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Summary 

This End-to-End ECV Uncertainty Budget (E3UB) document describes the analyses that 

were made to identify and estimate the major sources of error that arise in each step of the 
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1 Executive Summary 

This version of the End-to-End ECV Uncertainty Budget (E3UB) document aims to 

identify, characterise and estimate the major sources of error that arise in each step of the 

ECV’s final product retrieval process, as well as, to update the methods introduced in the 

previous version (E3UB version 1.1), with more convenient approaches of uncertainty 

propagation for the different products. In general terms, each step is related to a processing 

level. Those levels are typically known as Level-0, Level-1, Level-2, Level-3 (gridded 

data) and Level-4, although this naming convention has not been officially adopted by 

every space agency yet. This document tries to determine and estimate the distribution 

(uncertainty) that is followed by the errors that are caused by different effects throughout 

those levels, and provides a frame for their propagation. To do that, input sensors that were 

used by the different algorithms developed within the project for the burned area retrieval 

(Sentinel-1 SAR, Sentinel-2 MSI, Sentinel-3 Synergy, NOAA AVHRR, and Terra 

MODIS), and their corresponding ancillary data (Land Cover CCI, Active Fires, etc.) were 

properly characterised.  

2 Concepts and methods for Uncertainty characterisation 

2.1 Introduction 

Uncertainty analysis and validation are critical phases to generate any Essential Climate 

Variable (ECV), and therefore both have an important role in the European Space Agency’s 

(ESA) Climate Change Initiative (CCI) programme since its inception. The Guide to the 

Expression of Uncertainty in Measurement (GUM) that is maintained by the Joint 

Committee for Guides in Metrology (JCGM) describes this process as the “general law of 

error propagation”, and defines the uncertainty of measurement as “a parameter, associated 

with the result of a measurement that characterizes the dispersion of the values that could 

reasonably be attributed to the measurand” (GUM, 2008). While the validation gives 

information about the global quality of the product, the uncertainty analysis tries to find 

out which factors are affecting those results and how they are distributed. This implies 

characterising every source of error and determining how they are propagated through the 

entire retrieval process, i.e. from the input data to the product estimates through the 

functions used to derive the estimates.  

European research projects such as QA4EO and FIDUCEO have developed guidelines to 

concretise the application of these generic uncertainty propagation methods to Earth 

Observation (EO) data at a pixel level (Mittaz et al., 2019). However, it is important to 

separate two different stages of uncertainty characterisation that are clearly discernible in 

any EO data application. The first one encompassed the uncertainties of all processing 

levels that were applied prior to the usage of the EO data by the algorithm developer. In 

the case of burned area (BA) estimation, this refers to all the processes applied from raw 

data to generate the Level-1 (radiances) and Level-2 (reflectance) products. These 

processes occur before applying the BA algorithms, and therefore should be the 

responsibility of those in charge of the pre-processing algorithms. The second stage of 

uncertainty characterization deals with those factors related to the BA algorithm, which 

could be considered as the actual responsibility of the BA algorithm developers. They 

include all processes and transformations required to classify pixels as burned or not, as 

well as derived products (burned area estimates, for instance), which are offered to a 

higher-level user. In the case of Fire_cci BA, this stage refers to the uncertainties associated 

with BA algorithms or any process used to produce the final pixel and grid products (see 

definition of both products in the Product Specification Document (PSD) of Fire_cci Phase 
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2 (Chuvieco et al., 2017) and its update in the Algorithm Development Plan (ADP) 

document (Pettinari et al., 2019).  

The definition of the previous two phases implies that the error characterisation of the first 

one needs to be based on existing literature since it concerns several data providers of 

different processing levels (ground segments, space agencies, etc.) as well as different 

hardware and software (Mittaz et al., 2019).  

Uncertainty characterisation has been increasingly demanded for the last decades by 

different strata of the EO data user community and, hence, several attempts were done to 

provide an uninterrupted chain of error propagation at every processing level. For example, 

in the case of the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B 

product, the MODIS uncertainty index was developed by NASA to provide an estimation 

of the uncertainties related to that level https://mcst.gsfc.nasa.gov/sites/default/files/file_a

ttachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf, last accessed 

July 2021). For Sentinel data, Gorroño et al. (2017) designed a tool named Sentinel-2 

Radiometric Uncertainty Tool (S2-RUT) that aims to estimate the radiometric uncertainty 

associated with each pixel in the Top-of-Atmosphere (TOA) reflectance factor images 

provided by ESA. Within the CCI programme, the responsibles of one of the ECV 

variables, the Sea Surface Temperature (SST) data producers are making important 

progress in the uncertainty characterisation of the whole retrieval process by propagating 

the errors associated to Level-1 data of AVHRR to the final SST product (Merchant et al., 

2017; Mittaz et al., 2019). Besides, different approaches (prognostic and diagnostic) for the 

characterisation of uncertainty in aerosol retrievals were recently reviewed by 

Sayer et al. (2019). 

The antecedents of uncertainty quantification for BA products are limited. Giglio et al. 

(2010), for example, developed the BA uncertainty quantification used on the BA Global 

Fire Emissions Database version 3 (GFED3) and later on the version 4 (GFED4) products. 

The GFED products provide monthly aggregate BA extents at 0.25-0.5° spatial resolution 

based on the MCD64 BA product, which gives the date of detection at 0.5 km spatial 

resolution derived from MODIS imagery coupled with active fire observations of the same 

sensor (Giglio et al., 2009; Giglio et al., 2018a). The uncertainty of GFED products is 

expressed as a standard error of the BA extent estimated in the grid cell, and it is modelled 

with a linear regression of the burned patch residuals versus the actual extend of burned 

patches. In their study, the authors computed the per-patch residuals using reference data 

produced manually from Landsat imagery, at sample sites located in Siberia, Africa and 

North America.  

Within the Fire_cci project, three main analyses should be cited as precursors of the current 

document. Padilla and Chuvieco (2014) studied different general approaches that are used 

in error characterisation, although not all of them were found to be suitable for BA. They 

stated that the analytical based approach described in GUM 2008 could not be used in the 

Fire_cci project given the dependence of the products on complex spatiotemporal functions 

and decision trees. This is applicable to current Fire_cci algorithms since they detect BA 

using machine learning or spatiotemporal thresholding approaches, for which error 

propagation is considered unfeasible (Merchant et al., 2017). Similarly, the use of Monte 

Carlo simulations (Crosetto et al., 2001; Crosetto and Tarantola, 2001; GUM-101, 2008) 

to characterise the BA uncertainty was rejected by the authors. They considered that the 

input error simulations are frequently very complex, as they must emulate the 

autocorrelations between errors, which may vary in time and space. Furthermore, they 

stated that the Monte Carlo approach needs very large computational resources and the 

https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf
https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf
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knowledge of the probabilistic distributions of the input data errors, which are not available 

in the Fire_cci data. Therefore, the authors used an inductive approach based on validation 

data and regression analysis, which was commonly used in land cover maps to analyse the 

probability of misclassification (Burnicki, 2011; Smith et al., 2003; van Oort et al., 2011).  

The problem with this approach is that it was designed to provide a probability of burn only 

for the burned pixels and not, as it is required by definition and explicitly by the end-users, 

for both burned and the unburned classes, since every observed pixel has an associated 

uncertainty. A natural concern that also arises from these approaches is the quality of the 

sampling provided by such validation datasets, since even the larger and more systematic 

validation efforts may still provide only a limited sampling of the true uncertainties 

(Brennan et al., 2019). 

Lewis et al., (2018) performed an assessment of the uncertainty estimates generated by 

several BA algorithms within the Fire_cci project, starting from the assumption that a per-

pixel estimate giving the probability that a pixel should be labelled ‘burned’ was provided. 

The actual aim of that assessment was to give some advice to algorithm developers about 

how to improve their uncertainty estimations, also to show some examples on how the 

uncertainty was propagated through different processes such as BRDF or ratio of burn 

indices. Again, those propagation methods were more in line with the “general law of error 

propagation” described in GUM 2008, which, as was previously stated, it is not feasible to 

apply in the algorithms that have been and are being developed within the project. 

Conversely, the same document presented an approach to aggregate the uncertainty 

estimates from the pixel product to the climate modeller’s 0.25-degree grid scale, which 

was acknowledged as valid in the current project (Section 5). 

Finally, Brennan et al. (2019) estimated theoretical uncertainties for three widely used 

global satellite-derived BA products using a multiplicative triple collocation (TC) error 

model that was first described by Stoffelen (1998). This approach considers three 

observational records X1, X2, and X3 of a variable with an unknown but true value T. The 

TC error model specifies that each observational record may be related to the truth via a 

linear measurement equation. The system can be solved based on three initial assumptions, 

i.e. each product has zero mean residual errors and the errors are uncorrelated with each 

other and with T. However, a requirement to apply this approach is that the three 

observation datasets explicitly cover the same temporal and spatial domain. Therefore, the 

three products were aggregated from the original pixel resolution products to a common 

sinusoidal grid with a spatial resolution of 1º at the Equator in 16-days periods, which may 

imply new sources of uncertainty. Obviously, this approach cannot be used in the Fire_cci 

project since it needs three different BA products to obtain what is called the ‘true’ value. 

Taking all this into account, three main objectives or steps were established for the current 

deliverable: 

1. Provide a detailed overview of the different concepts and common frameworks 

of uncertainty characterisation and propagation. 

2. Describe the different sources of errors encountered in the pre-processing phase 

as well as their uncertainty characterisation and propagation. Those processes 

are required to obtain the input data for each BA algorithm developed within 

the Fire_cci project. In that sense, we will follow the guidelines of 

Mittaz et al. (2019), which show how to apply the principles of metrology to 

deal with those issues in EO. 
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3. Design an uncertainty characterisation and propagation framework for the BA 

algorithms. In the case of threshold-based algorithms the idea, whenever 

possible, is to use validation data along with Monte Carlo simulations based on 

the knowledge of the error’s correlation and distribution obtained in the 

previous step 2. For those algorithms that use machine learning approaches a 

simple way of characterizing uncertainty is to use the classification probability, 

which describes the likelihood that a pixel belongs to the burned class.  

4. Provide an aggregation methodology to propagate the uncertainty from the pixel 

to the grid product. 

As a result, and similarly to the previous Fire_cci projects, an important practical output of 

the error characterisation called uncertainty layer has been generated for the pixel and grid 

product. For the pixel product, the uncertainty is expressed in probabilistic terms, as the 

probability that a pixel is really burned. This layer was named confidence level in a 

previous version of the Fire_cci products (Chuvieco et al., 2017). For the grid product, 

uncertainty is expressed as a standard error of the total burned area for each grid cell, as 

requested by the Climate Research Group (CRG) (Chuvieco et al., 2017). 

2.2 Terminology  

Several terminological concepts are extremely important to consider before starting 

uncertainty analysis. In this section, we are describing the different terms in relation to the 

process based on the GUM (2008) and Mittaz et al. (2019): 

 Measurand: a particular quantity subject to measurement. All ECVs involve an 

indirect measurement process by applying several transformations to raw signals. 

 Accuracy: refers to the closeness of agreement between a measured value and the 

true value of a measurand. 

 Precision: denotes the degree to which further measurements or calculations show 

the same or similar result. A measurement with a small random uncertainty is said 

to have high precision. 

