

climate change initiative

→ CLIMATE MODELLING USER GROUP

ESMValTool and feedthrough to AR6

A. Lauer and the ESMValTool development team

ESA UNCLASSIFIED - For Official Use

ESMValTool and feedthrough to AR6

Outline

- Earth System Model Evaluation Tool (ESMValTool)
- Coupled Model Intercomparison Project Phase 6 (CMIP6)
- Evaluation of CMIP6 models with ESA CCI data
- Summary

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 2

Earth System Model Evaluation Tool

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 3

•

ESMValTool – motivation

- Easy analysis of CMIP models
- Fast overview due to standard diagnostics, figures and variables
- Easy comparison of new model simulations with already existing runs and observations

Development and documentation

GitHub repository allows development with many users

Issue tracking system (GitHub)

Online documentation (readthedocs)

Automatized quality control

Automatized code checking (Codacy)

Automatized testing (CircleCI)

CMUG | 04-Oct-2021 | Slide 4

European Space Agency

Climate Modelling User Group

ESMValTool – motivation

- Growing number of included diagnostics
- Reproduction of special reports or scientific papers with standard "recipes"
- Traceability and reproducibility of results

Easily expandable

 Synergy with other software projects to expand the ESMValTool (e.g. NCAR CVDP)

Coupling to Earth System Grid Federation (ESGF)

• Complete and timely analysis of CMIP simulations with observations

▋▋ ▶▖ \$\$\$ ▀ ++ \$\$\$ ▀ '≦ 云 \$\$ \$\$ \$\$ 云 \$\$ \$\$ ₩ ₩ ₩ ₩

ESMValTool v2.0

- Open source community development on GitHub (> 200 developers, > 60 international institutes)
- **Rapid development** since the first release in 2016 with support of many international projects such as CMUG
- Online documentation
- Now a well-tested tool providing end-to-end provenance to ensure reproducibility
- Used in several IPCC WGI AR6
 chapters

Climate Modelling User Group

Righi et al., 2020

Lauer et al., 2020 Diagnostics for emergent constraints and future projections

Eyring et al., 2020 Large-scale diagnostics

Weigel et al., 2021 Diagnostics for extreme events, regional and impact evaluation

ESMValTool version 2.0

HELMHOLTZ

Bundesministerium für Bildung und Forschung

International ESMValTool development team

- 19 funded projects
- 66 institutions
- 206 developers

Release v2.0 August 2020

- 3.5 years of work
- 8 coding workshops
- 416 pages documentation
- 776 solved issues
- 1276 merged pull requests
- 1725 files
- 544,971 lines of code

limate Change

•

CMUG | 04-Oct-2021 | Slide 7

European Space Agency

Climate Modelling User Group

+ 1

ESMValTool information

1. Github repositories

https://github.com/ESMValGroup/ESMValTool

2. Documentation

https://docs.esmvaltool.org/

3. Tutorial

https://esmvalgroup.github.io/ESMValTool_Tutorial/

4. Webpage

https://www.esmvaltool.org/

CMUG | 04-Oct-2021 | Slide 9

Climate Modelling User Group

Coupled Model Intercomparison Project

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 10

•

Coupled Model Intercomparison Project

- CMIP began in **1995** under the auspices of the Working Group on Coupled Modelling (WGCM) which is part of the World Climate Research Program (WCRP)
- Objective of CMIP is to better understand past, present and future climate changes arising from natural, unforced variability or in response to changes in radiative forcing
- Analyses are based on a multi-model context
- Important goal of CMIP is to make the multi-model output publicly available in a standardized format

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 11

The challenge of analysing and evaluating the CMIP6 ensemble Compared with CMIP5: more models, more experiments, higher model complexity, higher resolution, increased data volume

- 48 institutions/consortia have registered (CMIP5: 31)
- 126 models are registered (CMIP5: 59)
- 299 experiments defined (CMIP5: 33)
- 10 50 PB of model output expected (CMIP5: ~2 PB)
- Higher complexity and resolution compared to CMIP5

