement equation form given in 4.2 in addition to equation 5.59 to produce a 
breakdown of the error effects for Level 3 data.  The measurement equation takes the form 〈𝑧〉 = 𝑔(𝒛, 𝜸). 
Note that we use ‘z’ and ‘γ’ rather than ‘y’ and ‘β’ when defining the observation and parameter vectors 
as we have moved up one level in the data production.  The error effects associated with Level 3 MODIS, 
SEVIRI and GOES-16/ABI data are show in Table 23. 

 

 

 

 

 

 

 

z 

 
 
 
 
 
 
 

zn 

1 LST noise i Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

2 Input data – surface 
effects (emissivity). 

i Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

3 Retrieval error – 
surface effects 

(emissivity) 

s Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

4 Retrieval error – 
atmospheric effects 

(emissivity, 
coefficient fitting). 

s Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

5 RTM and NWP 
simulation error 

c Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

6 Cloud Detection s Not 
attributed 

* 

7  Geolocation s Not 
attributed 

𝜕ℎ

𝜕𝑧
 

8 Calibration c Not 
attributed 

𝜕ℎ

𝜕𝑧
 

 

γ 

 
Weighting 

9 Weighting of 
retrieved pixels 
contributing to 

averaged product 

s 0 * 

+0 Sampling 
uncertainty 

10 Clear-sky pixel 
representivity of LST 

across gridded 
domain 

s Modelled * 

Table 23: Error effect for averaging MODIS, SEVIRI and GOES-16/ABI LST products.  Effects are categorised 

according to the measurement equation term.  Where quantified, the values propagated for each effect are 

specified.  *denotes cases where the uncertainty is modelled rather than propagated using a sensitivity 

coefficient. 
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At Level 3, there are eight error effects associated with the LST input vector, z.  Five of these (errors 1-5) 
are quantified within the Level 2 data, and these can be propagated appropriately into the Level 3 product.  
These are the noise (propagated through from the Level 1 data), the surface effects from emissivity 
parameterisation, the atmospheric effects from the coefficient fitting and the RTM and NWP errors.  Three 
further effects: from cloud detection, geolocation and calibration (errors 6-8 in the table) are not 
quantified within the Level 2 data. 

There is one error effect associated with the measurement equation parameter, γ, and that is the 
weighting applied when calculating the average.  At present, equal weighting is given to all values in the 
observation vector, z, and therefore this uncertainty is equal to zero.  Other approaches can be taken, 
which may be of more relevance under certain conditions (for example in regions of rapidly varying 
biome).  For a fuller discussion of these options please refer to section 5.1.4. 

At Level 3 the ‘+0’ term includes the uncertainty due to sub-sampling.  When using infrared observations, 
LST cannot be retrieved in the presence of clouds, which frequently results in under-sampled grid cells 
when averaging data.  This component of the uncertainty budget is modelled. 

5.2.4.1. Propagated uncertainties 

There are five uncertainty components that are propagated from the Level 2 data into the Level 3 data.  
As with the ATSR instrument, the propagation is done independently for uncertainty components with 
different correlation length scales. 

5.2.4.1.1 Uncorrelated (random) uncertainties 

The first two components (1 and 2 in Table 23) are combined in the Level 2 data to give a single 
uncorrelated uncertainty component.  The sensitivity coefficient for the propagation of uncertainty is the 
derivative of the measurement equation with respect to z.  This sensitivity matrix (C) is consistent across 
all uncertainty components that are propagated rather than modelled and is shown in equation 5.60. 

𝑪 = [
𝜕ℎ

𝜕𝑧1
…

𝜕ℎ

𝜕𝑧𝑛
] 

(5.60) 

Differentiating equation 5.59 with respect to z (LST) gives the sensitivity. 

𝜕ℎ

𝜕𝑧
=

1

𝑛
 

(5.61) 

The correlation matrix, R, in this case is the identity matrix as uncertainties are uncorrelated between 
pixels. The propagated uncertainty component, 𝑢(〈𝑧〉)𝑖, is then given in 5.62. 

𝑢(〈𝑧〉)𝑖 =
1

√𝑛
∑ 𝑢(𝑧)𝑖

𝑛

 
(5.62) 

5.2.4.1.2 Fully correlated large-scale uncertainties 

The large-scale uncertainty component that comes from the RTM and NWP errors (component 5 in Table 
23) is fully correlated over the gridded domain.  The sensitivity matrix, C, is the same as that given in 
equation 5.60 but the R matrix differs in this case.  Here the correlation matrix, R, is equal to J, i.e. all 
values including the off-diagonal terms are equal to 1.  The propagated uncertainty, 𝑢(〈𝑧〉)𝑐, is therefore 
the average of the input large-scale uncertainty components. 
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𝑢(〈𝑧〉)𝑐 =
1

𝑛
∑ 𝑢(𝑧)𝑐

𝑛

 
(5.63) 

5.2.4.1.3 Locally systematic uncertainties 

The locally systematic uncertainties have two components, one associated with the atmosphere and one 
associated with the surface.  The reason for providing these uncertainties separately is that the assumed 
correlation length scales of these components differ, as shown in Table 22.  The spatial correlation length 
scale for the atmospheric component is 5km, so on the L3U grid this is considered fully correlated and 
treated in the same way as the fully correlated large-scale uncertainties.  The sensitivity matrix, C, is 
identical to that shown in equation 5.60, and the correlation matrix, R, is equal to J, ie. all values in the 
matrix are equal to 1.  The propagated atmospheric uncertainty component ‘atm’, is therefore the average 
of the atmospheric uncertainty components associated with each LST measurement (z), as shown in 
equation 5.64. 

𝑢(〈𝑧〉)𝑎𝑡𝑚 =
1

𝑛
∑ 𝑢(𝑧)𝑎𝑡𝑚

𝑛

 
(5.64) 

At Level 3, this atmospheric uncertainty component is considered to be uncorrelated (as the spatial 
correlation length scales are equal to the grid cell size and temporal correlations are assumed to be very 
short (5 minutes)).  This is therefore added to the uncorrelated uncertainty component provided with the 
Level 3 data. 

𝑢(〈𝑧〉)𝑖 = √𝑢(〈𝑧〉)𝑖
2

+ 𝑢(〈𝑧〉)𝑎𝑡𝑚
2

 
(5.65) 

For the surface component of the locally systematic uncertainty, the same uncertainty propagation 
process is used as in the case of the ATSR instrument series.  The assumption made is that the 
uncertainties are fully correlated within observations sharing a land cover class, but uncorrelated between 
observations where the land cover class is different.  The present implementation of the uncertainty 
propagation is a two-step approach.  The first step is to take each land cover class grouping within the 
measurements (z) that form part of the average.  Within each group, uncertainties are assumed to be fully 
correlated.  The sensitivity matrix, C, is identical to that shown in equation 5.60, the correlation matrix is 
equal to J, and the uncertainty estimate as a function of biome is given in 5.66. 

𝑢(〈𝑧〉)𝑏𝑖𝑜𝑚𝑒 =
1

𝑛
∑ 𝑢(𝑧|𝑏𝑖𝑜𝑚𝑒)

𝑛

 
(5.66) 

Following this first step, there are now ‘m’ uncertainties, where 𝑚 ≠ 𝑛, unless each member of the vector 
z has a different land cover class.  The assumption is then made that the subset of uncertainties ‘m’ are 
independent as correlation is assumed to be a function of land cover class.  These uncertainties therefore 

average down as a function of 1/√𝑚 to give the locally correlated surface uncertainty component (‘surf’) 
at Level 3. 

𝑢(〈𝑧〉)𝑠𝑢𝑟𝑓 =
1

√𝑚
∑ 𝑢(𝑧)𝑏𝑖𝑜𝑚𝑒

𝑛

 
(5.60) 

This two-step implementation does not strictly follow the laws of propagation of uncertainty and leads to 
a small underestimate in the magnitude of this uncertainty component.  A worked example that illustrates 
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this is given in Section 5.1.4.1.4.  This propagation can be undertaken in a single step by correctly 
populating the correlation matrix, R, setting off-diagonal terms equal to one where observations share a 
land cover class.  All of the required information is available in order to take this approach, and this is 
recommended for implementation. 

Similarly, the retention of biome information for the correct propagation of this uncertainty component 
to higher-level products (L3C and L3S) is also recommended, although it is acknowledged that this requires 
a methodology for retaining additional data, possibly as an offline auxiliary dataset.  The reasons for 
retaining this information are discussed in detail in section 5.1.4.1.4.2, but briefly, losing information on 
the uncertainty correlation will result in an underestimation of the total uncertainty. 

5.2.4.2. New uncertainties relevant to the processing level 

The LST in a gridded product is calculated using the arithmetic mean.  The assumption here is that the LST 
measurements contributing to this mean value fully represent the variability in the LST within the grid 
cell.  In practice, this is rarely true for LST retrievals using infrared channels, as these are only possible 
under clear-sky conditions.  Where clouds exist, a part of the gridded domain is obscured.   We account 
for this by including a sampling uncertainty as part of the Level 3 LST uncertainty estimate.  This 
uncertainty is modelled using the parameterisation in equation 5.68. 

𝑢(〈𝑧〉)𝑠𝑎𝑚𝑝 =
𝑛𝑐𝑙𝑑𝜎𝑧

2

𝑛 − 1
 

(5.68) 

In equation 5.57, ncld is the number of cloudy observations in a give grid cell, n is the total number of 
observations in that grid cell and 𝜎𝑧

2 is the variance in the LST observations in the vector z.  This 
parameterisation has some limitations as it is dimensionally inconsistent, and does not correctly account 
for situations where few LST observations are available, which have consistent LST values but are not 
representative of the LST variability across the grid cell.  Further investigation would be required to 
develop this parameterisation further. 

The sampling uncertainty is uncorrelated between Level 3 grid cells and is therefore added to the 
uncorrelated uncertainty component in addition to the atmospheric uncertainty component. 