 Calibration: defined as the process of converting the raw signal recorded by the 

satellite to the measurand. Examples include converting raw counts to a radiance or 

brightness temperature. The calibration process is normally defined by an algorithm 

and a set of calibration coefficients. 

 Discrepancy: the difference between the measurement and the validation value. A 

small average discrepancy with respect to the root-sum-square of the measurement 

and validation value uncertainties is indicative of accurate measurement, but it 

could also result from a fortuitous cancellation of error terms. 

 Bias: an offset (additive) or scaling factor (multiplicative) that affects all 

measurements made by a particular instrument. The bias may be estimated, in 

which case it can be corrected for (a correction) or may be an unknown error. In 

practice, it refers to the mean value of the discrepancy. 

 Correction: denotes any operation of adjustment made to correct for a known bias. 

This may have a functional form (e.g. a straight line) with multiple correction 

parameters (e.g. an offset and slope). Note that even after correction there will 

always be a residual, unknown error. 

 Error (of measurement): the process of measurement is never exact, and the 

difference between a measured value and the ‘true value’ of the measurand is called 

the error. 



 

Fire_cci 
End to End ECV Uncertainty Budget 

Ref.: Fire_cci_D2.2_E3UB_v2.3 

Issue 2.3 Date 27/04/2022 

Page 10 
 

 Random (aleatoric) errors: are errors manifesting independence: the error in one 

instance is in no way predictable from knowledge of the error in another instance. 

A  complication arises in EO imagery when one instance of a parameter in the 

radiance measurement function is used in the calculation of the Earth radiance 

across many pixels. That component of the error in the radiance image is then 

correlated across pixels, even though the originating effect is random.  

 Structured errors: arise from effects that influence more than one measured value 

in the image but are not in common across the whole image. The originating effect 

may be random or systematic (but acting on a subset or locality of pixels), but in 

either case, the resulting errors are not independent and may even be perfectly 

correlated across the affected pixels. Since the sensitivity of different pixels or 

channels to the originating effect may differ, even if there is a perfect error 

correlation, the error (and associated uncertainty) in the measured value can differ 

in magnitude. Structured errors are therefore complex, and at the same time, 

important to understand because their error correlation properties affect how 

uncertainty propagates to higher-level data. A structured random effect would refer 

to an effect that is unpredictable in terms of origin while leading to a predictable 

pattern of correlated errors across measured values in an image. 

 Common errors: These errors are constant (or nearly so) across the satellite image 

and may be shared across the measured radiances for a significant proportion of a 

satellite mission. Common errors might typically be referred to as biases in the 

measured radiances. 

 Systematic errors: arise from unknown effects that could in principle be estimated 

rather than from chance processes, and that influence many measured values, 

including, but are not limited to, effects that give rise to constant error for a 

significant proportion of a satellite mission – i.e., biases, for which the structure is 

a simple error in common. Generally, this type of errors can be corrected for if we 

had sufficient information to do so. However, our knowledge of the systematic error 

is imperfect, and so our correction, although the best we can do with the information 

available, will be imperfect. In terms of correlation properties across an image, 

therefore, effects that are systematic in origin give rise to either structured or 

common errors. Systematic errors, therefore, “average out” slowly or not at all 

across many measured values; systematic effects may be operating at the same time 

as other types of effect, in which case only a component of the total error is 

systematic; an example of a systematic effect is a mischaracterised calibration 

target. 

 Uncertainty (of measurement): a parameter, associated with the result of a 

measurement that characterizes the dispersion of the values that could reasonably 

be attributed to the measurand. The estimation of uncertainty is given in the same 

unit as the measured value. This is generally written as the standard uncertainty 

𝑢(𝑥) where 𝑥 denotes the measured value.  

 Standard uncertainty: it describes the standard deviation of the probability 

distribution describing the spread of possible values.  

 Consistency (of CDRs): can be defined as the compatibility of the relevant 

characteristics of two or more climate data records (CDRs) (e.g., patterns, 

variability, and trends) with a reference (represented by a physical equation, a 

model, or a fiducial reference) within their combined uncertainties. 
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2.3 Uncertainty analysis   

The ultimate goal of uncertainty propagation is to evaluate the reliability of the model 

outputs, to represent the model output variability in a compact way. Let’s consider the 

modelling function of the measurand 𝑌 from the vector of input quantities 𝑋 =
 {𝑋1, 𝑋2, … 𝑋𝑛}: 

𝑌 =  𝑓(𝑋) + ∆ (1) 

The term ∆ is an input quantity introduced to represent any inadequacy of the function 𝑓 to 

represent all phenomena that affect the measurand. In the GUM, the convention is for 

estimates to be represented with the lower-case characters corresponding to the quantities 

written in upper case. Thus the estimated value of 𝑌 will be modelled hereafter as: 

𝑦 = 𝑓(𝑥1, 𝑥2, … 𝑥𝑛) +  𝛿 (2) 

The evaluation of the uncertainty in 𝑦 can be propagated through the measurement model 

of these uncertainties (or, strictly, distributions). In practice, the process of uncertainty 

analysis involves the determination of uncertainty budget, which is the list of random and 

systematic errors components that contribute to the uncertainty in measurement results.  

In the best-case scenario, where the relationship between input variables and the measurand 

can be algebraically written, the GUM recommends propagating the uncertainty using an 

analytical method well known as the “Law of Propagation of Uncertainty” (LPU). The LPU 

propagates standard uncertainties for the input quantities through a locally-linear first-order 

Taylor series expansion of the measurement function to obtain the standard uncertainty 

associated with the estimate 𝑦 of the measurand (higher order approximations can be 

applied if necessary). Then, the uncertainty of the measurand can be written in matrix 

notation as: 

𝑢2(𝑦) = 𝐶 𝑆𝑥  𝐶
𝑇 (3) 

 

where 𝑆𝑥 is the covariance matrix of input quantities and 𝐶 is the vector of sensitivity 

coefficients, which provide a measure of how sensitive the measurand, 𝑌, is to a change in 

a given input quantity, 𝑋𝑗.They propagate the uncertainty associated with an input quantity 

into an uncertainty associated with the measurand (and in the units of the measurand). The 

simplicity of the analytical expression of the measurand allows to get the sensitivity 

coefficients based on the partial derivative of the measurement function with respect to the 

term that this uncertainty applies to, evaluated at the estimates of the input quantities. Thus, 

the sensitivity coefficient of a given input quantity, 𝑋𝑗  can be defined as: 

𝐶 𝑗 = 
𝑑𝑓

𝑑𝑥𝑗
 

(4) 

 

The concept of correlation error is very important to account for in that process. For this 

reason, the total uncertainty of the measurand is defined by the covariance matrix of the 

different input variables denoted 𝑆𝑥: 
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𝑆𝑥 = 

[
 
 
 

𝑢2(𝑥1) 𝑢(𝑥1, 𝑥2) … 𝑢(𝑥1, 𝑥𝑛)

𝑢(𝑥2, 𝑥1) 𝑢2(𝑥2) ⋯ 𝑢(𝑥2, 𝑥𝑛)
⋮ ⋮ ⋱ ⋮

𝑢(𝑥𝑛, 𝑥1) 𝑢(𝑥𝑛, 𝑥2) ⋯ 𝑢2(𝑥𝑛) ]
 
 
 
 

(5) 

where 𝑢(𝑥) =  {𝑢(𝑥1), 𝑢(𝑥2),…  𝑢(𝑥𝑛)}is the vector of input uncertainties. 

Errors and their uncertainty budget can be summarised in a consistent manner using the 

uncertainty analysis diagram. Figure 1 illustrates an example with three input variables. 

The errors affecting these variables are described by their probability distribution functions 

(PDF) that allow deriving the uncertainty as a standard deviation. The term 0 in the diagram 

denotes the best estimate of δ, which is the expectation of ∆.  

 

Figure 1. Uncertainty analysis diagram. Source: Mittaz et al. (2019) 

In the case of highly non-linear models with more complex probability distributions, and 

models that cannot be written algebraically, which are very common in geophysical 

variables retrieved from EO data, the GUM recommends using Monte Carlo simulations 

to shape the output probability distribution for the measurand. In contrast to the analytical 

LPU method, Monte Carlo may be regarded as a numerical approach that uses 

algorithmically generated pseudo-random input values. Then, the values are  forced to 

follow some prescribed probability distributions of input variables in order to get a finite 

set of random draws from those distributions. Monte Carlo propagates the sets of input 

values afterwards through the measurement function to obtain a set of output values 

regarded as random draws from the probability distribution of the measurand. This process 

is repeated a sufficiently large number of times to produce a set of simulated results as 

output. In the end, the mean and standard deviation of these output results are considered 

as the best estimates of the measurand and its standard uncertainty (Farrance and 

Frenkel, 2014). 

Monte Carlo method evaluates the measurement model in each trial; this means that it is 

very costly in terms of computational load. This issue is very critical in the case of very 

large EO datasets, which is the reason why it is often used in combination with LPU. For 

instance, it can be applied to determine the uncertainty for a particular quantity, which is 

then used as an input to LPU in a subsequent uncertainty analysis. 
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2.4 Status of uncertainty analysis at the level of CCI programme 

The question of how to derive and present uncertainty information in CDRs has received 

sustained attention within CCI programme (Hollmann et al., 2013). For this reason, all 

ECVs deliverables within the frame of the programme were requested to include a detailed 

description of the sources of uncertainty in the different processing stages, and a consistent 

manner of uncertainty propagation. The documentation of most of ECVs covers these 

aspects in their error characterisation reports (except in some cases, e.g. Snow CCI). 

However, the practical application of uncertainty propagation methods from level-0 until 

level-3 and level-4 products is still challenging. For instance, a detailed description of 

sources of errors encountered while processing SAR and optical data to deliver the Land 

Cover CCI product is given, along with the approaches of uncertainty estimation. However, 

only uncertainty derived from classification algorithms is delivered with pixel product. 

Moreover, in the case of the grid product, the results weren’t good enough for climate 

modelling. It was thus proposed to express the uncertainty in the form of a new set of 

“alternative” global land cover maps. These “alternative” maps should give, on a per-pixel 

basis another possible class when relevant and using them in the models instead of the 

original LC maps (ESA, 2015). Concerning Lakes CCI, the uncertainty estimation of lakes 

water level parameter (LWL) at a given time is derived from the standard deviation of the 

individual lake water height along the track, but uncertainty propagation is not reported. 

The uncertainty estimates of other delivered variables in that product are mainly carried 

out using reference data (Vickers et al., 2020). On the other hand, uncertainty propagation 

was possible in the case of Biomass CCI by applying the LPU to the measurement model 

and by approximating uncertainty of S1 backscatter as a function of the equivalent number 

of looks (Santoro et al., 2019). In general, Researchers commonly encounter datasets where 

uncertainty information is generic, misleading or absent (Merchant et al., 2017), which 

makes the correct uncertainty propagation of these ECVs a challenging task, and 

sometimes impossible. 

For the Fire_cci project, we have undertaken a similar approach, by considering the main 

factors of uncertainty associated to the different phases of the processing chain: firstly, 

focus on the pre-processing (geometric and radiometric correction: section 3) and secondly, 

on the burned area detection (section 4). We have developed different procedures adapted 

to the sensors used as input and the algorithms for the different Fire_cci BA products. 

