

The SURFEX modelling platform

CARBON CYCLE

Delire et al. 2020

WATER CYCLE

Decharme et al. 2019

ISBA	Soil	Force restore : 2 temperature, 2 or 3 layers for water, icing Diffusion : multilayer (temperature, water, icing)
	Vegetation	Noilhan et Planton 89 (-Jarvis) A-gs (photosynthesis and CO2 fluxes) A-gs and interactive vegetation Slow carbon processes (wood and roots)
	Hydrology	No subgrid process Subgrid surface runoff Subgrid drainage Flooding and coupling with TRIP
	Snow	1 layer, albedo, density variable (ARP/Climat, Douville 95) 1 layer, albedo, density variable (ARP/ALD, Bazile) Multilayer (3, or) albedo, density, liquid water content (Boone and Etchevers 2000)

Land Data Assimilation within SURFEX

LDAS-Monde

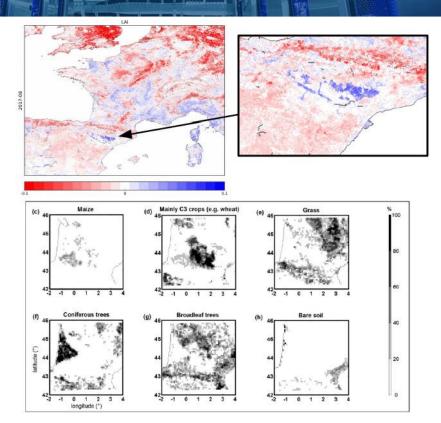
- Integration of satellite observations into the ISBA land surface model
- Involves the CTRIP river discharge model
- Sequential assimilation of LAI
 - Flexible LAI thanks to photosynthesis-driven phenology
 - Root-zone soil moisture can be analysed assimilating LAI
 - Joint LAI and SM assimilation is possible
- Sequential assimilation of Snow Water Equivalent (SWE)

FORECAST $x^{a}(t)$ ISBA LSM $x^{f}(t+24^{h})$ SEKF

Perturbed

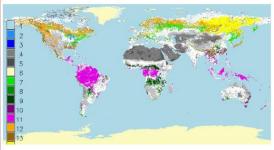
Model runs $x^{a}(t) + \delta x_{1}$ $x^{a}(t) + \delta x_{2}$ ISBA LSM $x^{a}(t) + \delta x_{3}$ $x^{a}(t) + \delta x_{4}$ $x^{a}(t) + \delta x_{5}$ $x^{a}(t) + \delta x_{5}$

 $x^{a} = x^{f} + K(y^{o} - H(x^{f}))$


MIIC

Integration of geographical info in SURFEX

- Sequential assimilation of satellite-derived LAI
 - LDAS-Monde
 - e.g. LAI increments highlighting irrigated areas in Spain (August 2017)
- Land cover and model parameter mapping
 - ECOCLIMAP
 - e.g. surface types in southwestern France



From ECOCLIMAP to ECOCLIMAP-SG

Geographical information	Years 2000 Ecoclimap-I	Years 2010 Ecoclimap-II	Years 2020 Ecoclimap-SG	
LAI	NDVI AVHRR (1992-1993)	LAI MODIS (2000-2005)	LAI Copernicus (2014-2016)	
	IGBP	IGBP	ESA-CCI (2008- 2012)	
Land cover (LC)	Corine 1990 (Europe)	Corine 2000 and GLC2000 (Europe)	Corine 2012 (Europe)	
Plant functional types (PFTs)	10	12		
LC classes (« ecosystems »)	125 (outside Europe)	125 (outside Europe)	33	
(90 (Europe)	273 (Europe)		
Spatial resolution	1 km	1 km	300 m	
Primary parameters (LAI, rooting depth, tree height, etc.)	Look up tables based on LC classes		Existing freely available databases	
Secondary parameters - Biological (e.g. photosynthesis)	Look up tables based on PFTs			
Secondary parameters - Physical (e.g. bare soil fraction, roughness, IR emissivity, albedo, etc.)	Look up tables based on PFTs and primary parameters			

