

climate change initiative

tertiary education resources

LOND STORES

ASSIGNMENT

skill assessment

Contents
ASSIGNMENT
Fast facts3
Brief description
Intended learning outcomes3
Health and safety4
Before you start
Introduction
Data5
Tasks5
Cross-correlation time series analysis7
Pitch your finding8

climate change initiative- ASSIGNMENT https://climate.esa.int/educate/

Developed by University of Twente (NL)

The ESA Climate Office welcomes feedback and comments https://climate.esa.int/helpdesk/

Produced by the ESA Climate office Copyright © European Space Agency 2021

ASSIGNMENT

Fast facts

Subjects: skill development with CATE

Type: assignment

Complexity: advance

Lesson time required: 30-40 hours

Cost: non

Location: indoors

Includes the use of: Internet, CATE Jupyter notebook, software

Keywords: climate change, essential climate variables, satellite, soil moisture, drought

Brief description

The main purpose of this assignment is to manipulate climate data records of soil moisture data to create a drought index and compute the return period of drought events.

Intended learning outcomes

Carrying out the assignment students will be able to:

- access and correctly use climate record data;
- create maps, time series and trends of drought indicators using CATE
- apply statistical methods for designing the return period of extreme events

Health and safety

In all activities, we have assumed you will continue to follow your usual procedures relating to the use of common equipment (including electrical devices such as computers and readers), movement within the learning environment, trips and spills, first aid, and so on. Since the need for these is universal but the details of their implementation vary considerably, we have not itemised them every time. Instead, we have highlighted hazards particular to a given practical activity to inform your risk assessment.

All the activities involve the use of a sample data set, which requires the use of spreadsheet software. If you are not able – or do not wish – to use your desktop, you can use a normal calculator. In both cases, you are reminded of your local Internet and computation safety rules.

Before you start

Review the exercises on drought that can be downloaded from here:

- ESA CCI_CATE Tutorial
- ESA CCI _Exercise on drought-food security
- ESA CCI_Exercise on drought-water availability
- ESA CCI_Exercise on frequency analysis

Introduction

Drought events of high precipitation deficits have become rampant in the Netherlands in recent years. The year 2018 was recorded as the worst drought with associated huge impacts on the economy, agriculture, and navigation industry. Drought indices (often unitless and between 1 and -1) have provided a reliable way of quantifying the characteristics of droughts by comparing prevailing climatic conditions to their long-term normal (mean). In this assignment, you will investigate the potential of satellite data records of the Climate change initiative in monitoring agricultural drought.

Data

- 1. CCI soil moisture from the ZARR store: ESACCI-SOILMOISTURE-L3S-SSMV-COMBINED-1978-2020-fv05.3.zarr
- Soil moisture in-situ measurement at 5 cm in Enschede, from Velde and Benninga (2020): Ten years profile soil moisture and temperature measurements in Twente. DANS. <u>https://doi.org/10.17026/dans-zrn-n8nh</u>. The file is provided <u>here</u> as 'ESA CCI_Assignment-data_5cm soil moisture'
- 3. Precipitation data over Enschede from KNMI station 665 (file provided <u>here</u> called 'ESA CCI_Assignment-data_rainfall_Enschede_st665')

Tasks

From exercise "ESA CCI_Exercise on drought-water availability" you have computed the soil moisture deficit index (SMDI) for the Netherlands. Figure 1 shows the spatial average of the whole Netherlands over the last 4 years.

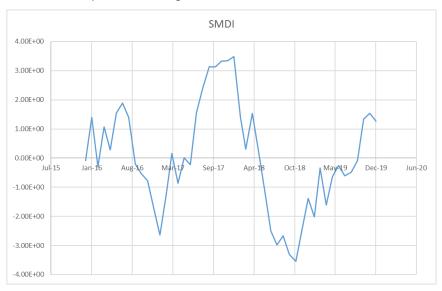


Figure 1: soil moisture deficit index.

Please carry out the following tasks:

- 1. Extend the time series of soil moisture to cover the period from 2010-1-1 to 2019-12-31;
- 2. Carry out the exercise as you did in the class but extract soil moisture monthly data for Enschede Lat 52.2 long 6.9

You could use the following scripts to extract soil moisture data. Change the shaded capital words to fit your data set and files:

DATASET.sm.sel(lat=ilat, lon=ilon,method="nearest"). to_series() .to_csv("FILENAME.txt"),

- Validate the extracted soil moisture data with field data, obtained from <u>https://doi.org/10.17026/dans-zrn-n8nh</u> and provided in 'ESA CCI_Assignment-data_5cm soil moisture' that can be downloaded from <u>here</u>
- 4. Comment on the goodness-of-fit resulting from the validation step
- Calculate the Standardized Precipitation Index using rainfall data over Enschede obtained from KNMI station 665. The file is 'ESA CCI_Assignment-data_rainfall_Enschede_st665' and provided <u>here</u> You could use the tool <u>https://drought.unl.edu/droughtmonitoring/SPI/SPIProgram.aspx</u>
- 6. Identify the most extreme drought event in SPI and SMDI and compute its return period (in python or excel)

The return period should be estimated using the analytical approach and Weibull 2-parameters probability distribution function

7. Identify the most extreme drought event in SMDI and compute its return period (in Python or Excel)

The return period should be estimated using the analytical approach and Weibull 2-parameters probability distribution function

8. Compare SPI and SMDI and their detected drought events (onset, termination, magnitude, and return periods. Here you should carry out a cross-correlation of SPI and SMDI. The code in the box illustrates how it is done in python.

```
Suppose the SPI is denoted x and SMDI is denoted y
from scipy import signal
import numpy as np
import matplotlib.pyplot as plt
corr = signal.correlate(x, y)
```

```
lags = signal.correlation lags(len(y), len(x))
corr /= np.max(corr)
Choose the lag with the highest correlation and plot lag
versus correlation
fig, (ax_x, ax_y, ax_corr) = plt.subplots(3, 1,
figsize=(4.8, 4.8))
ax x.plot(x)
ax x.set title('SMDI in the EU country..')
ax x.set xlabel('Month')
ax y.plot(x)
ax_y.set_title('SMDI in the African country ')
ax y.set xlabel('Month')
ax_corr.plot(lags, corr)
ax corr.set title('Cross-correlated SMDI')
ax corr.set xlabel('Lag')
ax x.margins(0, 0.1)
ax y.margins(0, 0.1)
ax_corr.margins(0, 0.1)
fig.tight layout()
plt.show()
```

Cross-correlation time series analysis

Cross-correlation measures how well two (or more) sets of time series data compare relative to one another and determine at what point in time the two-time series compare best. Figure 2 shows how this is carried out using a spread sheet.

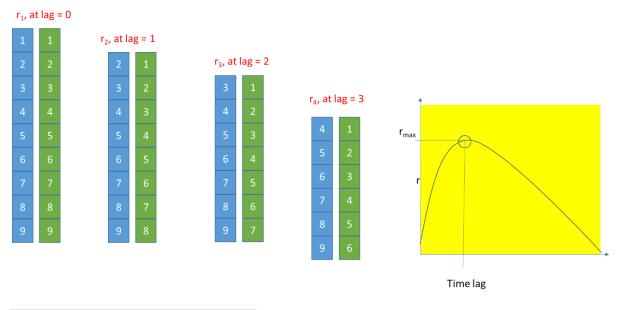


Figure 2: cross correction using a spreadsheet

Pitch your finding

Good luck

Suhyb Salama