3 Uncertainty characterisation through pre-processing steps 

3.1 General overview 

In a laboratory, the uncertainty is characterised by the statistical evaluation of repeated 

measurements. In EO, this is not possible due to the variation in sensor state, viewing 

geometry, and natural geophysical variability. Besides, the atmosphere modifies the TOA 

radiance observable from space by processes of scattering, absorption, and emission. The 

impact of the atmosphere on the radiance depends on the vertical profile of radiatively 

active gases, aerosols and clouds. Surface changes caused by variations in moisture, 

temperature, or vegetation phenology, among other factors. These variations also affect 

reflected radiance and may confuse the detection of actual cover changes, such as those 

caused by fire disturbances. 

To understand the uncertainty propagation throughout the process of measurement and 

posterior transformations of the obtained data a key term is the level of processing of an 
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EO product. Processing levels reflect both distinct computational stages in handling data 

streams downlinked from satellites and the different institutional arrangements for creating 

products at different levels (Mittaz et al., 2019). Although it is not yet standardized among 

agencies and communities that provide those products, typically five levels can be 

differentiated: 

 Level-0 (L0): This level includes the raw telemetry that is downlinked by a ground 

receiving station, which comprises a mix of scientific observations together with 

engineering data. Transforming L0 data to scientifically useful products is complex. 

One of the main sources of uncertainty is the digitisation carried out to transform the 

analogic signal into digital. The raw sensor data is binary (10 to 16 bits), but such 

digitisation is coarse compared to laboratory metrology. That binary representation of 

the raw sensor values places a fundamental lower limit on the uncertainty present in 

the calibrated radiances. For example, 10-bit digitisation corresponds to 0.1% 

resolution of the range (Mittaz et al., 2019). In addition to this source, L0 processing 

involves estimating the satellite orbit and the origin of the measured radiances 

projected onto Earth’s surface (known as geo-locating). In this case, the uncertainty 

increases depending on the quality of the orbit information, i.e. if it is Near Real Time 

(NRT) or Non-Time-Critical (NTC) improved geo-location. 

 Level-1 (L1): It includes calibration parameters to map the counts into radiance and 

the derived calibrated radiances. Auxiliary data locate the radiances in time, latitude, 

and longitude and provide information related to satellite and solar zenith and azimuth 

angles. At this level, the main sources of error are the calibration parameters (gain and 

offset) that are part of the measurement function. In this case, this function allows the 

previously mentioned mapping of counts into radiance. Changes in those parameters 

are to be expected as the sensor’s space environment changes and the sensor degrades. 

This means that the uncertainties associated with measured radiances will evolve. 

Typically, after 3-10 years a sensor will fail or will be decommissioned. In the case of 

multi-decadal datasets, the sensors are supposed to have an identical spectral response 

but they have significant differences in their Spectral Response Function (SRF). 

 Level-2 (L2): This level normally involves the inverse estimation from radiances of 

one or more geophysical variables. The retrieval algorithms used in EO for that 

purpose are highly varied. As in previous levels, no input uncertainty information is 

included at this level. Users of L2 often interrogate pixel-level quality indicators for 

indications, but quality indicators change from one product to another. In that sense, 

in ESA CCI they reached a consensus with regards to the best practice for geophysical 

products (Merchant et al., 2017). 

 Level-3 (L3): They are gridded products, made by aggregating L2 values in space 

and/or time on a regular space-time grid. Therefore, it implies averaging the L2 

(sometimes weighted). Assuming the sampling or the aggregation is independent of 

the variability, the resulting sampling error has an expectation of zero. But the error 

distribution has a width that is not negligible compared to the uncertainty of the value. 

 Level-4 (L4): It typically includes complete gridded gap-free in space and time 

information, which in many cases involves interpolation, and hence, a specific error 

propagation. 

Officially, no complete traceable analysis and propagation of uncertainty from L0 to L4 

exists for any current EO processing chain (Mittaz et al., 2019). This means that algorithm 

developers have no chance to include as input the error characterisation of previous levels 

and, therefore, to generate a proper error characterisation of their own processes. The 

following sub-sections try to characterise from existing literature the different error sources 
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of those previous levels to somehow show the diversity and nature of the errors that should 

be taken into account. 

3.2 Terra-MODIS Level 2G 

Three products are used as main inputs for the FireCCI51 algorithm (Lizundia-Loiola et 

al., 2020) related to the Terra satellite’s MODIS sensor: the MOD09GQ product, which 

provides an estimate of Red and Near-Infrared (NIR) surface reflectance at 250 m spatial 

resolution, the MOD09GA product, which provides, along with the rest of the reflectance 

and emissive bands, the state QA flags used by the algorithm at 1000 m spatial resolution, 

and the MCD14ML active fire product. This latter product includes also Aqua satellite data 

and will be covered in the ancillary data section (Section 3.7), as it is only used for guiding 

the training phase. 

Four MODIS processing levels are differentiated based on the MOD09 user guide 

(Vermote et al., 2015). L0 data is raw satellite data that feeds L1 data that has been 

radiometrically calibrated, but not otherwise altered. L2 data is L1 data that has been 

atmospherically corrected to yield a surface reflectance product. L3 data is L2 data that has 

been gridded into a map projection, and usually has also been temporally composited or 

averaged. L4 data are products that have been put through additional processing. All data 

up to and including L2 are in an ungridded orbital swath format, with each swath typically 

cut into small segments, or granules, to facilitate processing. Data at L3 and up are geo-

located into a specific map projection, with the geo-located products typically in a set of 

non-overlapping tiles. The L2G-lite format, consisting of gridded L2 data, was developed 

as a means of separating geo-locating from compositing and averaging.  

Several scientific teams are responsible for the quality of the MODIS products. The 

MODIS Land Quality-Assessment team, for example, evaluates and documents the 

scientific quality of the MODLAND products with respect to their intended performance. 

The MODIS Characterization and Support Team (MCST) is responsible for developing 

and maintaining the MODIS calibration product (L1B algorithm), which is a precursor to 

every geophysical science product. In this last case, there has been an attempt to 

characterise the uncertainty that affects the L1B creation process through the inclusion of 

uncertainty data on a pixel-by-pixel basis. The reflective solar bands uncertainty algorithm 

is based on characterization of the Earth View (EV) scene reflectance (Xiong et al., 2013). 

To compute it, the uncertainty of the Solar Diffuser/Solar Diffuser Stability Monitor 

calibration, the lunar calibration, EV response trending, the temperature correction and the 

scene dependent instrument noise are taken into account.  

In the following step, the L1B is corrected for the effects of atmospheric gases and aerosols 

to obtain the L2 product (MOD09). Thus, an estimate of the surface spectral reflectance 

for each band as it would be measured at top of the canopy if there were no atmospheric 

scattering or absorption is obtained. Band quality control information for the correction is 

also generated (e.g., flags denoting if ancillary data is unavailable, if L1B data is faulty, 

etc.). However, this layer does not represent actual uncertainty propagation data, but a 

general band quality of the Atmospheric Correction (AC). 

Finally, daily MOD09 L2 data is aggregated in standard MODIS sinusoidal tiles 

(MOD09GA and MOD09GQ L2G-lite). The number of daily observations at each pixel is 

determined not only by the number of orbits at that location (one at the equator and up to 

15 at the poles), but also by the spread of observational coverage of off-nadir pixels. After 

identifying all the observational values for each location, the most suitable reflectance 

value is selected for each pixel based on observational coverage and view angle, and 
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whether the observation is flagged as cloudy, clear, containing high aerosol or low aerosol, 

or cloud shadow.  

The L2G-lite products, which are the inputs for FireCCI51, include a layer of the band 

quality that cannot be considered a proper uncertainty layer. Although the original 

uncertainty of the L1B product is somehow taken into account when setting the quality of 

a pixel, it provides qualitative information instead of a quantitative description of how 

errors are propagated and distributed. No information is officially provided in the products 

regarding the error propagation through the AC, projection of the data or how the ranking 

that is used to select the best observation affects uncertainty.  

In that sense, Vermote et al (2008) made an estimation of the sensitivity of surface 

reflectance to uncertainties in input key atmospheric parameters using a theoretical error 

budget. Such a budget was created based on the simulation of a number of atmospheric and 

geometrical scenarios (Vermote and Saleous, 2006). In that study, uncertainties from the 

instrument calibration (±2%), atmospheric pressure (±10 mb), water vapour content (±0.2 

g/cm2), ozone content (±0.02 cm∙atm), retrieved Atmospheric Optical Thickness (AOT) 

values (resulted from the aerosol inversion), and selection of the aerosol model (urban 

polluted, smoke low absorption, smoke high absorption, or urban clean) were considered. 

They found that the overall accuracy of surface reflectance varies depending on the band 

and AOT. Under clear atmospheric conditions, they stated that it does not exceed 0.006 in 

reflectance unit. The MODIS product theoretical uncertainty bars were set to 0.005+0.05ρ 

for the surface reflectance under favourable conditions (no high aerosol). To check the 

quality of the MOD09 they analysed a year of Terra data (2003) collected over 150 

AERONET sites. The results showed that the average percentage of observations that lay 

within the theoretical uncertainty for bands 1 (645 nm), 2 (870nm), 3 (470 nm), 4 (550 

nm), 5 (1240 nm), 6 (1650 nm), and 7 (2130 nm) was equal to 88.66%, 94.34%, 50.52%, 

79.34%, 96.50%, 97.87%, and 98.62%, respectively. The band 2 NIR, which is used by the 

FireCCI51, showed one of the highest proportions of “good” observations. 

Regarding the state information that is used from the MOD09GA, although it is unclear the 

origin of all bit values included on it, it seems that the main source is the MOD35 developed 

by the MODIS Cloud Mask Team (Ackerman et al., 2010). This product, which is based 

on L1B radiance data, assumes that its inputs are calibrated and quality controlled and no 

propagation of its uncertainties is made. In the process of identifying pixels, several 

thresholds are used and hence, as one approaches the threshold limits, the certainty or 

confidence in the labelling becomes more and more uncertain. For that reason, a confidence 

layer is provided that tries to be an alternative to uncertainty considering it as a function of 

how close the observation is to the thresholds. 

3.3 Sentinel 3-Synergy Level 2 

This product is the input for the FireCCIS310 algorithm, which will be available for the 

years 2019 and 2020. One unique product is used as main input related to the Sentinel-3 

(S3) satellite’s OLCI and SLSTR sensors: the SY_2_SYN product, which provides an 

estimate of Visible, NIR and Short Wave Infrared (SWIR) surface reflectance at 300 m 

resolution, along with the rest of the information, e.g. quality flags or geometry.  

Several processing levels, similar to those established by MODIS, can be differentiated 

based on the S3 OLCI, S3 SLSTR and S3 Synergy (SYN) Product User Guides (PUG, 

https://sentinel.esa.int/web/sentinel/user-guides, last accessed July 2021). L0 data is raw 

satellite data that includes time sorted and annotated data from Instrument Source Packet 

(ISP). These data, the orbit scenario file and several auxiliary data files feed the L1 EO 

about:blank
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processing chain. The derived product is called L1B and provides radiometrically 

calibrated, geo-referenced and annotated radiances. These first two levels are common but 

independent for both OLCI and SLSTR sensors and, hence, two L1B products are obtained, 

respectively. In the following step, these two products are used to feed and generate the 

internal SYN L1 product (SY_1_MISR). This process aims to project all OLCI and SLSTR 

bands on the same SYN reference grid (i.e. the OLCI acquisition grid), using the inter-

instrumental misregistration estimated for both sensors’ bands. Finally, in L2 that internal 

information is atmospherically corrected to generate surface directional reflectances stored 

in the SY_2_SYN product. As in the case of MODIS, all data up to and including L2 are 

in an ungridded orbital swath format, with each swath typically cut into small segments, or 

granules, to facilitate processing. However, in the case of SYN there is not any processing 

level equivalent to the L2G-lite of MODIS. Therefore, SYN L2 information is aggregated 

into daily non-overlapping tiles of 10x10 degrees by Brockmann Consult (BC) for internal 

use. 