Forest cover types

Crop cover types

From ECOCLIMAP to ECOCLIMAP-SG

Covers = 33 generic surface types

- 1. Sea and oceans (cov. 1)
- 2. Lakes (cov. 2)
- 3. Rivers (cov. 3)
- 4. Bare soil (veg. 1)
- 5. Bare rock (veg. 2)
- 6. Permanent snow (veg. 3)
- 7. boreal broadleaf deciduous (veg. 16)
- 8. temperate broadleaf deciduous (veg. 4)
- 9. tropical broadleaf deciduous (veg. 13)
- 10. temperate broadleaf evergreen (veg. 14)
- 11. tropical broadleaf evergreen (veg. 6)
- 12. boreal needleleaf evergreen (veg. 5)
- 13. temperate needleleaf evergreen (veg. 15)
- 14. boreal needleleaf deciduous (veg. 17)
- 15. shrubs (veg. 19)
- 16. boreal grassland (veg. 18)
- 17. temperate grassland (veg. 10)

- 18. tropical grassland (veg. 11)
- 19. Winter C3 crops (veg. 7)
- 20. Summer C3 crops (new)
- 21. C4 crops (veg. 8)
- 22. Tree cover, flooded (new)
- 23. Shrub or herbaceous cover, flooded (new)
- 24. urban LCZ1: compact high-rise (new)
- 25. urban LCZ2: compact midrise (new)
- 26. urban LCZ3: compact low-rise (new)
- 27. urban LCZ4: open high-rise (new)
- 28. urban LCZ5: open midrise (new)
- 29: urban LCZ6: open low-rise (new)
- 30: urban LCZ7: lightweight low-rise (new)
- 31: urban LCZ8: large low-rise (new)
- 32: urban LCZ9: sparsely built (new)
- 33: urban LCZ10: heavy industry (new)

Primary parameter maps

- LAI (Copernicus Global Land, 2014-2016, PROBA-V, 300 m)
- Tree height (NASA IceSat 1km)
- Rooting depth (from ECOCLIMAP-2)
- Soil, vegetation, VIS, NIR, albedo (Copernicus Global Land, 1998-2014, SPOT-VGT, 1km)

Surface parameters depending on primary parameters

- Fraction of vegetation
- Roughness length
- Emissivity
- Total albedo

Surface parameters depending only on surface type (e.g. photosynthesis parameters)

- Can
 CCI SNOW and CCI LAI products improve land reanalyses?
- How do
 LC SNOW LAI phenology
 uncertainties propagate to the water and energy budgets?

How do LC and SNOW uncertainties propagate?

- Assimilation of SWE with and without LC-CCI using LST and SM as a benchmark
 - Eurasia 2010-2019, 0.25 x 0.25 km
 - Experimental design
 - Open-loop with pre-existing LC
 - Open-loop with CCI LC
 - SWE assimilation with pre-existing LC
 - SWE assimilation with CCI LC.
 - Comparison of simulated LST and SM with corresponding CCI variables.
 - Products to be used
 - LC: v.1.6.1, already available
 - SNOW: SWE L3c v2.0, already available
 - SM: COMBINED v6.1, already available
 - LST: AQUA_MODIS_L3C_0.05, TERRA_MODIS_L3C_0.05, already available

How do LC and SNOW uncertainties propagate?

- Assimilation of SWE with and without LC-CCI using LAI as a benchmark
 - Eurasia 2010-2019, 0.25 x 0.25 km
 - Experimental design
 - Open-loop with pre-existing LC
 - Open-loop with CCI LC
 - SWE assimilation with pre-existing LC
 - SWE assimilation with CCI LC.
 - Comparison of simulated LAI with corresponding CCI LAI.
 - Products to be used
 - LAI: should be available in 2024

How do LAI uncertainties propagate?

- Assimilation of LAI using LST diurnal cycle as a benchmark
 - A region TbD in Eurasia 2010-2019, 0.25 x 0.25 km
 - Experimental design
 - LAI assimilation with CCI LC.

- Comparison of simulated LAI with corresponding CCI LAI.
- Products to be used
 - LAI: should be available in 2024
 - LST GEO product: should be available in 2024

Climate Modelling User Group

CMUG I

Slide 10

- 2023-2024
 - Assimilation of SWE with and without LC-CCI using SM and LST as a benchmark
- 2024-2025

Climate Modelling User Group

- Assimilation of SWE with and without LC-CCI using LAI as a benchmark
- Assimilation of LAI using LST diurnal cycle as a benchmark

Slide 11

CMUG

- Assessment of the impact of
 - LC on LST and SM
 - LC on LAI
 - Snow on phenology
 - Snow on LST
 - LAI on diurnal cycle of LST

Climate Modelling User Group

European Space Agency

Thank you for your attention