𝑢(〈𝑧〉)𝑖 = √𝑢(〈𝑧〉)𝑖
2

+ 𝑢(〈𝑧〉)𝑎𝑡𝑚
2

𝑢(〈𝑧〉)𝑠𝑎𝑚𝑝
2

 
(5.69) 

5.2.5. L3C and L3S products 

These products are created using an identical methodology to that applied to the ATSR instrument series.  
Please refer to section 5.1.5 for full details.  

5.3. SSM/I, SSMIS, AMSR-E and AMSR2 

The microwave LST product is built using radiances observed by two families of polar orbiter instruments 
sharing several observing channels at close frequencies. The first one includes the Special Sensor 
Microwave/Imagers (SSM/I since 1987) and its more recent version the Special Sensor Microwave Imagers 
Sounder (SSMIS since 2003).  These instruments fly on board Defence Meteorological Satellite Program 
(DMSP), providing passive microwave observations twice a day with an incident angle of 53 degrees. The 
main characteristics of these instruments are presented in Table 24.   Instrument swath widths are close 
to 1400 (SSM/I) and 1700 (SSMIS) km, providing a 1-2 days revisiting time depending on acquisition 
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latitude.  The second sensor series includes the Advanced Microwave Scanning Radiometer for Earth 
Observing System (AMSR-E, since 2002) and its successor AMSR-2 (since 2014). Similar to SSM/I and 
SSMIS, the revisit time is 1-2 days, but observations are taken at a larger incidence angle of 55 degrees 
and the swath widths are 1450 km for both instruments. 

 

 

SSM/I 19.35 

22.235 

37.0 

85.50   

69x43 

50x40 

37x28 

15x13 

F13 (1995-2008) ~6.30 AM/PM 

SSMIS 19.35 

22.235 

37.0 

91.665 

73x41 

73x41 

41x31 

14x13 

F17 (2009-2015) 

 

~6.30 AM/PM 

AMSR-E 18.7 

23.8 

36.5 

89.0 

27x16 

32x18 

14x8 

6x4 

Aqua (2002-2011) 1.30AM/PM 

AMSR2 18.7 

23.8 

36.5 

89.0 

22x14 

26x15 

12x7 

5x3 

GCOM-W1 (2014 1.30AM/PM 

Table 24: Instrument characteristics for SSM/I [RD-46], SSMIS [RD-47], AMSR-E, and AMSR2 [RD-62]. Vertically 

and horizontally polarized BTs are available at all frequencies, apart from the 22.235 GHz channel of SSM/I, 

SSMIS, and AMSR-E, which is only vertically polarized. SSMIS, AMSR-E, and AMSR2 also observe at other 

frequencies, but only the ones used for the LST estimation are listed. The ground resolution corresponds to the 

3dB-Field of View (FOV) of the projected ground footprint. 

SSM/I and SSMIS are differently designed instruments and not just one sequential instrument series. As 
SSMIS provides a continuation of the basic SSM/I observed frequencies, both instruments can be used 
together to build a data record of brightness temperatures at a common overpass time of ~6AM/PM. 
Nevertheless, they are not expected to give identical brightness temperatures per se, and the sensors 
require an inter-calibration before their brightness temperatures can be used to derive the microwave 
LST data record. For the LST_cci project, the brightness temperatures are sourced from the Fundamental 
Climate Data Record of Microwave Imager Radiances (FCDR-MW) put together by the Satellite Application 
Facility on Climate Monitoring (CM-SAF) [RD-48], where the brightness temperatures from the different 
SSM/I and SSMIS instruments have been inter-calibrated to reduce changes related to inter-sensor 
differences.  

AMSR-E and AMSR2 have more closely related characteristics to one-another than than SSM/I and SSMIS, 
but differences in their calibrations also exist [RD-63].  In the context of this work, where SSM/I, SSMIS, 
AMSR-E, and AMSR2 will be used to build a LST data record, it is desirable to have the four instruments 
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inter-calibrated to a common reference.  As the SSM/I and SSMIS are sourced from the FCDR-MW, the 
best option will be to have all four sensors inter-calibrated to the common reference of the FCDR-MW, 
the SSM/I instrument onboard the F11 platform. CM-SAF is currently working to make this inter-
calibration possible, and the derived inter-calibration coefficients will be applied to the AMSR-E and 
AMSR2 brightness temperatures once they become available. 

5.3.1. Land Surface Temperature Retrieval 

The brightness temperatures observed by a microwave space-borne radiometer at frequency 𝜐 and 

polarization 𝑝 assuming surface specular reflection and non-scattering atmosphere may be written: 

𝑇𝑏𝜐,𝑝 =  𝑇𝜐
↑ +  𝜏𝜐 [𝜖𝜐,𝑝𝑇𝑒𝜐 + (1 − 𝜖𝜐,𝑝)𝑇𝜐

↓] =  

(𝑇𝜐
↑ + 𝜏𝜐 𝑇𝜐

↓) + 𝜖𝜐,𝑝(𝜏𝜐 𝑇𝑒𝜐 −  𝜏𝜐 𝑇𝜐
↓ ) = 

𝐴𝜐 +   𝜖𝜐,𝑝(𝐵𝜐𝑇𝑒𝜐 +  𝐶𝜐) 

 

(5.70) 

Where 𝜏𝜐 is the total atmospheric transmittance along the sensor line of sight, 𝑇𝜐
↑
 and 𝑇𝜐

↓
 represent the 

upwelling and downwelling atmospheric emission, respectively, 𝜖𝜐,𝑝 is the surface emissivity, 𝑇𝑒𝜐 is the 

effective emission temperature of the surface, and the 𝐴𝜐, 𝐵𝜐 and 𝐶𝜐 terms are abbreviations of the 

corresponding terms. Dependence of these variables on sensor viewing angle is omitted since we observe 

at a constant zenith angle close to 53 deg. 

The effective emission temperature can then be derived by:  

𝑇𝑒𝜐 =
 𝑇𝑏𝜐,𝑝 − 𝐴𝜐 − 𝜖𝜐,𝑝𝐶𝜐

𝜖𝜐,𝑝𝐵𝜐
 

(5.71) 

This effective temperature is called the microwave LST. However, it should be noted that at some specific 

locations, especially in very dry and sandy areas, the effective emission temperature could be different 

from the skin temperature measured in the thermal infrared. This is because of the relatively large 

penetration of the microwave radiation into the sub-surface for these conditions, so the emission 

temperature does not only correspond to the surface skin [RD-49].  

The previous equation derives LST from one single observing channel. In order to better constrain the 

inversion problem, LST is retrieved using simultaneously a larger number of frequency channels. This 

allows to better take into account the atmospheric absorption and emissivity variations in the retrieval 

[RD-50], similar to the infrared retrievals, where the double-channel algorithms are more suitable to deal 

with the atmospheric absorption and emissivity effects. If the retrieval uses all channels listed in Table 24, 

there will then be seven measurement equations similar to the previous equation, and estimating the LST 

requires solving the corresponding system of equations. 

In practice, instead of solving the system of equations for each observation, the LST retrieval is based on 

approximating the relationship between the brightness temperatures and the LST by a non-linear 

regression, with the coefficients of the regression determined with a calibration database [RD-50]. To deal 

with the emissivity variation and further improve the regression, pre-calculated microwave monthly mean 

emissivity estimates are also used as regressors, together with the brightness temperatures. Concerning 
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the atmosphere, no regressors related to the temperature or water vapour are further added, but the 

information is introduced into the regression by the brightness temperature variations of the 22 GHz 

channel, which is close to a water vapour line and therefore sensitive to changes in atmospheric 

conditions. 

The non-linear regression is built by a standard multi-layer perceptron. Multi-layer perceptrons are a type 

of neural network commonly used to reproduce transfer functions between observations and related 

geophysical parameters given their proven capability to approximate any continuous function with an 

arbitrary precision [RD-51]. The details about the exact implementation can be found in [RD-50]. During 

the calibration phase, the neural network adjusts a set of parameters by minimizing a cost function 

determined by the set of input-output examples of the calibration dataset.  They can be regarded as the 

regression coefficients of the non-linear model provided by the neural network, or the retrieval 

coefficients of the inversion algorithm.  

Once the neural network is calibrated, the transfer function defined by the neural network becomes the 

measurement equation, which depends on the 7 channel brightness temperatures, the corresponding 

climatological emissivities, and the retrieval coefficients: 

𝐿𝑆𝑇 =  𝑓( 𝑇𝑚, 𝑒𝑚, 𝑎𝑛)  

 

(5.72) 

Where Tm, are the brightness temperatures for channels 19 GHz, vertically polarized (V) (m=1), 19 GHz 

horizontally polarized (H)(m=2), 22 GHz V (m=3), 37 GHz V (m=4), 37 GHz H (m=5), 85/91 GHz V (m=6), 

and 85/91 GHz H (m=7), em are the corresponding climatological emissivities for the same channels, and 

an are the retrieval coefficients, n = 1:161. The function f is differentiable, and either analytical or 

perturbation-based differentiation can be used to estimate the sensitivity of the function f to its inputs. 

To relate this back to equation 4.1, z is the retrieved LST, y are the observations (Tm), and β includes the 

retrieval coefficients an, but also the emissivities, em. This is different from the infrared measurement 

equation, where the retrieval coefficients have dependencies on fractional vegetation cover, biome, and 

precipitable water vapour. In the microwave measurement equation the retrieval coefficients are fixed 

once the neural network is calibrated, but the dependency of z on the emissivities is introduced by having 

them as inputs to the function f.     