The quality of the S3 products is the responsibility of the full Ground Segment and mainly 

of the Payload Data Ground Segment (PDGS). It operationally generates the user products 

and distributes L0 raw products, processed L1 products and derived L2 products. However, 

there is no official uncertainty propagation process integrated through the different levels.   

In the case of the OLCI L1B products only quality flag information (saturated radiances, 

dubious locations, where cosmetic was applied, bright pixels, sun glint risk, etc.) is 

provided within the product (ACRI-ST IPF Team, 2017), along with some information 

related to the observation environment, such as the geometry tie points and meteorological 

tie points. It is supposed that an error estimate band of the radiance is included, but no such 

layer was found in the downloaded data from the open hub 

(https://scihub.copernicus.eu/dhus/#/home, last accessed July 2021). A similar approach is 

followed for SLSTR, although in this case the previous information is extended due to the 

availability of SWIR and Thermal Infrared bands (ACRI-ST IPF Team, 2018). Each 

SLSTR band is provided along with a quality data layer that contains estimates of the 

random signal noise per scan line derived from the on-board calibration sources (the 

VISCAL and the blackbodies), and correlated radiometric uncertainties as a function of 

scene radiance or/and brightness temperature (BT) derived from the pre-launch calibration. 

Although there is no proper uncertainty propagation information within the official 

products, some attempts to assess the per-pixel uncertainty of both sensors L1B products 

have been found in the literature.  

On the one hand, Hunt and Nieke (2016) developed a software tool to determine the per-

pixel uncertainty of the OLCI L1B images. It was developed following the approach 

outlined in GUM (2008) and was created with the goal of integrating it in the S3 Toolbox 

(now called Sentinels Application Platform, SNAP) software package as a plugin. 

Similarly to Mittaz et al. 2019, they first describe the OLCI measurement model of the L1B 

radiances to characterise the contributors of the overall uncertainty model. Then, they 

defined an uncertainty model as a function of the total signal (noise), radiometric 

calibration (diffuser BRDF estimated at 0.3%, diffuser alignment estimated at 0.31%, 

diffuser ageing, calibration diffuser stray light estimated at 0.08%, calibration camera stray 

light estimated at 0.2% and calibration speckle estimate at typically 0.1%), non-linearity 

(CCD and ADC non-linearity), dark signal (offset compensation and dark stability error), 

smear (smear gain contributions) and stray light contribution. Hunt and Nieke (2016) 

showed uncertainties around 0.76% for a specific preliminary example for a region in 

Northern Sahara. 

https://scihub.copernicus.eu/dhus/#/home
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On the other hand, Etxaluze and Smith (2019) have recently developed a tool called 

MapnoiS3 to allow users of SLSTR L1B data to derive per pixel uncertainty estimates for 

both radiance and thermal channels using the information contained in the L1B product 

and additional auxiliary data files (ADF). Using the random signal noise and correlated 

radiometric uncertainties included in the quality layers they are able to generate a new 

NetCDF file where the scene radiance/BT uncertainty, noise equivalent radiance/BT and, 

in the case of BT, the partial derivative of the radiance as a function of temperature are 

included. The contributors to the total uncertainty slightly differ from radiance to BT. In 

the first case, the total radiometric noise is considered to be composed of the noise related 

to the light intensity level (shot noise) and the electronic noise (dark current, amplifier 

noise, reset noise, digitisation). However, Etxaluze and Smith (2019) stated that at the high-

level quantisation of SLSTR the digitisation, amplifier and reset noise are insignificant. In 

the latter case, the radiometric noise is considered to be composed of the noise equivalent 

differential temperature per scan line. 

In the following processing steps, regarding the SYN product, two consecutive products 

are generated: the L1C and the L2. The former is only for internal use and it is not 

resampled to a specific surface grid or projection, but includes all the necessary 

misregistration information so that any user-defined projection or gridding can be 

performed at a higher-level (S3 Team, 2011). There is not any mention of the uncertainty 

in the whole L1C Algorithm Theoretical Basis Document (ATBD, 

https://sentinel.esa.int/documents/247904/349589/SYN_L2-3_ATBD.pdf/8dfd9043-

5881-4b38-aae5-86fb9034a94d?t=1371548198000, last accessed on August 2021). The 

latter contains atmospherically corrected surface directional reflectance referenced at OLCI 

geometry that is generated based on the L1C product. However, in this case, there is a 

dedicated section to the retrieval error estimate of the L2 product (North and Heckel, 2010). 

Two main contributors are analysed there: the error in Aerosol Optical Depth (AOD) and 

the surface reflectance error as a function of the previous error, sensor noise and estimated 

error in the radiative transfer model. This last error is computed for each spectral band and 

included as a separate layer along with the reflectance layer. It is offered in the same 

relative units of reflectance (%). Since the ATBD was published previous to the 

development of the above mentioned L1B uncertainty tools, there is not any mention of 

them. The lack of official error distribution characterisation at previous levels along with 

the lack of information of that process questioned the reliability of those layers. However, 

we consider the inclusion of a per-pixel uncertainty layer a great improvement and its use 

will be studied.  

In the last step, the SY_2_SYN L2 product is aggregated temporally into daily images and 

spatially into 10x10 degree tiles. The scientific content of the product is not in any case 

altered, but the best observation is selected when more than one valid observation is 

available for the same pixel. Similarly to what is done with the MODIS L2G lite product, 

the best observation is considered when OLCI zenith angle (OZA) is minimum. The values 

of all the layers of the selected image are kept in the final aggregated daily product 

including the uncertainty associated to that pixel.   

3.4 NOAA-AVHRR LTDR Level 2G 

FireCCILT10 (Otón et al., 2019) uses the AVH09 Surface Reflectance Product (Version 5) 

that is provided by the Land Long Term Data Record (LTDR, Pedelty et al., 2007) project. 

It is based on the Global Area Coverage (GAC, 4x4 km) data with a final spatial resolution 

of 0.05º degree (≈5 km). AVH09 covers four decades (1981–present) and it includes up to 

two sensors (AVHRR2 and 3) on board seven different NOAA satellites (7, 9, 11, 14, 16, 

https://sentinel.esa.int/documents/247904/349589/SYN_L2-3_ATBD.pdf/8dfd9043-5881-4b38-aae5-86fb9034a94d?t=1371548198000
https://sentinel.esa.int/documents/247904/349589/SYN_L2-3_ATBD.pdf/8dfd9043-5881-4b38-aae5-86fb9034a94d?t=1371548198000
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18, 19). It provides Red and NIR Surface Reflectance, and TOA BT, all of them used by 

the FireCCILT10 algorithm.  

First, L0 data is converted on AVHRR L1B (Robel et al., 2014), which contains the main 

geophysical parameter reflectivity (for channels 1, 2 and 3a) and calibrated radiances (for 

channels 3, 4 and 5) (EUMESAT, 2011). At this point, the uncertainty is affected by several 

features, such as the Platinum Resistance Thermometer (PRT) noise and bias, earthshine, 

Temperature gradient, PRT representation, detector noise, digitisation, amplifier, SRF, 

time mismatch, space mismatch, azimuthal asymmetry, solar contamination, pre-flight 

characterisation, degradation and instrument temperature dependence. Some of these 

sources directly affect thermal gradients across the internal calibration target and the 

estimation of calibration parameters. Regarding the solar reflective bands, the calibration 

is different for the visible and the infrared (IR) channels (EUMESAT, 2011). Although 

Red and NIR bands are calibrated prior to launch (Robel et al., 2014), the calibration is 

applied to the data afterwards with linear decay because there is not effective on-board 

calibration (Holben et al., 1990). The uncertainty in the calibration is estimated to be of the 

order of 5% (Robel et al., 2014). In the case of the emissive bands, BT is calibrated in flight 

with an uncertainty estimated at ±0.1 K (Trischenko et al., 2002). In both cases, several 

problems were observed due to the combination of different sensors and satellites. In 

general, AVHRR3 was seemed to have better radiometer consistency than AVHRR2 

(Trischenko et al., 2002). Besides, it was observed that the calibration of the different 

satellites generated a range of variability in the measurements that, in the case of BT, could 

be more than 0.5 K (Trischenko et al., 2002; Mittaz et al., 2019). A quality decrease and 

systematic degradation of the radiometric sensitivity as a function of time and launch 

processes was observed as well. This degradation was quantified in ≈1-3% per year by 

Uprety et al. (2011) in the case of the solar reflective bands and below 1% in the case of 

BT. These generate a reduction in radiometric resolution over time and, in the case of BT, 

expands the upper limit of the measured BT. In any case, a proper characterisation of the 

uncertainty generated by all those sources cannot be done since there is no access to the 

pre-launch measurements and to the original manufacturer’s data propagation (Mittaz et 

al., 2019). 

In the following step, L1B is transformed in GAC, reducing in real time the spatial 

resolution of the acquired image (EUMESAT, 2011). Four out of every five samples along 

the scan line are used to compute one average value, and the data from only every third 

scan line are processed. As a result, the spatial resolution of GAC data near the subpoint is 

1.1 km by 4.4 km with a 2.2 km gap between pixels across the scan line (Robel et al., 2014; 

EUMESAT, 2011). Bulgin et al. (2016) estimated the uncertainty of this averaging process 

on about 0.04 K. 

Finally, GAC is processed to obtain AVH09 L2G product, after applying some 

improvements. These improvements include: radiometric in-flight vicarious calibration for 

the visible and near infrared channels, inverse navigation to relate an Earth location to each 

sensor IFOV, atmospheric corrections for Rayleigh scattering, ozone, and water vapour, 

aerosol correction, and BRDF corrections used in MODIS processing (El Saleous et al., 

2000; Pedelty et al., 2007). Calibration is a critical issue for applications using multiple 

sensors, including multi-decadal data analysis (Mittaz et al., 2019), and AVH09 has 

demonstrated 1% calibration accuracy for the visible/NIR bands (Pedelty et al., 2007). 

However, an uncertainty characterisation and propagation through the above-mentioned 

processing levels is still needed. 
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3.5 Sentinel 2-MSI Level 2 

The Sentinel-2 (S2) MSI L2 processing chain generates, using as input the TOA L1C 

orthoimagery, Bottom-Of-Atmosphere (BOA) corrected reflectance orthoimages. 

Additionally, an AOT map, a Water Vapour (WV) map and a Scene Classification Map 

(SCM) together with Quality Indicators (QI) for cloud and snow probabilities are 

generated. S2 bands at 10, 20 and 60 m spatial resolution are required for L2 processing. 

