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Eddy-covariance: the only way to directly measure

land-atmosphere fluxes

Amazon Tall Tower Observatory, Brazil SMEAR station, Estonia
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In-situ eddy-covariance + machine learning
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In-situ eddy-covariance + machine learning + gIoqu gridded data sets of
fluxes & meteorology predictors

Global gridded estimates of fluxes
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Simulated carbon fluxes
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Drought effects not well represented
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Bodesheim et al. 2018 GPP: gross photosynthetic CO, uptake



Drought effects not well represented
May Jun Jul Aug Sep

Time of the day

GPP

Daily GPP as additional daily predictor:
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Features:

» extend suite of EO predictors

» both local (full resolution) and global scales
» dedicated QC+gapfilling
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» careful QC, gapfilling, ancillary techniques

» harmonization of different sources
» additional eddy processing
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Towards a better understanding of
how characteristics of LST datasets
affect the data-driven simulation of
land-atmosphere fluxes:
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- LST ranks among the most important predictor variables!




Towards a better understanding of how
characteristics of LST datasets affect the data-driven
simulation of land-atmosphere fluxes:

which data?
e MODIS daily:
e CCI:
cutouts @0.01°/ 1km
e NASA:
cutouts @1km
MxD11A1
e Seviri hourly:
e CCI:
0.05°, oblique,
instant obs.
e customized LSAF:
0.05°, hourly avrg.,
oblique & nadir
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Towards a better understanding of how
characteristics of LST datasets affect the data-driven
simulation of land-atmosphere fluxes:

what do we want to know? which data?

« representativeness of » MODIS daily:
temporal information, e CCl:
ie hourly vs 4xdaily, cutouts @0.01°/ Tkm
hourly avrg. vs inst. o NASA:
hourly cutouts @1km
o MxD11A1
« directional effects « Seviri hourly:
o effects of retrieval e CCI:
methods 0.05°, oblique,
instant obs.

e customized LSAF:
0.05°, hourly avrg.,
oblique & nadir

— Site-level cross-validation at ~ 300 sites in Europe



Important processing steps

geometrical correction to nadir (Ermida et al. 2018 RS)
for Seviri and possibly CClI MODIS

QC using flags, uncertainty information and beyond
dedicated gapfilling

cutout around towers for MODIS/ account for
scale-mismatch of tower footprint—Seviri pixel explicitly

(downscaling) or implicitly (in the machine-learning
training)



Important processing steps

e geometrical correction to nadir (Ermida et al. 2018 RS)
for Seviri and possibly CClI MODIS

e QC using flags, uncertainty information and beyond

¢ dedicated gapfilling

e cutout around towers for MODIS/ account for
scale-mismatch of tower footprint—Seviri pixel explicitly

(downscaling) or implicitly (in the machine-learning
training)

Discussion on any of these aspects very welcome!



Applications in the fields of...
data-driven carbon, water and energy flux estimates

« the terrestrial carbon, water, energy cycles
atmospheric sciences

for the benchmarking of models of the land surface
ecology

land-atmosphere interactions

Spatially explicit flux estimates will be produced for the
best performing set-up in the cross-validation



first tests on normalizing directionality

NASA Terra daytime swath products in the region of
Puechabon/ France
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normalized using the Kernel-hotspot model after Ermida et al. 2018




first tests on normalizing directionality

NASA Terra daytime swath products in the region of
Puechabon/ France
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first tests on normalizing directionality
NASA Terra daytime swath products in the region of
Las Majadas/ Spain
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first tests on normalizing directionality
NASA Terra daytime swath products in the region of
Las Majadas/ Spain
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Thank you :)

In-situ eddy-covariance + machine learning + global gridded data sets of
fluxes & meteorology predictors

Global gridded estimates of fluxes

questions, suggestions, criticism?
now, Padlet or swalth@bgc-jena.mpg.de