Similar to the infrared, the main error effects associated with the terms in the measurement equation can 

be listed. Table 25 gives a breakdown of the error effects. The errors associated with the terms y and β 

are similar in nature to their infrared counterparts. Other errors are specific to the regression model and 

calibration dataset. The regression model used is relatively complex, and may not be optimal for different 

reasons, even if is parameterized as good as possible. In principle, the fitting residuals should be indicative 

of the optimality of the neural network, but some effects could still be missing. For instance, the neural 

network may be over-fitting to the calibration dataset, with small fitting residuals, but may not perform 

as optimally when inverting new observations not present in the calibration dataset. There can also be 

missing input parameters to the regression model, as not all the brightness temperature variability is 

captured by the emissivity variations. And there can be errors in the calibration dataset itself. For instance, 

the climatological emissivities and LST in the dataset come from previous inversions of brightness 

temperatures, so they are certainly subject to errors.  
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β 

a1…n 1 Fitting error s Fitting 
residual 

𝜕𝑔

𝜕𝑎
 

 

e1…m 2 Emissivity error s Emissivity 
uncertainty 

(location 
dependent) 

𝜕𝑔

𝜕𝑒
 

 

 
 
 

y 

 
 
 

T1…m 

3 Calibration error c Not 
attributed 

𝜕𝑔

𝜕𝑇
 

 

4 Noise in the 
retrievals 

i Noise 
uncertainty 
(channel-

sensor 
dependent) 

𝜕𝑔

𝜕𝑇
 

 

 
 

 
 
 
 

+ 0 

Regression 
model 

structural 
errors 

5 Error linked to a not 
optimal model 

i,c,s 
(depending 

on error) 

Not 
attributed 

 
* 

 

Regression 
dataset 
missing 
inputs 

6 Error linked to 
unexplained input 

variability  

i,c,s 
(depending 

on error) 

Not 
attributed 

 
* 

Regression 
dataset 

variables 
errors 

7 Error linked to 
original uncertainty 

in the dataset 
variables  

i,c,s 
(depending 

on error) 

Not 
attributed 

* 

Table 25: Main error effects for single pixel LST retrieval.  Effects are categorised according to the measurement 

equation term.  *denotes cases where the uncertainty cannot be propagated using a sensitivity coefficient. 

 

The LST retrievals are certainly more uncertain in the microwave than in the infrared. This is not just 

related to the use of a more complex model in the measurement equation, but to a more complex 

relationship between the microwave emission and changes in the surface and atmospheric conditions. In 

principle the uncertainty associated to the brightness temperatures and emissivity inputs could be 

propagated through the regression model. However, this propagation of uncertainty will only estimate 

the LST error that originates directly from the input uncertainty. As discussed above, this error 

propagation does not account for the inherent errors of the calibration dataset (how good it reproduces 

the “true” relationship between brightness temperatures and the LST) and the neural network itself (how 

good the neural network can approximate this relationship).  Therefore, we propose in the next sections 

a derivation of total uncertainty to have more robust error estimation. 

5.3.2.  L1 data 

Similar to the infrared retrievals, the uncertainty due to a random error effect in Level 1 data is the 
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instrumental noise. These are given in Table 26 for the SSM/I, SSMIS, AMSR-E, and AMSR2 instruments. 

In the microwave region, the Rayleigh-Jeans approximation of the Planck’s law is valid, and with the 

emissivity defined as the ratio of the radiance of a grey body with respect to the radiance of a black body 

at the same physical temperature, the brightness temperature becomes the direct product of the 

emissivity and the physical temperature.  Therefore, the sensitivity coefficients of matrix C for each 

observing channel (equation 4.9) are just then the inverse of their corresponding emissivity. The emissivity 

is location and time dependent, and much more varying than in the infrared, so only climatological values 

are at hand in the implemented retrieval scheme. In principle, average emissivity maps could be used to 

have a first idea about the error effect of the Level 1 instrumental noise. But, as discussed in the previous 

Section, we favour a derivation of total uncertainty including Level 1 and Level 2 error effects, and this 

Level 1 uncertainty will not be estimated.  

  

SSM/I 19.35 

22.235 

37.0 

85.50   

(0.45)2 

(0.74)2 

(0.38)2 

(0.69)2 

(0.42)2 

 

(0.37)2 

(0.73)2 

SSMIS 19.35 

22.235 

37.0 

91.665 

(0.35)2 

(0.45)2 

(0.22)2 

(0.19)2 

(0.35)2 

 

(0.22)2 

(0.19)2 

AMSRE 

AMSR2 

18.7 

23.8 

36.5 

89.0 

(0.7)2 

(0.6)2 

(0.7)2 

(1.2)2 

(0.7)2 

(0.6)2 

(0.7)2 

(1.2)2 

Table 26: Tm diagonal elements in the Sε matrix for the SSM/I [RD-46], SSMI/S [RD-47], AMSR-E and AMSR-2 

instruments. 

5.3.3.  L1 and L2 data together 

The microwave calibration dataset is built with real observed brightness temperatures, retrieved LST 

estimates from a detailed inversion of these observations [RD-52]. A time-location dependent 

climatological emissivity database has been also added to provide a reference emissivity for each sample 

in the dataset [RD-53]. Given the nature of this calibration dataset, it can be argued that most of the 

sources of Level 1 and Level 2 uncertainty are included in this dataset. Therefore, this information can be 

used not only to calibrate the regression model, but also to estimate an LST uncertainty based on 

inspecting the dispersion of values in the input-output space of the calibration dataset [RD-54]. 

For each combination of brightness temperatures and emissivities, the deterministic function of the 

regression model will output a single LST value. In order to associate an uncertainty value to that LST 

estimation, a small subset of the input space around that combination can be selected, and the 

corresponding dispersion in LST values in the calibration output space used as a measure of uncertainty. 

In practical terms, this can be done by dividing the multi-variable input space in a number of narrow bins, 



 

End-To-End ECV Uncertainty Budget 
 

WP2.5– DEL-2.3  

Ref.:  LST-CCI-D2.3-E3UB 

Version: 3.0 

Date:  10-Feb-2023 

Page:  58 

 

© 2023 Consortium CCI LST 

followed by the calculation, for each selected bin in the input space, of the standard deviation of the LST 

error (i.e., the difference between the LST values associated to that input bin and the corresponding LST 

estimates from the regression model). A lookup table storing bins and uncertainties can be created, and 

searched for each LST retrieval to associate an uncertainty to each LST estimation.   

This approach is illustrated in Figure 5-4, where the regression problem is simplified by regressing only 

the brightness temperatures of the 37 GHz vertically polarized channel on the corresponding LST of the 

calibration dataset. The blue lines show the deterministic output of the regression model, the black circles 

the mean value of the LST for a number of bins of brightness temperatures, and the black vertical lines 

the +- one standard deviation of the LST for that bin, centred on the mean value. As expected, most of 

the LST mean values coincide with the regression model output, i.e., the regression model performs well 

and is able to find the expected LST value for each given brightness temperature. The standard deviations 

characterize the vertical dispersions representing the uncertainty in the brightness temperature – LST 

relationship.  This dispersion is a characteristic of the calibration dataset, and it is the result of (1) expected 

variability, i.e., the observed brightness temperatures are affected by variations in other atmospheric and 

surface parameters, not just the LST, and (2) uncertainty in the calibration brightness temperatures (e.g., 

the instrumental noise) and associated LST values (e.g., the retrieval error of these LST estimates). This 

dispersion is independent of the regression model, and cannot be overcome unless additional information 

is added to the inversion scheme. When the remaining brightness temperatures and corresponding 

emissivities are added as inputs, the dispersion per bin is reduced and the regression model is able to 

estimate LST with a smaller uncertainty. 

 

                                  

Figure 5-4: Illustration of a single-channel regression model and calibration dataset.  A neural network is trained 

to retrieve LST from the SSM/I 37 GHz vertically polarized brightness temperatures (TB). Red dots are the 

samples in the calibration dataset, and the neural network output is represented in blue. The horizontal axis has 

been divided into 5 K TB bins, and for each bin the mean (black circles) and +- one standard deviation (black line 

centred around the mean) are given. See the text for more details.    

 

In practice, the multi-dimensionality of the input space complicates the bin selection. Also, storing the 
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dispersion values in a lookup table results in discrete uncertainty estimation. A more convenient 

implementation, and the one currently used, is to adopt the technique of [RD-54], where a clustering 

technique is used to facilitate the bin selection, and the uncertainty estimation is incorporated in the 

regression model itself, to provide a continuous mapping also for the uncertainty. This approach is 

illustrated in Figure 5-5. First, a neural network is calibrated to provide a first regression model and allow 

a first estimation of the retrieval error, calculated as the difference of the retrieved LST and the 

corresponding target LST. Then, a k-mean clustering technique [RD-55] is used to classify the samples of 

the calibration dataset into a number of coherent clusters, and the retrieval error is estimated for each 

cluster. This is followed by calibration of a new regression model having as output the LST and the retrieval 

error, using the same calibration dataset but with the associated errors estimated with the clustering 

technique added. This procedure can be iterated until there is a convergence on the estimated error, i.e., 

the error estimation from the output of the neural network agrees with the error derived from the 

difference between retrieved and target LST.  

                          

Figure 5-5: Illustration of (A) a traditional LST estimation with a Neural Network (NN), and (B) the proposed 

scheme where both the LST and an estimation of the LST error are provided by the NN. See the text for more 

details. Diagram adapted from Figure 2 in [RD-54]. 

 

A limitation of this approach is that it provides a total uncertainty value, characterizing Level 1 and Level 

2 errors together, without the possibility of propagating uncertainties individually to produce an 

uncertainty breakdown. Although this breakdown can be of importance for some applications, or to 

further propagate the uncertainty to next processing levels, it is believed that for this first LST_cci 

microwave data record the total uncertainty derivation can produce a more robust and useful estimation 

than a partial breakdown of uncertainties, where only small number of error effects can be taken into 

account.  