Spectral bands 2, 3, 4, 8 (Table 1) as well as a True Colour Image (TCI) and AOT and WV 

maps are provided at 10 m. Spectral bands 2-7, 8A, 11, and 12, and resampled TCI, AOT 

and WV are provided at 20 m. Band B8 is omitted as B8A provides more precise spectral 

information. All components of the 20 m product are resampled to 60 m as well. The cirrus 

band 10 is omitted, as it does not contain surface information. 

 

Table 1. Central wavelength (nm) of each band of the MSI aboard Sentinel-2 A and B. 

Satellite B02 B03 B04 B05 B06 B07 B8A B11 B12 

S2A   492.4   559.8   664.6   704.1   740.5   782.8   864.7   1613.7   2202.4 

S2B   492.1   559.0   665.0   703.8   739.1   779.7   864.0   1610.4   2185.7 

 

The Sen2Cor (Main-Knorn et al., 2017) processor is a combination of state-of-the-art 

techniques for performing atmospheric as well as topographic corrections which have been 

tailored to the S2 environment together with a scene classification module. The scene 

classification algorithm allows detection of clouds, snow and cloud shadows and generates 

a map that contains three different classes for clouds (including cirrus) together with six 

additional classes: shadows, cloud shadows, vegetated, not vegetated, water and snow. 

Such a classification is an important information source for uncertainty as it may be used 

to mask out the pixels covered by clouds and their shadows and then not classify them. 

However, such a classification also has intrinsic uncertainty related which should be 

considered. The Shuttle Radar Topography Mission Digital Elevation Model (SRTM 

DEM) is also used when pre-processing the S2 data. The SRTM DEM has vertical errors 

between 4-6 m (Goncalves and Fernandes 2005). Such errors may increase the uncertainty 

when mapping BA, especially over steep slopes.  

Finally, BA mapping uses datasets acquired by different satellites (S2 A and B), which may 

generate geolocation errors. Thus, it is expected that any geolocation error may be 

significant at fire borders. 

3.6 Sentinel 1 SAR  

Sentinel-1 (S1) is a two-satellite constellation (A - since April 2014, B - since April 2016) 

to provide C-Band SAR data continuity following the end of ERS-2 and Envisat missions. 

The satellites carry a C-band SAR sensor, which offers medium and high-resolution 

imaging in all weather conditions making it useful for land monitoring. The radar 

instrument may acquire data in four modes, with the Interferometric Wide (IW) swath (250 

km width) being the default operation mode over land. The IW mode images three sub-

swathes using the Terrain Observation with Progressive Scans SAR (TOPSAR) to provide 

high quality, homogeneous images. The advantages of S1 sensor over other C-band SAR 

missions, besides the free data access policy, are three-fold, i) high temporal frequency (6 

days exact repeat cycle with two satellites), ii) high spatial resolution (5 m in azimuth and 

20 m in range) and, iii) dual-polarization (VV and VH). One should notice that nominal 

temporal frequency is not yet achieved over areas outside Europe and North America and 



 

Fire_cci 
End to End ECV Uncertainty Budget 

Ref.: Fire_cci_D2.2_E3UB_v2.3 

Issue 2.3 Date 27/04/2022 

Page 21 
 

that areas with frequent seismic activity (e.g., the Andes) are imaged in single polarization 

mode (VV) for increased spatial resolution. S1 products are released in two L1 formats, 

Ground Range Detected (GRD) and Single Look Complex (SLC). GRD products are 

projected, intensity images, radiometrically and terrain corrected. SLC data are designed 

for interferometric applications, containing both phase and intensity information. The most 

commonly available SLC and GRD data are acquired in IW mode. L1 GRD data multi-

looked and projected to ground range using an Earth ellipsoid model (typical product size 

is 1GB for dual-pol IW mode) is considered to map BA.  

Speckle appears as a granular interference that inherently exists in coherent image systems 

as the SARs. The presence of speckle makes SAR imagery very different from optical 

datasets. As the scatterers are not identical for each cell, the signal fluctuates due to its high 

sensitivity to small variations in scatterers’ relative location and properties. Differences in 

the magnitude of the signal intensity between two dates may appear due to fire unrelated 

changes (e.g. changes in the relative position of the scattering elements within a resolution 

cell due to wind) which influences uncertainty. To meet the accuracy requirements of most 

SAR-based applications, a large equivalent number of looks (ENL) is often used, with 

values around 100 being typically advised (Quegan et al., 2001). ENL describes the degree 

of averaging applied to the SAR measurements during data formation and post-processing 

(Anfinsen et al., 2009). The usual approach to reduce speckle is filtering in the spatial 

domain. When multiple intensity images of a scene are available (repeat passes), an 

attractive way to increase the ENL is by linearly combining the images (multi-temporal 

filtering). Previous experiments, carried out within Fire_cci Phase 2 Option 3, showed 

small differences (~4) in ENL between S1 products processed with increasing multi-look 

factors, i.e., spatial spacing of 20, 30, and 50m. At the same time, Sentinel-1 products 

showed a significantly larger ENL when combining spatial (multi-looking) and temporal 

filtering. Spatial aggregation to 40 m (2x10 looks) followed by multi-temporal filtering 

provided ENL values around 80. Moreover, the SAR instruments aboard of S1-A and B 

satellites have a radiometric error of 0.38 and 0.36 dB, respectively (Schwerdt et al., 2017). 

We expect that data uncertainty will have low relevance in the results according to previous 

studies (Belenguer-Plomer et al., 2018). 

Apart from intrinsic sensor-related uncertainty (e.g. absolute calibration), environmental 

conditions at SAR image acquisition may influence BA detection and mapping. Changes 

in soil moisture may increase BA detection and mapping uncertainty as it may entirely 

mask out fire-induced variations of the backscatter coefficient or result in fire unrelated 

backscatter changes (Belenguer-Plomer et al., 2019). However, such effects cannot be 

measured with precision since current global soil moisture products have a much coarser 

spatial resolution than S1 data. Topography also introduces uncertainty when using SAR-

based datasets as the SAR backscatter coefficient is modulated by terrain slope thus 

conditioning the accuracy of BA detection (Kalogirou et al., 2014; Kurum, 2015). 

3.7 Ancillary data 

Two main ancillary data are used by the different algorithms that are being developed 

within the Fire_cci project: thermal anomalies and land cover information. Both products 

are high-level products (L3 and L4, respectively), which means that they are based on the 

above-mentioned processing levels that do not include proper uncertainty characterisation. 
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3.7.1 Terra and Aqua MODIS active fires 

The first source of thermal anomalies that is used by some of the algorithms developed 

within the project is the MODIS MCD14ML collection 6 product.  

In the case of MODIS, the most basic fire products in which active fires and other thermal 

anomalies (such as volcanoes) are identified are the MOD14 product based on Terra 

satellite’s MODIS and MYD14 based on Aqua satellite’s MODIS (Giglio et al., 2018b). 

These L2 products are defined in the MODIS orbit geometry covering an area of 

approximately 2340 × 2030 km in the along-scan and along-track directions, respectively. 

Regarding the uncertainty characterisation of the active fires, a detection confidence level 

is provided, which intended to help users gauge the quality of individual fire pixels. This 

confidence estimates range between 0% and 100% and is used to assign one of the three 

fire classes (low-confidence fire, nominal-confidence fire, or high-confidence fire) to all 

fire pixels (Gilgio et al., 2018b). The confidence of each detected fire pixel is calculated as 

the geometric mean of up to five sub-confidence parameters that are defined in terms of 

the temperature, the number of adjacent water pixels, the number of adjacent cloud pixels 

and two standardised variables (Giglio et al., 2016). All the parameters used for the 

detection are related to the algorithm used to detect thermal anomalies and the uncertainties 

of the previous processing levels are not taken into account. Besides, no confidence level 

information is provided for those pixels that were non-detected as fire or filtered in the 

processing. Thus, this confidence level can only be used as an approximation of the product 

uncertainty.  

The level 3 MCD14ML product is generated based on MOD14 and MYD14. This monthly 

fire location product contains the geographic location, date, and some additional 

information for each fire pixel detected by the Terra and Aqua MODIS sensors on a 

monthly basis. The product is distributed as a plain ASCII (text) file with fixed-width fields 

delimited with spaces. One of its attributes is the previously mentioned confidence level.  

3.7.2 NOAA-20 and SUOMI-NPP VIIRS active fires 

Information related to the VIIRS products is significantly lower than for the MODIS ones. 

VIIRS products are supposed to continue with the MODIS time series so most of the 

algorithms are being adapted to the new sensor. Therefore, the conclusions reached for 

MODIS active fires in the previous section (Section 3.7.1) can be considered as the best 

scenario for VIIRS active fire uncertainty characterisation. 

Currently, there are two satellites providing active fire products based on VIIRS: the 

Suomi-NPP and the NOAA-20 (JPSS-1). Recently, the Fire Information for Resource 

Management System, FIRMS (https://firms.modaps.eosdis.nasa.gov/, last accessed July 

2021) has included an option to download separately NRT active fires from Suomi-NPP 

and JPSS-1, although it is supposed that in both cases the algorithm described in Schroeder 

et al. (2014) is applied. At NTC level, a first collection of two L3 products called 

VNP14ML (750m) and VNP14IMGML (375 m) are currently being produced, although it 

seems that only Suomi-NPP detections are included. In those products the % confidence 

level has been replaced by confidence classes (low, nominal, and high).  

3.7.3 Land Cover CCI 

In the previous Fire_cci phases the source of the Land Cover information was the ESA CCI 

Land Cover (LC) project. That project produced annual LC maps from 1992 until 2015. 

More recently, this dataset has been extended within the Copernicus Climate Change 

Service (C3S) to the years 2016-2019 allowing users to have global and annual updated 

about:blank
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LC information at 300 m resolution. The algorithms used in both cases are equal so the 

consistency of the dataset is ensured (ESA, 2017a). Regarding uncertainty characterisation, 

there is not such information included in the dataset, although hard work has been done to 

determine the quality (validation) of the product (ESA, 2017b). 

4 Uncertainty characterisation through BA algorithms 

Taking into account the current situation of the uncertainty characterisation in the products 

that are used as input in the Fire_cci project algorithms, a proper characterisation and 

propagation of the input uncertainties through the algorithms is not feasible. Not only 

because the different algorithm structures prevent a mathematical propagation through 

themselves, but also because of the inexistence of such input data. However, an effort is 

being carried out to analyse how the uncertainty approximations described in the previous 

section (Section 3) can be used to somehow assess the impact of the algorithms in the final 

results. 

4.1 FireCCISFD20 

The FireCCISFD20 product is derived from the MSI sensor aboard two different satellites: 

Sentinel-2A and Sentinel-2B. Due to a spatial shift between S2A and S2B data, errors were 

observed to increase when using data from both satellites at the same time. For this reason, 

the algorithm will generate two independent BA products, each based on images from one 

satellite, which will be merged in a final step. Each intermediate BA product detects initial 

burned areas between two dates based on fixed thresholds and proximity to active fires. 

Then, statistics for MIRBI and NBR2 spectral indices are extracted from these initial BA, 

which are used to assign the final probability of burn of the whole image, from 0 to 100%. 

In this way, a probability image is obtained for the image from every single date (Roteta et 

al., 2019). 