Eyring et al., Geosci. Model Dev., 2016

CMUG | 04-Oct-2021 | Slide 12

Climate Modelling User Group

... with ESA CCI data and the ESMValTool

ESMValTool

Earth System Model Evaluation Tool

Examples

(1) clouds
(2) water vapor
(3) XCO2
(4) climate parameters

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 13

Cloud properties by dynamical regime $(x = SST, y = \omega_{500})$

• Observations: ESACCI-CLOUD, ERA-Interim

95

85

75

65 55

45

35

25

15

5

0.45

0.4

0.35

0.3

0.25g

0.2

0.15

0.1

0.05

prep.)

(ju

al.

et

auer

From: L

- Increased cloud cover in CMIP6 in moderately descending and ascending regions $(\omega_{500} < 4 \text{ Pa min}^{-1})$
- Improved agreement of CMIP6 MMM with ESACCI-CLOUD (higher cloud fraction, reduced total cloud water in ascending regions $(\omega_{500} < -4 \text{ Pa min}^{-1})$

04-Oct-2021 | Slide 14

CMIP6 evaluation - Southern Ocean clouds

- Observations: CERES-EBAF, ESACCI-CLOUD
- Reduced shortwave cloud radiative effect for given total cloud fraction
- Improved agreement of CMIP6 MMM with observations compared with CMIP5
- Increased frequency of high total cloud amounts in CMIP6 compared with CMIP5
- Improvement of "too few, too bright problem" in CMIP6

1+1

CMUG | 04-Oct-2021 | Slide 15

Water vapor

mean = 24.756

total column water vapor (kg m⁻²)

20 25 30 35 40 45 50 55 60

The **deviation** of dataset *n* from the multi-obs mean \overline{X} including its year-to-year variability is estimated as standard deviation of the individual years to the multiobservational mean:

$$\sigma_n = \sqrt{\frac{1}{N_n - 1} \sum_{i=1}^{N_n} (\bar{X} - x_{i,n})^2}$$

uncertainty multi-obs variability total column water vapor (kg m⁻²) -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

10 15

Climate Modelling User Group

multi-obs "uncertainty"

$$\bar{\sigma} = \sqrt{\frac{1}{N_{obs}} \sum_{n=1}^{N_{obs}} \sigma_n^2}$$

CMUG | 04-Oct-2021 | Slide 16

Water vapor - climatology

multi-obs "uncertainty"

Climate Modelling User Group

CMIP5 multi-model mean

CMIP6 multi-model mean

A total column water vapor (kg m-2)

CMUG | 04-Oct-2021 | Slide 17

Global average XCO2

From: Gier et al. (2020)

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 18

-

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 20

+

Relative model performance (RMSD)

From: IPCC AR6, Chapter 3, Fig. 42

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 21

Pattern correlations

From: IPCC AR6, Chapter 3, Fig. 43

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 22

Summary

- ESMValTool: tool for fast and easy evaluation and analysis of Earth system models including provenance records for all results (traceability and reproducibility)
- ESMValTool coupled to ESGF provides a systematic, rapid and comprehensive performance assessment that can also enhance quality control
- > Publicly available and developed in an international community effort
- v2.0 vs v1.0: clear improvements in core capabilities (pre-processing options), code quality (automatized code checking), and documentation
- Diagnostics: more large-scale diagnostics, emergent constraints and future projections diagnostics, extreme events and regional and impact diagnostics available than before
- Supported production of a subset of figures of IPCC WGI AR6
- **ESA CCI data** used for model evaluation and analysis

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 23

Z ■ ► = = + 11 = ≅ Z ■ | 11 Z Z = = 0 ■ ■ Z = = 0 ₩ ≤

- ESMValTool development is growing
- Current release: v2.3 (July 2021)
- Evaluation of CMIP6 models with ESA CCI data ongoing
- Development of the ESMValTool will continue beyond the end of this CMUG phase

https://www.esmvaltool.org/

Climate Modelling User Group

CMUG | 04-Oct-2021 | Slide 24