An example of estimated uncertainty is given in Figure 5-6. The top panel shows the retrieved LST for day 

2012/07/02 for the ascending overpass of SSMI around 6.30 AM, while the bottom panel displays the 



 

End-To-End ECV Uncertainty Budget 
 

WP2.5– DEL-2.3  

Ref.:  LST-CCI-D2.3-E3UB 

Version: 3.0 

Date:  10-Feb-2023 

Page:  60 

 

© 2023 Consortium CCI LST 

estimated uncertainty. In general, the larger uncertainties are located in places where our expected 

knowledge about the microwave inversion problem suggests difficult inversions. In most cases, these are 

areas where the emissivity can change rapidly. In this case, the climatological emissivity used as input to 

the regression model can be poorly representing the true surface conditions. For instance, this happens 

in snow-covered areas, surfaces that become humid due to rainfall or inundation, or transition regions 

where the vegetation growth can have large variations from year to year. Coastal regions can also display 

large uncertainty, as the true emissivity can be very low if water is present in the swath position of the 

SSM/I observation, which is not always properly captured by the closest emissivity estimate selected from 

the climatology. In arid regions large uncertainties can be related to the difficulties of the inversion in 

regions due to the large penetration depth of the microwaves and the related sub-surface emission.  

                    

                    

Figure 5-6: Example of retrieved LST (top) and associated uncertainty (bottom). Plotted the morning retrievals 

from the SSMI overpass at ~6.30 AM local time. 

 

5.3.4.  L3 data 

Microwave Level 3 products are those where data are placed onto a common grid at 0.25-degree 
resolution.  The LST value within any given grid box can be selected from the closest Level 2 value (daily 
product), or calculated as the arithmetic mean of all LST retrievals of the grid box for time averages 
(monthly from daily, or yearly from monthly). In general, we can write: 
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𝐿𝑆𝑇𝑔𝑟𝑖𝑑 =
1

𝑛
∑ 𝐿𝑆𝑇𝑖

𝑛

𝑖=1

 
(5.73) 

For the Level 3 daily, n=1, as we select only one Level 2 estimate (the closest to centre of the grid box), 
while for Level 3 monthly and Level 3 yearly n is the number of days per month with available LST 
estimates, or the number of months per year, respectively. 

Using the form of the measurement equation given in 4.2, 〈𝑧〉 = 𝑔(𝒚, 𝜷), we can define the error effects 
associated with the averaged LST product.  These are shown in Table 27. As there is not a Level 2 
uncertainty breakdown, but just a total uncertainty value, there is only one overall expected effect. For 
the error propagation, the original uncertainties are assumed to be independent, as specific correlation 
length scales cannot be attributed without an uncertainty breakdown. This is clearly a simplification, as 
some degree of correlation is expected in the LST estimate, both in term of spatial (e.g., contiguous grid 
boxes) and time (e.g., day to day) scales. The result is a likely underestimation of Level 3 uncertainty, as 
the addition of uncorrelated quantities decreases the uncertainty more than the addition of correlated 
quantities.  
 

 

z 

 
zn 

1 Overall retrieval 
error effect 

i Quantified at 
L2 

𝜕ℎ

𝜕𝑧
 

 

γ 

 
Weighting 

6 Weighting of 
retrieved pixels 
contributing to 

averaged product 

s 0 * 

+0 Coverage 
uncertainty 

7 Representativity of 
original LST across 

gridded domain 

s Not 
attributed 

* 

Table 27: Error effects for averaging LST products.  Effects are categorised according to the measurement 

equation term.  * denotes where the uncertainty cannot be propagated using a sensitivity coefficient. 

 

As the Level 3 daily product is derived by assigning the closest Level 2 values to each grid box, no 
uncertainty propagation is needed. Nevertheless, a new source of error arises from the re-gridding, as the 
selected Level 2 value will never truly represent the area of the Level 3 grid boxes. This uncertainty is very 
difficult to characterize, so it is not attributed. 

For the Level 3 monthly product, as the individual Level 3 daily uncertainties are assumed to be 
uncorrelated, the R matrix is the identity matrix, I.  The sensitivity coefficient is obtained by differentiating 

h with respect to z, resulting in an uncertainty scaled by 1/√𝑛. 
 

𝜕ℎ

𝜕𝑧
=

1

𝑛
 

(5.74) 

𝑢(〈𝑧〉)𝑖 =
1

√𝑛
∑ 𝑢(𝑧)𝑖

𝑛

 
(5.75) 
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The same considerations applies to the Level 3 yearly product, the Level 3 monthly uncertainties are 
added and assumed to be uncorrelated, propagated in a similar way to the Level 3 daily uncertainties. 
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6. Harmonisation, Drift and Time Corrections 

Generating climate data records (CDRs) of LST typically requires the combination of data from different 
satellites to form a longer time series.  Combining these data requires the application of one or more 
adjustments to some (or all) of the data inputs and these have associated uncertainties, which need to be 
accounted for.  In broad terms, four types of adjustment fall into this category: 

1. Harmonisation of all sensors in a CDR to a single reference sensor. 

2. Correction for orbital drift in one or more sensors over time (could be a calibration drift or a 
positional drift affecting the equator overpass time). 

3. Corrections for different equator overpass times of the different sensors in the series. 

4. Correction of all data to a single local time. 

These are not all necessarily applicable to every CDR, but where they are applied, an associated 
uncertainty budget should be constructed.  In this section we detail the uncertainty budgets associated 
with the infrared single-sensor CDR and the microwave products. 

6.1. Harmonisation and calibration drift correction 

The harmonisation and calibration drift corrections with reference to IASI are applied to both the infrared 
single-sensor CDR (ATSR-2, AATSR, MODIS Terra and SLSTR-A) and to the merged infrared CDR (including 
all LEO instruments e.g. MODIS, ATSR-2, AATSR and the geostationary SEVIRI instrument, although the 
latter is done independently of this project). 

6.1.1. Harmonisation and calibration drift correction with reference to IASI 

A detailed outline of the proposed harmonisation steps can be found in RD-56.  Here we describe only the 
details relevant for the construction of the uncertainty budget.  The measurement equation for the inter-
calibration of each sensor with respect to IASI is given in equation 6.1. 
 

𝐵𝑇𝑐𝑎𝑙𝑖𝑏_𝑠𝑒𝑛𝑠 = 𝐵𝑇𝑠𝑒𝑛𝑠 + 𝐵𝑇𝑐𝑜𝑟𝑟  
 

(6.1) 

𝐵𝑇𝑠𝑒𝑛𝑠 is the brightness temperature for the instrument to be calibrated against IASI.   𝐵𝑇𝑐𝑜𝑟𝑟  is a sensor-
specific correction to that brightness temperature, made with reference to the brightness temperature 
differences between that sensor and IASI.  The result of this correction is the inter-calibrated brightness 
temperature (𝐵𝑇𝑐𝑎𝑙𝑖𝑏_𝑠𝑒𝑛𝑠).  These differences are provided in the form of a look-up table at monthly 
resolution.  The error effects table associated with this measurement equation is shown below (Table 28).  
Please note that the attribution and sensitivity columns of Table 28 have yet to be completed, as this is a 
recommended uncertainty budget only, not yet applied to the data products. 
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𝒚 

 

 

 
 
 
 
 
 
 

𝐵𝑇𝑐𝑜𝑟𝑟  

1 Approximation made by 
using a simple Planck 
function to convert 
from radiance to BT 

c   

2 Calibration limited to 
60-90 degrees south 

c   

3 IASI data processor 
variable for reference 

data 

c   

4 Sampling uncertainty in 
definition of matches 

s   

5 Cloud contamination s   

6 Match-up process – 
time and viewing 

geometry differences 

s   

 

+ 0 

 7 Linear fit c   

8 Extrapolation of fit to 
data beyond lifetime of 

IASI 

c   

Table 28: Error effects table intended for the harmonisation of infrared sensors with reference to IASI. 

 
The first set of error effects (1-6) is associated with the calculation of the brightness temperature 
correction.  Error effect 1 occurs because a simple Planck function is used to convert radiance to 
brightness temperature for all sensors.  Using a single wavelength for this conversion will introduce a 
radiance dependent error, which could be eliminated by convolving the Planck function with the spectral 
response function of the observing instrument.  If this approach were not taken, then the radiance 
dependent uncertainty in making this approximation would need to be calculated.  The second error effect 
occurs because the brightness temperature correction term is calculated using data limited to 60-90 
south.  This is not representative of the full temperature range observed globally and therefore does not 
account for temperature dependence in the inter-calibration outside of the range covered by the near-
polar matches. 
 
The IASI data that has been used as a reference has been produced using different versions of the IASI 
data processor (i.e. incremental updates to the IASI time series use different processing versions).  This 
may introduce systematic changes in the IASI data due to processor changes (error effect 3).   The last 
three error effects relate to the matching process between the IASI observations and those of the sensor 
to be corrected.  Error effect 4 relates to sampling uncertainty introduced in the matches both by only 
using clear-sky observations, and by matching L3U gridded observations to the IASI footprint rather than 
using data on the L2 image grid.  Error effect 5 arises from possible cloud contamination of data that can 
occur in the case of cloud masking failure despite the use of strict cloud contamination thresholds.   Finally, 
differences in the sensor viewing geometry and time of observations between the matched data points 
will also introduce an uncertainty due to differences in the conditions under which the surface is observed 
by the two sensors (error effect 6). 
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There are also two error effects that are part of the ‘+0 term’, associated with the fitting to the data.  The 
first is the use of a linear fit.  The relationship between the MODIS and IASI data is not linear, so this 
assumption will introduce uncertainties that are larger at both ends of the time series.   The second is the 
extrapolation of the data beyond the lifetime of the IASI and MODIS sensors.  This extrapolation is 
required for a period of more than 10 years prior to the launch of IASI in order to include all of the ATSR-
2 data record for example (part of the single sensor CDR). 