Both BA products corresponding to S2A and S2B satellites are fused in the final 

FireCCISFD20 product. In a temporal series of {t0,A , t1,B , t2,A , t3,B , …, tn} where every 

element corresponds to a date (with A and B standing for S2A and S2B dates), burned pixels 

in any S2A date (ti,A) are assigned a 0% probability if they were not detected as burned in 

the last day of observation before ti,A (ti-1,B) or in the first day of observation after ti,A (ti+1,B) 

in the S2B product. In this way, many commissions due to unmasked clouds and cloud 

shadows are reduced. Finally, the monthly product is created by assigning to each pixel the 

date when the highest probability was observed. This probability is generated in two stages. 

First, s-shape and z-shape sigmoid membership functions applied to temporal differences 

of MIRBI and NBR2, respectively, depending on their class. In that phase, the main idea 

is to establish a threshold value dependent on the ‘not burned’ background and already 

detected burned areas, using the 90th percentile of not burned background pixels as the 

minimum value and the 50th percentile of burned pixels as the maximum value of a 

membership function (Figure 2).  
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Figure 2. S-shape and Z-shape sigmoid membership functions applied to MIRBI and NBR2. Source: 

Bastarrika and Roteta (2018) 

At the end of this phase, the multiplication of both probability functions 

(𝑀𝐼𝑅𝐵𝐼𝑏𝑢𝑟𝑛𝑒𝑑_𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 and 𝑁𝐵𝑅2𝑏𝑢𝑟𝑛𝑒𝑑_𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝), called Second Stage Probability of 

Burn (SEPB), is used as the probability of burn to be implemented in the second phase, 

where these probabilities are rescaled to make it feasible to use the 50% threshold 

commonly used in binary maps. A lower value should be used in this product due to the 

following reasons: 

 When generating sigmoid curves in the refinement process the percentiles for 

burned and unburned categories are not symmetric, being the sigmoid curve closer 

to the burned class than to the unburned one, and thus causing the boundary 

between both classes to be in a lower probability value. 

 The probability value of the SEPB is obtained by multiplying MIRBI and NBR2 

probability functions, lowering even more the threshold value. 

 

Figure 3. Evolution of omission and commission errors depending on the threshold in two samples. 

Source: Bastarrika and Roteta (2018) 

In order to decide which was the best threshold, the evolution of both omissions and 

commissions was analysed depending on the applied threshold. As it is shown in Figure 3, 

this threshold is around the 5% value. Since this value could be confusing for the product’s 
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users, the probability values were rescaled so that this original 5% value would become the 

common 50% threshold, following Table 9. Due to the scale of the values being rescaled, 

the new probability values have discrete values in intervals of 10%. As pixels with a 

probability of burn below 50% are considered as not burned, only pixels above this 

threshold are represented in the final SFD product. 

Table 2. Lookup Table for the rescaling process 

Original probability (%) Rescaled probability, discrete values (%) 

 0  0 

 1  10 

 2  20 

 3  30 

 4  40 

 5-14  50 

 14-23  60 

 23-32  70 

 32-41  80 

 41-50  90 

> =50  100 

In the final confidence level product, only probabilities over 50% remain unchanged. 

A value of 1 is given to observed pixels whose estimated probability of burn was below 

that threshold. All pixels that have not been observed during the month were given a value 

of 0 in the confidence level layer.  An example of this layer corresponding to the month of 

June for Area h42v16 is shown in Figure 4. 

 

Figure 4. Example of the Confidence Level layer for the h41v19 tile on June 2016. Source: Bastarrika 

et al, (2019) 
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4.2 FireCCI51 

Regarding this product, which delivers BA within the period 2001-2019. Logistic 

regression analysis was used in the previous version following a k-Fold validation (k = 10) 

to estimate BA probability as a surrogate of uncertainty characterization of the BA 

algorithm. The model was trained from 10 calibration sites, which encompass a wide range 

of different vegetation and fire patterns, using data from 2008. Four input variables were 

included in the logistic models: monthly NIR composite (𝑁𝐼𝑅), monthly relative NIR drop 

(𝑅𝑒𝑙∆𝑁𝐼𝑅), distance to the nearest BA seed (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒), and the number of valid 

observations in the first 10 post-fire days to the nearest active fire hotspot day (𝑜𝑏𝑠) 

(Lizundia-Loiola et al., 2018). These variables were chosen to be the proxy as they are 

assumed to be highly linked to the probability of burn. The lower is the NIR value, the 

higher is the probability of the pixel to be burned, and the lower is the uncertainty. On the 

other hand, the higher is the relative NIR drop, the higher is the probability of the pixel 

being burned in the burned classification. It is also assumed that the closer the pixel is to 

the nearest seed, the higher is its probability of burn. Concerning the latter variable, which 

can take values from 0 to 10, the higher is the number of observations, the lower is the 

uncertainty in the observation.  

The final coefficients derived from the logistic regression analysis were: 

𝑝𝑏 =
1

1 + 𝑒𝑐
 (6) 

 

where 𝑝𝑏 is the BA probability and 𝑐 =  −(3.533 − 0.01175 ∗ 𝑜𝑏𝑠 − 0.001996 ∗ 𝑁𝐼𝑅 +
0.01417 ∗ 𝑅𝑒𝑙∆𝑁𝐼𝑅 − 0.0009282 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒). An example of an area of Northern 

Australia is shown in Figure 5. 

 

Figure 5. Uncertainty of an area of the tile h30v10 (Australia) for June 2008. The values represent 

the probability of each pixel being burned, expressed in percentage. Source: Lizundia-loiola et al. 

(2018) 

This method provided a proxy to propagate uncertainty and overcome the challenge of 

simulating such a complex thresholding algorithm. However, although the layers were 

assumed to be highly linked to the algorithm components, the logistic regression failed to 

translate that link in some cases. For instance, the number of observations 𝑜𝑏𝑠 had a 

coefficient that means the inverse sense of the expected; the lower is the number of 
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observations, the higher is the probability of burn. This inconsistency is likely to be caused 

by the multicollinearity character of predictive variables, which has been proved to be 

inconvenient when using logistic regression (Ranganathan et al., 2017). To cope with these 

issues the same methodology applied in the case of FireCCIS310 has been adapted to 

FireCCI51. Nonetheless, the above-mentioned variables are updated to improve the linkage 

with the algorithm decisions. Instead of using the number of observations in the first 10 

post-fire days, it is more convenient to include the number of minima taken from this time 

window. When the burn probability is high, all the three minima should ideally be detected 

in that window, but in order to take account of the number of valid observations within the 

same time frame, the ratio is used. Thus, this variable will be: 

𝑚𝑖𝑛𝑝𝑜𝑠𝑡 =
𝑁𝑚𝑖𝑛

𝑜𝑏𝑠
 

(7) 

 

where 𝑁𝑚𝑖𝑛 is the number of minima and 𝑜𝑏𝑠 is the number of valid observations, both in 

the 10 post-fire days to the nearest hotspot day. The higher the 𝑚𝑖𝑛𝑝𝑜𝑠𝑡 , the more probable 

the burn event is.  

The connectivity is also important for this product. However, the most probable burn date 

was merely generated for the burned class. Another measure of connectivity would be the 

number of burned neighbours (𝑛𝐵). The pixels where this value is equal to zero the 

algorithm classify them as unburned, and the pixels on the edge of burned areas (one or 

two burned neighbours) are unlikely to be burned. Therefore, the higher is this variable, 

the more likely is the burn event. In the end, 𝑁𝐼𝑅, 𝑅𝑒𝑙∆𝑁𝐼𝑅, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑚𝑖𝑛𝑝𝑜𝑠𝑡 and 𝑛𝐵 

are used to characterise each pixel. The rest of the process is similar to FireCCIS310 

uncertainty estimation using spatiotemporal patterns (Section 4.2). 

4.3 FireCCIS310 

This product refers to the BA derived from S3 SYN data. The validation dataset generated 

for 2019 will be used to generate the uncertainty characterization of the FireCCIS310 

product. BA algorithm inputs and output over all validation areas are considered to estimate 

the performance of the algorithm over a large variety of inputs. To reduce the 

dimensionality of that highly redundant data set and to drastically reduce the computational 

effort to compute uncertainties, a look-up table (LUT) of representative spatiotemporal 

signal patterns can be derived from that data set. A reasonable number of distinct 

spatiotemporal patterns is taken into account from the validation data set. Given the 

representativeness of validation data, those should be sufficient to describe the full range 

of typical spatiotemporal patterns in the data. This method was developed by Professor 

Manuel Campagnolo (personal communication) of the University of Lisbon, who was 

involved in the previous phase of the project.  

The LUT comprises two dimensions, the spatiotemporal patterns and the predictive 

variables. The latter dimension consists of a number of intermediate processing variables 

that are able to serve as a proxy to characterize the uncertainty of pixels belonging to each 

specific spatiotemporal pattern. In the FireCCIS310 the main input variable considered is 

the NBR2 index, but in the processing, we are mainly interested in the absolute drop of 

NBR2, which can be calculated based on the difference between the post average and the 

pre average (eight pre- and eight post-compositing day observations). The rationale behind 

including this variable is that burned pixels show a remarkable decrease of NBR2 that lasts 

a considerable period, and therefore, the lower is the value of NBR2 absolute drop, the 



 

Fire_cci 
End to End ECV Uncertainty Budget 

Ref.: Fire_cci_D2.2_E3UB_v2.3 

Issue 2.3 Date 27/04/2022 

Page 28 
 

more probable is the pixel to be actually burned. Moreover, most of thresholds and 

operations applied by FireCCIS310 algorithm involve the use of that layer. The separability 

between averaged NBR2 pre and post is another important parameter as the compositing 

process relies on it. A high value of separability indicates that is very likely to be due to 

fire event as a rapid change in the index time series (NBR2 in our case) will yield a 

separability of large magnitude (Giglio et al., 2009), but to complement this information, 

the difference between the day of maximum separability and the day of the nearest 

preliminary seed should be also taken into account. Ideally, this difference should be very 

small in the case of burn. The last parameter to consider is related to the connectivity of 

pixels. This layer is important in the sense that neighbouring burned pixels are ideally very 

close in terms of date of burn. To characterise this concept we consider the temporal texture 

(Giglio et al., 2009), which can be computed using the standard deviation between the DOY 

of the pixel under consideration, which is considered as the centre of the series, and its 

neighbouring pixels (rook's case). Figure 6 illustrate an example of the four variables. It 

can be noticed that all of them indicate more or less the extent of the burned area. 

 

Figure 6. Example of predictive variables of uncertainty of FireCCIS310: (a) Abs∆NBR2; 

(b) MaxSep; (c) DoyMaxSep; (d) Tex 

In that way, each pixel can be characterised by a monthly vector of four variables: 

𝐴𝑏𝑠∆𝑁𝐵𝑅2, 𝑀𝑎𝑥𝑆𝑒𝑝, 𝐷𝑜𝑦𝑀𝑎𝑥𝑆𝑒𝑝 and 𝑇𝑒𝑥. In the next step, the validation process is 

considered in order to assign another two variables (burned or unburned in reference and 

algorithm classifications, respectively) to each pixel. Reference data of the year 2019 

obtained from the C3S global (2017-2019) dataset of the Burned Area Reference Database 

(BARD) (Franquesa et al., 2020) is employed. The validation sites of this dataset were 

selected through stratified random sampling to properly represent the variety of biomes at 
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the global scale. In the end of this stage, each pixel will be characterised by a set of six 

variables (Table 3). However, as stated earlier, the objective is to create representative 

spatiotemporal patterns (P) based on clustering analysis. In order to optimise the 

computation time, Mini Batch k-means classifier of scikit-learn library was chosen.  

The clustering is based on the four selected variables, and using the BA algorithm outputs 

and the reference, one can estimate from all N cases that belong to the spatiotemporal 

pattern P, the four conditional probabilities, as combinations of True/False 

Positive/Negative. The output of this step is illustrated in Table 3.  

Table 3. Example of the matrix that can be obtained from an algorithm  

Variables Classification 

 𝐴𝑏𝑠∆𝑁𝐵𝑅2 𝑀𝑎𝑥𝑆𝑒𝑝 𝐷𝑜𝑦𝑀𝑎𝑥𝑆𝑒𝑝 𝑇𝑒𝑥 Reference Algorithm 

Pixel 1 X11 X12 X13 X14 B or UB B or UB 

Pixel 2 X21 X22 X23 X24 B or UB B or UB 

Pixel 3 X31 X32 X33 X34 B or UB B or UB 

Pixel 4 X41 X42 X43 X44 B or UB B or UB 

… … … … … 

 

… … 

Pixel N XN1 XN2 XN3 XN4 B or UB B or UB 

Spatiotemporal 

pattern P 
X1 X2 X3 X4 [

𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

] 

 

The confusion matrices of that set of "representative patterns" allow computing the 

probability of burn of each pixel depending on its classification (burned: B or unburned: 

UB). The probability of burn of pixels that have been classified as burned is related to the 

Precision, which expresses the proportion of correct positive prediction (TP) within the 

pattern. On the other hand, the False Omission Rate indicates the proportion of false 

negative predictions (FN), and therefore it was used for pixels classified as unburned. The 

two probabilities were estimated as: 

𝑃𝐵 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100 

(8) 

𝑃𝑈𝐵 = 
𝐹𝑁

𝑇𝑁 + 𝐹𝑁
∗ 100 + 1 

 

(9)  
 

 

𝑃𝐵 denotes the probability of burn of pixels classified by FireCCIS310 as burned, whereas 

𝑃𝑈𝐵 denotes the probability of burn of pixels classified as unburned. We add 1 in the case 

of unburned pixels as a value of zero is exclusively assigned to non-burnable and non-

observed pixels. In contrast to synthesized indices (e.g. Dice Coefficient), the use of two 

different indices prevents the interference of omission and commission errors.  

The result is a collection of representative patterns (P1, P2,...), and associated "probabilities 

of burn detection" (𝑃𝐵1 , 𝑃𝑈𝐵1 , 𝑃𝐵2 , 𝑃𝑈𝐵2 ,…) that will be saved in a LUT. To compute an 

uncertainty layer for the whole burned area product, each pixel has to be associated to the 

most similar representative pattern and labelled with the corresponding probability of burn 

depending on its class (B or UB).  
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Figure 7 illustrates an example of burn probability map. Most of the committed pixels 

shows a low probability of burn as they correspond to patterns with low precision index. 

On the other hand, the enhancement of burn probability was slightly less observed in the 

case of omitted pixels.  

 

 

Figure 7. Comparison between (a) Reference data and (b) Probability of burn of an area of the tile 

h19v10 (Angola) for August 2019. 

Another useful information to be implemented for each pixel is the uncertainty of the 

attributed probability. In clustering problems, the most the representative measures of 

uncertainty is the Euclidian distance to the centre of the nearest cluster, so that the higher 

values indicate a high uncertainty: 

𝑢 (𝑥) =  𝑑𝑥 = √∑𝑑𝑥𝑖
2

4

𝑖=1

 

(10) 

 

where 𝑑𝑥 is the Euclidian distance to the centre of the nearest cluster (kmeans clusters), 

and 𝑖 denotes the predictive variable. Note that these input variables are standardised, and 

thus we can easily rescale the uncertainty to the probability in order to be considered as a 

standard deviation using the formula: 

𝑢𝑝(𝑥) =  
𝑑𝑥

4
∗ 𝑝𝑏(𝑥) 

(11) 

 

where 𝑝𝑏(𝑥) is the probability of burn attributed to the pixel 𝑥. It can be also noticed that 

this standard measure may give unreliable results if the distribution of clusters density is 

not homogeneous as it does not take into account the proximity to other clusters. In fact, it 

can happen that two clusters have very similar means and are thus very close in the terms 

of predictive variables. In this case, the small distance associated with the pixel will 

indicate that it is close to the centre of the cluster but will not be able to inform about the 

proximity to the other cluster, which is very close as well. Therefore, the result will indicate 

a low uncertainty value, which is not actually correct. To correct for that error, a correction 

factor based on the weighted inverse distance to all clusters is used. This factor can be 

formulated as: 

(a) (b) 
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𝑓 =  
1

[ 
1/𝑑𝑥

1
𝑚

∗ ∑ 1/𝑑𝑘
𝑚
𝑘=1

]

 
(12) 

 

where 𝑚 is the number of clusters. In that way, the relative contribution of very far clusters 

is negligible as their inverse distances will be very small compared to 1/𝑑𝑥, which means 

that 𝑓 ≈ 1. In contrast, the presence of very close clusters will result in a correction factor 

higher than 1 as the sum of inverse distances will be higher than 1/𝑑𝑥. 

Finally, the standard uncertainty can be estimated as: 

𝑢𝑝(𝑥) =  
𝑑𝑥

4
∗ 𝑝𝑏(𝑥) ∗ 𝑓 

(13) 

 

In theory, propagating uncertainties from the lower levels of processing is possible using 

Monte Carlo methods, providing a sound alternative to tracing uncertainty through the 

algorithm. Given uncertainties in L1 products, Monte Carlo simulations can be performed 

to quantify the distribution D of predictive variables that classify a pixel as 

burned/unburned. For S3, the error layer that is provided along with the reflectance in SYN 

(Section 3.3) may be used as a proxy of the input uncertainty. This would also allow 

quantifying the stability of the algorithm and its sensitivity to noise in L1 products. The 

lack of deliverable error layers at L1 SYN at the time of writing that document, as well as 

the very high computational load of that method for a global product makes this task 

unfeasible.  

4.4 FireCCILT20 and FireCCIS1SA10 

Both the FireCCILT20 and FireCCIS1SA10 products are based on random forest models, 

and therefore, the same uncertainty characterisation and propagation framework can be 

developed in both cases, although they use different input datasets. Regarding the main 

input of the algorithms, AVH09 reflectance (Section 3.4) is used by FireCCILT20 while 

FireCCIS1SA10 make use of Sentinel 1 SAR data (Section 3.6). Land cover CCI (Section 

3.7.3) is used by the two algorithms. Active fire information provided by MODIS (Section 

3.7.1) and VIIRS (Section 3.7.2) is also used by the FireCCIS1SA10. 

In the case of random forest classifier, quantification of the classification probabilities at 

pixel level is derived from the proportion of  votes for the BA class (classifying trees). Each 

pixel is attributed a probability distribution, with the probability 𝑝(𝑖) of being classified 

into the class 𝑖, given by: 

𝑝(𝑖) =  
𝑘𝑖

𝑘
 

(14) 

where 𝑘𝑖 is the number of trees classifying the pixel as class 𝑖, and 𝑘 is the total number of 

classification trees in the Random Forests classifier. Here in the case of FireCCILT20, the 

parameter 𝑘 was 600, whereas 𝑘 was 250 for FireCCIS1SA10. However, it should be noted 

that this uncertainty is just a description of how much one can trust the interpretation of the 

burned/unburned state of a pixel given the uncertainty of the data.  
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In the final confidence level layer, the labelling convention is slightly different between the 

two products as illustrated by Table 4 and Table 5. 

Table 4. Confidence level values for FireCCILT20 

Attribute Possible values 

Confidence 

level 

(CL) 

• 0: when the probability is so close to 0 that the classifier rounds 

the value to it. 

• 1 to 100: Probability values. When the pixel is closer to 100, 

that pixel has higher confidence that the pixel is actually burned. 

This value expresses the uncertainty of the detection for all 

pixels, even if they are classified as unburned. 

• -1: when the pixel is not observed in the month. 

• -2: used for pixels that are not burnable: continuous water, bare 

land, urban, permanent ice-snow. 

Table 5. Confidence level values for FireCCIS1SA10 

Attribute Possible values 

Confidence 

level 

(CL) 

• 0: when the pixel is not observed in the month, or it is not burnable. 

 

• 1: value assigned when the pixel was observed, but it was classified as 

not burned. 

• 2 to 100: Probability values. The closer to 100, the higher the confidence 

that the pixel is actually burned. 

An example of the confidence level layer of the global FireCCILT20 corresponding to 

August 1982 is shown in Figure 8. 

 

Figure 8. Example of the Confidence Level for FireCCILT20 (August 1982). Source: Otón (2020) 
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4.5 FireCCIS1S2AF10 

FireCCIS1S2AF10 product is based on a deep learning model, more specifically on a 

Convolutional Neural Network (CNN). The algorithm uses MSI and SAR data (Section 3.5 

and 3.6, respectively) as main inputs, in addition to land cover CCI (Section 3.7.3) as well 

as active fire information provided by MODIS (Section 3.7.1) and VIIRS (Section 3.7.2). 

Such remote sensing datasets are generally affected by noise and disturbances. Hence, 

instead of ‘real’ measurements (v), what is actually fed to the model is a noisy version (z) 

of such measurements (Loquercio et al., 2020).  

The last layer of all CNN-based models is a Softmax layer (Krizhevsky et al., 2012), which 

is a logistic regression that normalizes an input value (z) into probability values that ranges 

from 0 to 1: 

𝑃(𝐳𝑖) =
𝑒𝑧𝑖

Σ𝑗=1
𝑛 𝑒𝑧𝑗

 
(15) 

 

where z is the output of a fully-connected neural network of the class i (i.e. burned or 

unburned), e is the Euler's number and n is the number of classes (i.e. 2). 

Softmax, provides a discrete probability distribution over the burned and unburned classes. 

This probability value is based on the features extracted in the previous hidden layers of 

the model, which are affected by convolutional processes that considered the intrinsic 

uncertainty sources (z). Due to the fact that only two classes (i.e., burned and unburned) 

were involved in the process, the probability of a given pixel to belong to the burned class 

(b) is inversely proportional to belong to the unburned one (u): 

1 = 𝑃𝑏 + 𝑃𝑢 (16) 

 

Hence, such probability distribution may be used as a proxy to estimate the uncertainty. 

When low intrinsic errors of data are considered, the final probability of a pixel to belong 

to a given class is lower in comparison to when a high degree of interferences of errors 

exists (Rottmann & Schubert, 2019; Pascual et al., 2018). The Softmax layer may be 

considered, therefore, to characterise the uncertainty when mapping BA. 

Other authors, however, pointed out that in CNN models the representation of the 

uncertainty could be poor (Jain et al., 2018). Since this deep learning approach can be 

considered like “black boxes”, there is no way to mathematically propagate the input error 

through the algorithm. Instead, to somehow improve this representativeness of that error in 

the final probability, an approach that could be followed is to include the uncertainty layers 

of each predictive variable in the model. Ideally speaking, the uncertainty of all input 

variables should be provided in a pixel-based uncertainty layer. When this is not the case, 

a preliminary uncertainty layer could be created based on the literature (Section 3.4). The 

aim of those “invented” uncertainties would not be to characterise the actual input 

uncertainty, but to create a layer that will serve to develop the propagation framework.  