6.1.1.1. How to quantify the uncertainties in the harmonisation to IASI 

For the time period in which IASI is in operation, the uncertainties can be addressed as follows.  The error 
in assuming a simple Planck function for the radiance to brightness temperature conversion (error effect 
1) can be assessed by comparing the brightness temperature calculated using the channel’s nominal 
wavelength with that using the full spectral response function convolved with the Planck function. e.g. 
 

𝐵𝜑(𝑇) =
∫ 𝐵(𝑣, 𝑇)𝜑(𝑣)𝑑𝑣

𝑣𝑚𝑎𝑥

𝑣𝑚𝑖𝑛

∫ 𝜑(𝑣)𝑑𝑣
𝑣𝑚𝑎𝑥

𝑣𝑚𝑖𝑛

 
(6.2) 

 
Where ϕ is the spectral response function (SRF), 𝑣𝑚𝑖𝑛  and 𝑣𝑚𝑎𝑥 define the boundaries of the SRF and B is 
the Planck function [RD-57].  The uncertainty will be radiance dependent and could be modelled as the 
standard deviation of these differences, but once the code to use instrument specific conversion to 
brightness temperature is written, using this instead of the single wavelength assumption would eliminate 
this source of uncertainty.  This uncertainty component associated with this assumption could be of 
magnitude ~0.1-0.5 K.   RD-57 provides a good example of the uncertainties introduced when using an 
effective wavenumber for this calculation. 
 
To address the uncertainty introduced by changes in the IASI processor, the number of changes 
throughout the time series used should be identified, along with the impact of those changes on the 
observed radiance.  The magnitude of these changes over time can then be used to inform the uncertainty 
estimate for error effect three.  A timeline of the processor updates is provided in RD-58 in addition to an 
estimate of the relative impact on these updates on both radiance and temperature.   Error effects 4, 5 
and 6 are all folded into the matchup process.  To quantify these uncertainties the standard deviations of 
the brightness temperature differences between IASI and the reference sensor in a given month could be 
used. 
 
For brightness temperature corrections extrapolated before the launch of IASI, it isn’t possible to directly 
attribute the uncertainties via the data matching process, as the data do not exist.  One way to estimate 
the uncertainty would be to apply two linear fits to the data; one using all data available in the time series 
and the second using only the data in the first five years of the time series.  Extrapolate both backwards 
in time, using the absolute difference between the two as an order-of-magnitude estimate of the 
uncertainty (which will increase linearly with time in the non-data period).  Arguments exist for using 
either fit to make the correction in this instance, and either could be justified as possible representations 
of what occurs prior to the launch of IASI, therefore since it is not known (or, by this method, knowable) 
which is more realistic, their difference scales the possible level of uncertainty (to an order of magnitude).  
This extrapolation uncertainty is common for a given time.    
 
To calculate the locally correlated uncertainty arising from the variability around the linear fit to the data, 
the residuals to the fit could be used. 
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6.2. Adjusting for differences in equator overpass time 

The single-sensor CDR uses data from ATSR-2, AATSR, MODIS-T and SLSTR-A.  There is a 30-minute time 
difference in the equator overpass time between each pair of sensors (AATSR and SLSTR-A are at 
1000/2200 local time and ATSR-2 and MODIS-T at 1030/2230 local time).  Production of a continuous time 
series of data for these sensors requires a time correction to the data from AATSR and SLSTR-A. 

6.2.1. Adjustment for differences in equator overpass time for the single-sensor CDR  

The time correction is applied in LST space using matches against MODIS as the reference sensor.  MODIS 
is chosen as this sensor overlaps with both AATSR and SLSTR-A, which are to be adjusted.  The time 
difference between the two observations (AATSR to MODIS or SLSTR to MODIS) typically falls within a 45-
minute time window, given the nominal 30-minute difference in overpass times.  The measurement 
equation for this adjustment is as follows. 
 

𝐿𝑆𝑇𝑠𝑒𝑛𝑠_𝑚𝑜𝑑 = 𝐿𝑆𝑇𝑠𝑒𝑛𝑠 + 𝐿𝑆𝑇𝑐𝑜𝑟𝑟 
 

(6.3) 

Here 𝐿𝑆𝑇𝑠𝑒𝑛𝑠 is the LST retrieved from the sensor to be adjusted, and 𝐿𝑆𝑇𝑐𝑜𝑟𝑟 the adjustment with 
reference to the corresponding MODIS LST.  These adjustments are applied using a look-up table where 
the correction is characterised as a function of time of day, location, land cover class and the time 
difference between the observations, to produce 𝐿𝑆𝑇𝑠𝑒𝑛𝑠_𝑚𝑜𝑑.  The dimensions of the look-up table bins 
are day/night, 10-degree latitude band and 1-minute bins for the sensor time differences.  Table 29 shows 
the error effects associated with this LST adjustment.  Please note that the attribution and sensitivity 
columns of this table have yet to be completed, as this is a recommended uncertainty budget only, not 
yet applied to the data products. 
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𝐿𝑆𝑇𝑐𝑜𝑟𝑟 

1 Sampling 
uncertainty in the 
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s   

2 Cloud 
contamination 

s   

 

 

+ 0 

 3 Uncertainty in the 
mean correction 

c   

4 Uncertainty in the 
LST difference on 
a particular day. 

s   

Table 29: Error effects table intended for adjustment of AATSR and SLSTR-A data to a nominal equator overpass 

time of 1030/2230. 

 
Error effect 1 associated with the LST correction term is the sampling uncertainty that is introduced in the 
match-up process.  This arises both from uneven geographical sampling due to the presence of cloud and 
the use of gridded observations that have already been averaged in time and space.  The second error 
effect is from cloud detection failures, meaning that some cloud will be present in the matches used to 
estimate the LST adjustment even where strict cloud detection thresholds are applied.  There are also two 
error effects associated with the ‘+0 term’.  The first of these is the uncertainty in the mean correction to 
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the LST difference, and the second the uncertainty in the assumption that the mean correction is 
applicable on any given day, given the particular atmospheric and surface conditions. 
 
The approach as defined in RD-56 suggests that the correction will be made using the mean differences 
in each time bin.  Given that these data are noisy, applying a linear fit to these observations and using this 
may be more appropriate for minimising the error in the correction for any given time difference.  If this 
approach is taken, the large-scale uncertainty on the mean correction (error effect 3) can be estimated 
using the standard error on this linear fit.  The local uncertainty in the LST difference on a particular day 
(error effect 4), and the uncertainties from sampling and cloud contamination (error effects one and two) 
can be estimated using the standard deviation of the LST differences in each time bin.   
 
This approach corrects only to the nominal satellite overpass time and does not account for changes in 
local time across the width of the swath.  This will be particularly important for wide swath instruments 
such as MODIS and SLSTR and will be considered in Phase 2.  Phase 1 uses the narrow swath (0-22 degrees) 
compatible with the ATSR instruments for all sensors used within the single-sensor CDR, across which the 
variation in local time is much smaller. 

6.3. Correcting data to a nominal satellite overpass time 

The microwave CDR requires a correction to local solar time to be made, to account for orbital drift in the 
contributing sensors. This correction will provide an estimate to a constant local solar time which does 
not change with location, therefore also correcting the local solar time changes arising from the 
instrument scanning with a particular orbit and ground swath width.  This correction is applied after inter-
calibration following the method of RD-59.  

6.3.1. Time correction for microwave products 

The nominal overpass time of the microwave LST product drifts in time because the satellite platforms 
carrying the SSM/I and SSMIS instruments do not correct for orbital drift. To facilitate climate studies, the 
microwave LST product includes an optional LST offset that can be added to the original retrieved LST 
value to provide a new LST estimate at 0600 and 1800 local time.  Due to the satellite orbit inclination and 
width of the observing ground swath, the nominal equator crossing time is only valid at the centre of the 
ground swath crossing the equator. This is not a particularity of the microwave instruments, but common 
to all polar orbiting sensors. The differences to the nominal time depend on the inclination of the orbit 
and the scanning velocity of the instrument. This is illustrated in Figure 6-1 (top-left), where the time 
differences of the observing time with the 1800 nominal time are shown for the L3C product on 
2005/06/03.  This implies that the microwave LST adjustments do not only correct for the drift in local 
time, but also take care of the time differences related to the characteristics of the instrument swath. 
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Figure 6-1: Example of time adjustment for the SSM/I ascending overpass on 2005/06/03. Plotted are the time 

difference of the overpass local time and 1800 (top-left); the negative of the slopes used to derive the LST 

adjustment (top-right); the LST adjustment (LSTcorr) derived by multiplying the time differences and the slopes 

(bottom-left), and; the uncertainty associated with the LST adjustment (bottom-right). See the text for more 

details. 

 
The LST adjustment is applied to the instruments SSM/I on board the satellite F13, and SSMIS on board 
F17. Two other SSMIS sensors are used to work out the adjustment, onboard the F16 and F18 platforms. 
The adjustment is based on pairs of LST differences between these instruments for 10 years of coincident 
overpasses. The measurement equation then takes a similar form to the adjustment for different satellite 
overpass times: 
 
 

𝐿𝑆𝑇𝑠𝑒𝑛𝑠_𝑚𝑜𝑑 = 𝐿𝑆𝑇𝑠𝑒𝑛𝑠 + 𝐿𝑆𝑇𝑐𝑜𝑟𝑟 
 

(6.4) 

Where 𝐿𝑆𝑇𝑠𝑒𝑛𝑠 is the L3C daily LST retrieved from the F13 or F17 sensor to be adjusted, 𝐿𝑆𝑇𝑐𝑜𝑟𝑟 the 
adjustment with reference to the F16 and F18 SSMIS instruments, and 𝐿𝑆𝑇𝑠𝑒𝑛𝑠_𝑚𝑜𝑑 is the adjusted L3C 
daily LST. Notice that, compared with the infrared: (1) microwave LST is derived not only for clear-sky, but 
also for cloudy conditions; (2) LST estimates depend more on the surface emissivity, and; (3) surface 
emissivity varies more with changes in the surface conditions.  This makes any attempt to derive a LST 
adjustment quite uncertain as its value depends on the local conditions of each particular day. For 
instance, the presence of clouds dampens the amplitude of the diurnal cycle, so the LST adjustment will 
be smaller. Likewise, a humid soil will warm less because part of the incoming radiation will be used to 
dry the soil. Therefore, only an approximated LST adjustment can be derived without information on the 
specific conditions for a particular day and time of the day.  
 
In practice the LST adjustment is derived by estimating an average ratio of daily LST changes with respect 
to the corresponding local time changes for each continental cell of the L3C product grid. To calculate this 
ratio for a given Day-of-Year (DOY) and location, for each cell and 30 days around the selected DOY, the 
available pairs of LST differences and corresponding local time differences are first selected, and then 
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divided in three bins according to the local time of the F13 and F17 observation, with the bins being local 
time < 0500(1700), between 0500(1700) and 0700(1900), and > 0700(1900).  For each DOY, cell, and local 
time range, the slope of a linear fit to the existing matches and the spread around the fit are stored in a 
look-up table. An example of the slopes of DOY 154 applied for the LST adjustments to 1800, 2005/06/03, 
are given in 6-1 (top-right). As this is the late afternoon overpass, the slopes are negative. Notice that the 
plot shows the negative of the slope with a positive colour scale. The slopes with largest negative values 
are visible at arid areas, where the amplitude of the diurnal cycle is the largest.  As expected, forested 
areas and ice surfaces have slopes closer to zero as the LST varies less during the day.  
 
The look-up table is then used to derive the 𝐿𝑆𝑇𝑐𝑜𝑟𝑟 for an observation at a given date, location, and local 
time. An example is provided in 6-1 for day 2006/06/03, where the local time difference to 1800 (top-left) 
is multiplied with the corresponding slope (top-right) providing the 𝐿𝑆𝑇𝑐𝑜𝑟𝑟 (bottom-left). The 𝐿𝑆𝑇𝑐𝑜𝑟𝑟 
can take values as large as +/- 3K, coinciding with areas with the largest local time differences and largest 
slopes. 
 
As discussed previously, the uncertainty associated to 𝐿𝑆𝑇𝑐𝑜𝑟𝑟  is expected to be large due to the 
particularities of the microwave retrieval. Table 30 shows the main error effects associated with this LST 
adjustment.  First, the daily LST estimates have an associated uncertainty. A second error effect is related 
to the sampling uncertainty that is introduced in the match-up process, as the L3C product is based on 
observations gridded from the original swath ground positions. A third error is related to the fact that the 
applied linear fit to derive the slope at a particular day, location, and local time, is not directly related to 
the specific surface and atmospheric conditions of that day and time. As described previously, the derived 
slopes use matchups in a running window of 30 days, which includes pairs of LST differences for different 
years, and therefore different conditions, and for a given range of local time differences established by 
the selected bins. Even if the bins were changed to cover much narrower local time conditions, the 
proposed scheme will still provide a “mean” correction based on the average conditions of the 10 analysed 
years for that very specific local time.  The final error effect (5) is the uncertainty that arises when changing 
between two different correction slopes at the time thresholds of 0500/1700 and 0700/1900. 
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Table 30: Error effects table for time differences corrections for microwave data 

 
To derive an uncertainty estimate for each location, day, and local time, we use the spread of the LST 
differences around the linear fit stored together with the slope value in the look-up table. This variability 
includes the first two errors, but the third one is only accounted for as an “averaged” uncertainty, with 
the uncertainty for the specific conditions not being attributed. Still, the derived values can be useful to 
provide a view of uncertainty. An example is given for the LST adjustment on 2006/06/03 in 6-1 (bottom-
right). Typical values are in the range 1-2 K, but the values can be as large as 4K, typically occurring at 
places where the LST used in the fits were highly variable. For instance, this is the case in coastal regions, 
where the coarser resolution of the microwave observation contaminates the LST retrievals with radiation 
emitted by the water entering the field of view of the instrument. Large uncertainties are also observed 
in transition regions where the local conditions can change from year to year (e.g., changes in plant 
growth, soil moisture, precipitation). This is visible in the transition zone between the arid regions of the 
Northern Africa and the forested areas of Central Africa, and in some regions in North America and Asia.  
The final uncertainty in changing the LST correction slopes is not presently attributed. 
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7. Summary of recommendations and findings  

Table 31 provides a summary of the recommendations for improvement made with Sections 5 and 6, for 
those parts of the uncertainty budget that have already been implemented.  For those sections that are 
currently only suggested methodologies for calculating the uncertainty budget, recommendations will be 
included once the scope of the initial implementation has been established.  Four recommendations are 
currently outstanding relating to the quantification of sampling uncertainty in L3 products, the 
propagation of locally systematic uncertainties in L3 products, and the time correction for wide swath 
polar orbiting satellites.  All four recommendations should be addressed in Phase 2 of the project. 

 

Provide an improved estimate of the sampling 
uncertainty in L3 IR products occurring from the 

use of clear-sky only data  

Planned for implementation in Phase 2, based on 
an extension of the approach taken for SST 

Propagation of locally-systematic surface 
uncertainties from L2 to L3 using a full R-matrix 

rather than a two-step process 

Not yet implemented in Phase 1 as many L3 
products moved from 0.05 to 0.01 degree 

resolution, making this less relevant.  This will 
need to be correctly implemented for any 
remaining products at non-native satellite 

resolution and within the regridding tool during 
Phase 2. 

Provision of biome information in all L3 products 
to enable correct onward propagation of surface 

uncertainty components. 

Biome information is only available in the 0.01 
degree L3 files.  These are used as the starting 

point for all products produced within the 
project.  This does not necessarily enable users to 

develop their own products with correct 
uncertainty propagation where they start from 

data other than 0.01 degrees, although the 
regridding tool developed in Phase 2 may go 

some way towards solving this. 

Consider local time correction across wide swath 
data for IR instruments (eg. MODIS, SLSTR, 
AVHRR) when correcting for local equator 

overpass time. 

This is of relevance in Phase 2 where wide swath 
data will be utilised.  For Phase 1, only narrow 
swath data were used in the single-sensor CDR 

where the time correction was applied. 

Table 31: Summary of recommendations and status from the current uncertainty budget implementation. 

 
The relative importance of the different error effects on the land surface temperature retrieval are 
spatially, temporally, and algorithmically dependent. Nevertheless, a few general trends are observed. 
The instrument noise is relatively small for high quality sensors such as the ATSRs, SLSTRs and MODIS. Of 
the +0 terms that are attributed, the geolocation can be significant in highly heterogeneous areas. The 
most important effects though are related to the atmosphere and surface. The atmosphere dominates 
for algorithms where the emissivity is implicit with the fitting error being the most important. For explicit 
emissivity algorithms the split is more even with the atmospheric errors (both fitting error and total 
column water vapour error) more important for high water vapour regions, and the emissivity error more 
important over dry bare soil regions. 
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8. Specification of uncertainty information used in LST 
retrieval 

The information required to calculate the uncertainty budget for the ATSR and SLSTR instruments is 
contained within a look-up table for each sensor.  These files are in netCDF format and are read by the 
retrieval code.   The structure of this look-up table is consistent between sensors and provided in section 
6.1. 

8.1. Look-up Table Structure 

Each of the look-up tables has a set of global attributes that detail the contents of the file, the creator of 
the file and the appropriate contact for users of the file who have any questions about its contents.  These 
are given in Table 32.  The global attributes also contain some data format information pertaining to the 
file type (netCDF4), conventions and dataset details.  The creation time of the file is of course file 
dependent, and is not included explicitly in Table 32. 

 

Conventions                “CF-1.4” 

title “LST error auxiliary dataset for ATS_GT2” 

institution “University of Leicester” 

source “RTTOV simulated uncertainties” 

contact “djg20@le.ac.uk” 

netCDF_version “netCDF4” 

dataset_name “LST error ATS_GT2” 

creation_time -- file dependent -- 

Table 32: Global attributes for look-up tables used in the uncertainty budget calculation for AATSR. 

Table 33 gives the details of the dimensions used in the look-up tables.  The table includes the dimension 
name as found in the file (column 1), the dimension size (column 2) and then a definition of the contents 
of the dimension (column 3).  These dimensions allow the contents of the file to be stratified by channel, 
biome, satellite zenith angle, time of day (day/night) and total column water vapour as appropriate. 
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n_biome  28 Number of biomes 

n_channel 2 Number of channels 

n_satze_band 5 Number of satellite zenith angle bands 

n_tcwv_band 1 Number of total column water vapour bands 

sl_channel 6 Character length of ‘char’ variable 

n_large_scale 1 Number of large scale uncertainty components 

n_diurnal 2 Number of diurnal components (day/night) 

n_biome_all 29 Number of biomes including water class 

Table 33: Dimensions of the look-up tables used in the uncertainty budget calculation for AATSR. 

 
There are eleven variables contained within the look-up table files (Table 34).  The first five describe the 
dimensions used for the uncertainty components.  These are the biomes, channels, satellite zenith angles, 
total column water vapour bands and times of day appropriate to the uncertainty components provided.  
The final six variables contain the data required to calculate the uncertainty budget itself.  The details of 
those applicable to the ATSR and SLSTR retrievals are as follows: 
 

i. The noise equivalent delta temperatures (NEdT) used in the propagation of this uncertainty 
component into the retrieval (u_ran_y). 

ii. The atmospheric fitting uncertainty in the retrieval coefficient calculation (u_loc_fit). 
iii. The geolocation uncertainty (delta LST expected by mis-representing the underlying biome).  
iv. The large scale systematic uncertainty for propagation into the retrieval (u_sys). 
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biome  Byte (n_biome) 

channel Char (n_channel, sl_channel) 

satze_band Float (n_satze_band) 

tcwv_band Float (n_tcwv_band) 

diurnal Byte (n_diurnal) 

u_ran_y Float (n_channel) 

u_ran_emis Float (n_channel, n_biome) 

u_loc_fit Float (n_tcwv_band,. n_satze_band, n_biome, 
n_diurnal) 

u_loc_emis Float (n_channel, n_biome) 

u_loc_geo Float (n_biome_all, n_biome, n_diurnal) 

u_sys Float (n_large_scale) 

Table 34: Variables contained within the look-up table used in the uncertainty budget calculation.  Information 

provided includes the variable name, the variable type and the dimensions of the variable. 