To illustrate the mentioned approach, let’s consider the NDVI, which is one of the 

predictive layers of the algorithm. An uncertainty layer corresponding to that variable can 

be estimated through error propagation framework. Lewis et al. (2018) showed how 

uncertainty could be generated when ratio-difference transformations are applied. In the 

case of sums and subtractions, if it is assumed that errors are uncorrelated, the variance of 
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the result is simply equal to the sum of the variances. For the ratio transformation, since it 

is not possible to directly apply linear propagation, it is common to approximate this by 

linear terms using a first-order Taylor approximation instead. Mathematical expressions 

can be found in Lewis et al. (2018). The result of all this process would be an uncertainty 

layer per each predictive variable. However, the problem with this approach is that it cannot 

be applied if an actual and proper uncertainty characterisation of the input datasets is not 

available. Moreover, when the uncertainty is included as a predictive variable the results 

can be artificially altered. Therefore, the only option is to consider that the probability of 

burn given by the CNN correctly characterises the uncertainty. 

5 Uncertainty characterisation at grid scale 

From the point of view of the ESA Fire_cci pixel-level products, there are two relevant 

layers: the date of the first detection, and the confidence level. Generally speaking, the 

burned area inside a 0.25º Climate Model Grid (CMG) cell can be determined as the sum 

of pixels where the first date of detection is between 0 and 366 (both inclusive), multiplied 

by the area of the pixel. The uncertainty aggregation at CMG cell was carried out following 

the approach developed by University College London that is described in Section 4 of 

Lewis et al. (2018). This approach can be easily applied also in the current project since it 

uses the probability of burn generated by the previously mentioned algorithms as input to 

propagate the uncertainty. This is a number between 0 (absolute certainty that the pixel did 

not burn in the time interval considered) to 1 (absolute certainty that the pixel did burn in 

the time interval considered). 

The confidence layer is interpreted as a probability of burn, 𝑝𝑏, (and as a consequence, the 

probability of not being burned is 1 − 𝑝𝑏), then this information would need to be scaled 

up to the CMG, as a form of standard error. There are two common definitions relating to 

standard error (Weisstein, 2017): (i) the square root of the estimated error variance 

(standard deviation); (ii) the standard error of a sample of size n is the sample standard 

deviation divided by √𝑛. There is a need to consider then which would be appropriate in 

this context. 

The sample variance 𝜎2 of a sample set of size n is given by: 

𝜎2 =
1

𝑛
∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

 
(17) 

 

where 𝑦𝑖 is sample i and �̅� is the sample mean, given by 

�̅� =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

 
(18) 

 

The sample terms �̅� and 𝜎2 are random variables, and the expected value of the variance 

�̂�2 is given by 

�̂�2 =
𝑛

𝑛 − 1
𝜎2 (19) 
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Often, 𝜎2 is the biased sample variance and �̂�2 is the unbiased sample variance. Going back 

to the definitions of standard error, it can be said that the first definition �̂�1 (square root of 

the estimated error variance) is thus 

�̂�1 =
𝑛

𝑛 − 1
𝜎 (20) 

 

where 𝜎 is the sample standard deviation. Using the second definition (sample standard 

deviation divided by √𝑛) we have that 

�̂�2 =
1

√𝑛
𝜎 

(21) 

 

The first definition is more consistent with many uses of standard error in the physical 

sciences, where it takes the role of an unbiased estimate of the standard deviation of a 

distribution. If the distribution is assumed normal and 𝑦 is continuous (or effectively 

continuous if n is large), then the estimate of the mean (�̅�) and standard deviation (𝜎1) fully 

define the Probability Distribution Function (PDF) for BA. 

The second definition is more directly related to the uncertainty of the mean and is used in 

the definition of probable error. The standard error of the mean is given by 𝜎2. Therefore, 

with more samples (greater 𝑛) we can better estimate the mean of the distribution. 

In the light of this, we will use 

�̂� =
1

√𝑛 − 1
∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

 
(22) 

 

which is an unbiased estimate of the likely variability in burned area. 

Assuming that each pixel has an independent probability of burn 𝑝𝑏, which can be different 

for every pixel, and then the sum of these independent probabilities is given by a Poisson 

Binomial distribution. This distribution is only defined over positive integer numbers, and 

has first and second order statistics given by 

𝑁𝑏
̅̅̅̅ = ∑𝑝𝑏,𝑖

𝑁𝑝

𝑖=1

 

(23) 

𝜎𝑏
2 = ∑𝑝𝑏,𝑖(1 − 𝑝𝑏,𝑖)

𝑁𝑝

𝑖=1

 

(24) 

 

In Figure 9, the full PDF derived from a set of samples each characterised by a different 𝑝𝑏 
is shown. We calculate the PDF as a Poisson binomial, and also calculate the mean and 

variance using the equations above, and plot the normal approximation to the PDF. For a 

large number of samples, the skewness of the PDF is very low, and the PDF is acceptably 

approximated by a Gaussian distribution. This is of importance, as it means that one can 

parametrize the full PDF of BA using only the mean and the “standard error” (defined as 
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the standard deviation in the discussion above), and in accordance to the product 

specification. 

 
 

Figure 9. The Poisson binomial PDF (green line) derived from a simulated set of independent samples 

(300, 100 with probabilities between 0.7 and 0.9, 100 with probabilities between 0.2-0.3 and 100 with 

probabilities between 0-0.1). A Gaussian approximation (red line) derived from calculating the mean 

(~110) and standard deviation (~39) is also shown. Skewness was ~0.01. Source: Lewis et al. (2018). 
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Annex 1 Acronyms and abbreviations 

AC Atmospheric Correction 

ADC Analog-to-Digital Converter 

ADF Auxiliary Data Files 

ADP Algorithm Development Plan 

AERONET Aerosol Robotic Network 

AOD Aerosol Optical Depth 

AOT Atmospheric Optical Thickness 

ASCII American Standard Code for Information Interchange 

ATBD Algorithm Theoretical Basis Document 

AVH09 
AVHRR Surface Reflectance Product of Land Long Term Data 

Record project 

AVHRR Advanced Very High Resolution Radiometer 

BA Burned area 

BC Brockmann Consult GmbH 

BOA Bottom-of-Atmosphere 

BRDF Bidirectional reflectance distribution function 

BT Brightness Temperature 

C3S Copernicus Climate Change Service 

CCD Charge-Coupled Device 

CCI Climate Change Initiative 

CDR Climate Data Record 

CMG Climate Model Grid 

CNN Convolutional Neural Networks 

CRG Climate Research Group 

dB decibel 

E3UB End-to-End ECV Uncertainty Budget 

ECV Essential Climate Variable 

ENL Equivalent Number of Looks 

Envisat Environmental Satellite 

EO Earth Observation 

ERS European Remote Sensing satellite 

ESA European Space Agency 

EUMESAT 
European Organisation for the Exploitation of Meteorological 

Satellites 

EV Earth View 

FIDUCEO 
Fidelity and Uncertainty in Climate data records from Earth 

Observation 

FireCCI51 Fire_cci MODIS version 5.1 

FireCCILT10 Fire_cci AVHRR-LTDR version 1.0 

FireCCILT20 Fire_cci AVHRR-LTDR version 2.0 

FireCCIS1S2AF10 Fire_cci Sentinel-1 & Sentinel-2 test sites in AFrica version 1.0 

FireCCIS310 Fire_cci Sentinel-3 version 1.0 

FireCCISFD20 Fire_cci Small Fire Database version 2.0 

FIRMS Fire Information for Resource Management System 
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GAC Global Area Coverage 

GFED Global Fire Emissions Database 

GRD Ground Range Detected 

GUM Guide to the Expression of Uncertainty in Measurement 

IFOV Instantaneous Field of View 

IR Infrared 

ISP Instrument Source Packet 

IW Interpherometric Wide 

JCGM Joint Committee for Guides in Metrology 

JPSS Joint Polar Satellite System 

K Kelvin 

L0 Level 0 

L1 Level 1 

L2 Level 2 

L3 Level 3 

L4 Level 4 

LC Land Cover 

LPU Law of Propagation of Uncertainty 

LTDR Long Term Data Record 

LUT Look-Up-Table 

LWL Lakes Water Level 

MapnoiS3 Sentinel-3 Noise Mapping python tool 

MCD14ML MODIS Global Monthly Fire Location Product 

MCD64 
MODIS Collection 5 and 6 Burned Area product using the Giglio 

et al. (2009) and Giglio et al. (2018a) algorithm, respectively 

MCST MODIS Characterization and Support Team 

MIRBI Mid-Infrared Burn Index 

MOD09 MODIS Terra Surface Reflectance 5-minute L2 Swath 

MOD09GA 
MODIS Terra Surface Reflectance Daily L2G Global 500 m and 1 

km 

MOD09GQ MODIS Terra Surface Reflectance Daily L2G Global 250 m 

MOD14/MYD14 
MODIS Terra/Aqua active fire and other thermal anomalies 

product 

MOD35 MODIS Cloud Mask product 

MODIS Moderate Resolution Imaging Spectroradiometer 

MODLAND MODIS Land Team 

MSI MultiSpectral Instrument 

NASA National Aeronautics and Space Administration 

NBR2 Normalized Burn Ratio 2 

NetCDF Network Common Data Form 

NIR Near-InfraRed 

NOAA National Oceanic and Atmosphere Administration 

NPP National Polar-orbiting Partnership 

NRT Near Real Time 

NTC Non-Time Critical 
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OLCI Ocean and Land Colour Instrument 

OZA OLCI Zenith Angle 

PDF Probability Distribution Function 

PDGS Payload Data Ground Segment 

PRT Platinum Resistance Thermometer 

PSD product Specification Document 

PUG Product user Guide 

QA Quality Assurance 

QA4EO Quality Assurance Framework for Earth Observation 

QI Quality Indicators 

S1 Sentinel-1 

S2 Sentinel-2 

S2-RUT Sentinel-2 radiometric uncertainty Tool 

S3 Sentinel-3 

SAR Synthetic Aperture Radar 

SCM Scene Classification Map 

Sen2Cor Sentinel 2 Level 2A product generation and formatting processor 

SLC Single Look Complex 

SLSTR Sea and land Surface Temperature Radiometer 

SNAP Sentinels Application Platform 

SRF Spectral Response Function 

SRTM DEM Shuttle Radar Topography Mission Digital Elevation Model 

SST Sea Surface Temperature 

Suomi-NPP Suomi National Polar-orbiting Partnership satellite 

SWIR Short-Wave InfraRed 

SY_1_MISR Internal Synergy Level 1 product 

SY_2_SYN Synergy Surface Directional Reflectance product 

SYN Synergy 

TC Triple Collocation 

TCI True Color Image 

TOA Top-of-Atmosphere 

TOPSAR Terrain Observation with Progressive Scans SAR 

VIIRS Visible Infrared Imaging Radiometer Suite 

VISCAL Visible Calibration unit 

VNP14ML VIIRS Global Monthly Fire Location Product at 750 m 

VNPIMG14ML VIIRS Global Monthly Fire Location Product at 375 m 

WV Water Vapour 
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