 

Table 35 describes the attribute metadata provided with each of the variables in the look-up table.  This 
typically includes a long name describing the data in more detail, the units of the data and values of flags 
where appropriate.  In one case (for the NEdT data) a reference is included and this is file specific. 

 

biome long_name “Biome code corresponding to biome index” 

flag_meanings “ ” 

flag_values 1b, 2b, 3b, 4b, 5b, 6b, 7b, 8b, 9b, 10b, 11b, 
12b, 13b, 14b, 15b, 16b, 17b, 18b, 19b, 20b, 

21b, 22b, 23b, 24b, 25b, 26b, 27b, 28b 

channel long_name “Channel corresponding to channel index” 

flag_meanings “ “ 

flag_values 1b, 2b 

satze_band long_name “Satellite Zenith Angle lower band value 
(degrees) corresponding to satze band index” 

flag_meanings “ “ 

flag_values 1b, 2b, 3b, 4b, 5b 

tcwv_band long_name “Total Column Water Vapour lower band value 
(degrees) corresponding to tcwv band index” 

flag_meanings “ “ 

flag_values 1b 
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diurnal long_name Diurnal code corresponding to diurnal index 

flag_meanings “ “ 

flag_values 1b, 2b 

u_ran_y long_name “Estimate of NEDTs” 

units “kelvin” 

comment -- file specific -- 

u_ran_emis long_name “Estimate of random error due to emissivity” 

units “kelvin” 

u_loc_fit long_name “Estimate of locally correlated error due to 
atmospheric fitting” 

units “kelvin” 

u_loc_emis long_name “Estimate of locally correlated error due to 
emissivity” 

units “kelvin” 

u_loc_geo long_name “Estimate of locally correlated error due to 
geolocation” 

units “kelvin” 

u_sys long_name “Estimate of large scale systematic uncertainty 
applicable to all pixels” 

units “kelvin” 

Table 35: Attributes associated with each variable contained within the look-up tables used in the uncertainty 

budget calculation. 
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9. Provision of Uncertainties in LST CCI Products 

Within LST_cci products, uncertainty information is provided with each LST measurement.  The exact 
information provided is dependent on the product type, and in some cases a full breakdown of the 
uncertainty components by correlation length scale is provided (as discussed throughout this document), 
whilst in others only the total uncertainty is included.  This section describes the uncertainty information 
provided with each product type. 

9.1.1. LST_cci product types 

It is useful here to define the different product types produced within the LST_cci project, as these will be 
discussed more extensively below.   Data are provided in four formats: L2P, L3U, L3C and L3S, with the 
format dependent on the data type [RD-21].  The LST data provided within the project are diverse, and 
the following data differences all determine the most appropriate data type for each data record: 

i. Single sensor data records or multi-sensor data records 

ii. Polar orbiting or geostationary satellites 

iii. Infrared or microwave products 

iv. Single sensor ‘type’ data records or merged products 

The required temporal resolution is also important in determining the most appropriate file format.  
Within the LST_cci project, data are provided at the following time resolutions: 

i. ‘Instantaneous’ orbit or geostationary disk 

ii. Daily 

iii. Monthly 

iv. Annually 

The differences between the L2P, L3U, L3C and L3S data formats are given in Table 36, using definitions 
provided in RD-21. 

 

L2P Geophysical variables at the full resolution of the instrument, in a satellite 
projection with associated geographical information. 

L3U Spatially averaged version of the L2P data. 

L3C  L3U data from a single instrument that have been combined and temporally 
averaged. 

L3S L3U data from multiple instruments that have been combined and 
temporally averaged onto a common grid. 

Table 36: Description of data product types produced within the LST_cci project (taken from RD-21). 
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9.1.2. L2P, L3U, L3C and L3S uncertainty information 

The L2P, L3U, L3C and L3S products all provide the total uncertainty in the LST per datum, as well as a 
complete breakdown of the associated uncertainty components: uncorrelated (random) uncertainty, 
locally systematic uncertainty (atmosphere and surface components) and large-scale uncertainty.  Table 
37 presents the variable names for these different components within the LST_cci products. 

 

Uncorrelated (random) uncertainty lst_unc_ran 

Locally systematic surface uncertainty lst_unc_loc_sfc 

Locally systematic atmospheric uncertainty lst_unc_loc_atm 

Large scale systematic uncertainty lst_unc_sys 

Total uncertainty lst_uncertainty 

Table 37: Mapping of uncertainty components to variable names within L2P, L3U, L3C and L3S products. 

All of the uncertainty variables in the L2P and L3U products are stored as 16 bit signed integers.  The 
dimensions of these variables for L2P data are shown in Table 38.  These data are provided on the orbit 
swath and consequently the spatial dimensions reflect the satellite image grid (ni and nj).  The time 
dimension of these files must always be ‘1’ as these contain data from a single orbit. 

  

time Time dimension; must be 1 for L2P data 

nj Along track dimension 

ni Across track dimension 

Table 38: Variable dimensions for uncertainty components in L2P data. 

The dimensions of the uncertainty variables in L3U, L3C and L3S products are given in Table 39.  These 
data are provided on a regular grid and therefore the spatial dimensions of these data are latitude and 
longitude.  The time dimension for these products should also be ‘1’ as they contain a single orbit on a 
regular grid. 

 

time Time dimension 

lat Latitude dimension 

lon Longitude dimension 

Table 39: Variable dimensions for uncertainty components in L3U, L3C and L3S data. 

Each of the variables provided in the L2P and L3U products has a number of attributes associated with it 
that describe the data and how to read them correctly.  The first of these is the ‘long_name’ of the 
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variable.  This contains some free text that gives a more detailed description of the variable contents than 
the variable name itself.  The long_name is different for each of the uncertainty components and the full 
list of long names is provided in Table 40. 

 

lst_unc_ran uncertainty from uncorrelated errors 

lst_unc_loc_sfc uncertainty from locally correlated errors on surface 
scales 

lst_unc_loc_atm  uncertainty from locally correlated errors on 
atmospheric scales 

lst_unc_sys uncertainty from large-scale systematic errors 

lst_uncertainty land surface temperature total uncertainty 

Table 40: ‘long_names’ for uncertainty components in L2P, L3U, L3C and L3S products. 

The remaining attributes provided with the uncertainty data are in common between all of these variables 
and are summarised in Table 41.  Each variable has attributes that describe the units and coordinates of 
the data.  Valid minimum and maximum values for the data are given which are relevant for checking that 
the data have been read correctly when used.  In addition to this, the data are scaled in order to reduce 
the storage space required for each variable.  To revert the data back to its original format the offset and 
scale factor are required to reverse the scaling.  Finally the value used to represent missing data is also 
provided (in the attribute _FillValue). 

 

units Text description of the units kelvin 

_FillValue A value used to indicate array 
elements containing no valid data 

-32768 

add_offset To be added to the variable after 
multiplying by the scale factor to 

recover the original value 

0 

scale_factor To be multiplied by the variable to 
recover the original value 

0.001 

valid_min Minimum valid value for this 
variable once they are packed (in 

storage type) 

0 

valid_max Maximum valid value for this 
variable once they are packed (in 

storage type) 

10,000 

coordinates Identifies coordinate variables lat lon 

Table 41: Common variable attributes for uncertainty components in L2P, L3U, L3C and L3S products. 
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10. Validation of Uncertainties 

One advantage of calculating uncertainties within the retrieval process itself (rather than with reference 
to an external dataset) is that these can be independently validated in addition to the LST retrieval.  
Validation of uncertainties will inform the both the data producer and data user of how representative 
the uncertainty budget is of the full uncertainty associated with each datum e.g. it will demonstrate 
whether the main (largest) uncertainty sources are well captured within the budget.   It is important to 
note here that large uncertainties do not indicate bad quality data.  Good data can have a large, well-
validated uncertainty.   Uncertainties can also be used in the validation of the LST data to prescribe upper 
and lower bounds for measurement differences. 

10.1. Techniques 

One commonly used technique for validation of retrieved LST data is to compare this with an independent 
measurement of LST.  Typically this independent measurement is made using an in-situ radiometer 
measurement, in a site deemed appropriate for in-situ to satellite comparisons.  Assessing the suitability 
of the validation site includes consideration of the site homogeneity, length of in-situ data record, 
characteristics of the in-situ radiometer and any seasonal changes in local vegetation [RD-10].  In this 
section we discuss the techniques for validating uncertainties on the assumption that a representative 
independent dataset exists, well matched temporally with the satellite observations. 

To validate retrieved surface temperature, the total uncertainty can be compared with the standard 
deviation of the difference between retrieved and independent LST estimates.  Here, the assumption is 
that the differences between the in-situ and satellite LST estimates produce an error distribution from 
which the standard deviation is representative of the uncertainty.  To take this approach, it must be kept 
in mind that the in-situ data also have an associated uncertainty, and this (along with any uncertainty in 
the matching process) determines the lower limit on the uncertainty validation.  We can express the 
uncertainty in the satellite to in-situ observations differences using equation 9.1.  The uncertainty in the 
difference (udiff) is the sum in quadrature of the uncertainty in the satellite observation, and in-situ 
measurement, along with the geophysical uncertainty of comparing a point measurement with an area 
average (space) and comparing measurements made at different times.  For microwave LST there is an 
additional geophysical uncertainty due to the measurement depth of the temperature. 

𝑢𝑑𝑖𝑓𝑓 = √𝑢𝑠𝑎𝑡
2 + 𝑢𝑖𝑛𝑠𝑖𝑡𝑢

2 + 𝑢𝑠𝑝𝑎𝑐𝑒
2 + 𝑢𝑡𝑖𝑚𝑒

2 + 𝑢𝑑𝑒𝑝𝑡ℎ
2  

(9.1) 

An example of uncertainty validation is shown in Figure 9.1.  The data shown in this instance are sea 
surface temperatures, but the methods are directly transferrable to LST data.  Considering first the top 
left-hand panel, the plot shows the standard deviation of the retrieval minus in-situ SST differences (y-
axis) as a function of the retrieval uncertainties (x-axis).  These are shown using the vertical black lines, 
mirrored about the zero line on the y-axis.  The dashed lines above and below zero on the y-axis show the 
‘ideal’ uncertainty model.  Where the total uncertainty exceeds the uncertainty in the in-situ data, these 
lines follow the 1:1 ratio.  The uncertainty in the in-situ data and geophysical uncertainties in the match 
up process prevent the ideal model from reaching zero, in this case the assumed uncertainty in the in-situ 
data is ~0.18 K.   

Where the solid lines fit well within the ideal model (as in the top right panel), this shows that the 
uncertainty model validates well.  Where the lines fall short of the model, the uncertainties in the product 
being validated are an over-estimate, i.e. these would need to be shifted to the left to agree with the ideal 
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model.  Conversely, where the solid lines exceed the model, the product that is being validated under-
estimates the uncertainties. 

For the validation of LST products, the plots will also show the number of matchups used to derive the 
statistics, as in-situ data are much more limited than is the case with sea surface temperature.  

 

Figure 10-1: An example of uncertainty budget validation.  Data are retrieved sea surface temperatures 

validated using in-situ observations from buoys.  Two different retrievals are shown for ATSR data – L2 per pixel 

datasets (top), and gridded L3 products (bottom).  Retrievals are nadir two-channel (N2) and dual-view two-

channel (D2) where the channels used are 10.8 and 12 microns.  Dashed lines denote the idealised uncertainty 

model, whilst solid lines represent the standard deviation of the retrieval minus in-situ differences.  The blue line 

shows the SST bias and the red lines are the uncertainties on the retrieved uncertainty. 
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11. APPENDIX: How to use LST CCI Uncertainty Products 

As described in section 9 and throughout this document, LST_cci products are provided with uncertainty 
estimates per datum.  The products include the total uncertainty for each LST measurement as well as a 
breakdown of the uncertainty components in accordance with their spatial correlation length scales; 
uncorrelated, locally systematic (atmospheric and surface components at Level 2) and large-scale 
systematic.  The potential uses for LST data within climate applications are diverse and varied, including, 
for example: 

❖ Assimilation of LST into numerical weather prediction or other models. 

❖ Surface energy balance studies. 

❖ Understanding urban heat islands. 

❖ Assessing long-term changes in LST and relating this to crop yields and sustainability. 

❖ Investigating temperature extremes and changing patterns in surface heating. 

Within these applications, users are often required to manipulate the LST data in one or more of the 
following ways: 

❖ Combining LST’s of different origins. 

❖ Assessing the significance of differences between LST’s. 

❖ Deriving new products through the propagation of LST data. 

❖ Data assimilation into climate or numerical weather prediction models. 

In all cases, correct use of the data requires propagation of the associated uncertainties into the given 
application.   To understand why this is important, it is perhaps useful to consider why uncertainties might 
vary across a given product (Level 2 or Level 3).  Considering first Level 2 data, there is an uncertainty 
component related to the derivation of the retrieval coefficients.  This has a dependence on total column 
water vapour, and has a tendency to increase in wetter atmospheres.  There is also an uncertainty 
component related to geolocation, essentially in assigning the correct biome to the observation.  Where 
the land surface is more heterogeneous with rapid variations in the land cover, this uncertainty will be 
larger than in more homogeneous regions.  In the example of gridded products (Level 3 data), the 
uncertainty has a dependence on sampling within a grid cell.  If lots of observations are available to 
calculate LST within a grid cell, the uncertainty will typically be lower than when few observations are 
available.  In the sections below a few worked examples are provided that describe how uncertainty 
information should be used in different scenarios.  Note that these examples have been adapted for LST 
from those presented in the SST CCI Uncertainty Characterisation Report [RD-20]. 

11.1. Using uncertainty information from Level 2 products 

11.1.1. Example 1: Is the LST from a Level 2 product significantly different from a matched 
independent in-situ radiometer measurement? 

To compare a satellite retrieved LST with an in-situ LST measurement the total uncertainty would be used.  
This total uncertainty is also referred to as the standard uncertainty and represents an estimate of the 
standard deviation of the error distribution resulting from all error sources.  The in-situ radiometer 
measurement would also have an associated uncertainty.  We therefore have two measurements plus 
their associated uncertainties, where the subscript ‘L2’ represents the retrieved data and the subscript 
‘in-situ’ the radiometer data. 
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𝐿𝑆𝑇𝐿2 ± 𝜀𝐿2  

𝐿𝑆𝑇𝑖𝑛−𝑠𝑖𝑡𝑢 ± 𝜀𝑖𝑛−𝑠𝑖𝑡𝑢  

The significance of the difference between the two measurements 𝐿𝑆𝑇𝐿2 − 𝐿𝑆𝑇𝑖𝑛−𝑠𝑖𝑡𝑢 can be interpreted 
with reference to the combined measurement uncertainty in the difference using an appropriate 
statistical technique, e.g. a students t-test.  The combined measurement uncertainty in the difference is: 

√𝜀𝐿2
2 + 𝜀𝑖𝑛−𝑠𝑖𝑡𝑢

2  
 

11.1.2. Example 2: What is the uncertainty in my calculation of outgoing LW infrared flux 
from the land surface arising from the measurement uncertainty in the Level 2 LST 
product I am using? 

To calculate thermal emission from the land surface, an equation along the lines of 𝐸 = 𝜀𝜎𝑇4 would be 
appropriate.  Here, E is the thermal emission, 𝜀 is the surface emissivity and 𝜎 is the Stefan Boltzmann 
constant.  T is the LST from the L2 product.  In this example we would again use the total uncertainty 
provided with the LST estimate.  Using the methodology for propagation of error, the uncertainty in E 
arising from the LST uncertainty is 4𝜀𝜎𝑇3. It is important to note that the LST used is not the only source 
of uncertainty in this calculation. 

11.2. Using uncertainty information from Level 3 products 

11.2.1. Example 1: What is the best estimate of the average LST over an area of 0.25 degrees 
latitude by 0.25 degrees longitude using L3U LST data? 

The Level 3 LST L3U product is gridded at a resolution of 0.05 x 0.05 degrees (latitude and longitude).  To 
estimate the average LST across the 0.25-degree domain we need to calculate an average that includes 
up to 25 Level 3 LST estimates.  Two options are available for calculating the average: 

i. A simple arithmetic mean with equal weight given to each contributing LST estimate. 

ii. A weighted mean reflecting the difference in the uncertainties associated with each contributing 
LST estimate. 

An argument can be made for either approach as follows: 

iii. If significant LST variability were expected across the 0.25-degree cell, the first approach would 
ensure that all contributing LST estimates are evenly represented in the average. 

iv. If minimum uncertainty in the LST estimate across the 0.25-degree domain is required, assuming 
that LST variability across the cell is negligible and the 25 LST estimates are essentially repeated 
measurements of the same LST. 

In this example we will consider the second option, but note that for LST this may only be appropriate in 
more homogeneous regions.  In forming a weighted mean we would use the following equation for the 
best estimate of the average. 
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�̅� = (∑ 𝜀𝑖
−2𝑥𝑖) (∑ 𝜀𝑖

−2)⁄   

Where i is an index running over the 25 contributing LST estimates, x is the LST and 𝜀 is the LST uncertainty. 
This equation gives the higher weighting to those LST estimates with lower uncertainty estimates. 

One question still remains; which uncertainty estimate should we use?  In this case, the total uncertainty 
is not the most appropriate measure.  This is because it contains uncertainty estimates that are highly 
correlated between the LST’s contributing to the average (those included in the locally systematic and 
large-scale systematic components).  As the correlation of these components is almost perfect across the 
spatial domain for which the average is being calculated, these should not influence the weight given to 
any particular LST estimate used to calculate the average.  The appropriate uncertainty component to use 
to define the weights is therefore the uncorrelated component from random error effects (provided 
within the product).  This includes factors such as instrument noise and sampling uncertainty that vary 
between the LST estimates for each Level 3 cell on this scale. 

11.2.2. Example 2: What is the total uncertainty in the averaged LST calculated in example 1 
(section 9.2.1)? 

The uncorrelated uncertainty in �̅� from random error effects in the 25 contributing LST estimates being 

averaged is given by (∑ 𝜀𝑖
−2)

−1/2
, which leads to the standard reduction in random error when calculating 

an average.  The total uncertainty also includes components from the locally systematic or structured 
error effects (s) and the large-scale common error effects (c).  To estimate these contributions, the 
average value for each across the cell is sufficient.  They should differ little if at all between the 25 
contributing LST estimates and do not average down over the scale on which they are correlated.  The 
total uncertainty can then be estimated as follows remembering that uncertainties add in quadrature. 

𝑢(𝐿𝑆𝑇) = √(∑ 𝜀𝑖
−2)

−1

+ 𝜀𝑠
2 + 𝜀𝑐

2 

 

Here, 𝜀𝑠
2 is the average of the locally systematic uncertainty and 𝜀𝑐

2 is the average of the large-scale 
systematic uncertainty for the 25 contributing LST estimates. 
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