DTU Space National Space Institute

Ice_Sheets-CCI: Essential Climate Variables for the Greenland Ice Sheet

R Forsberg, L Sørensen, J Levinsen, R Meister, J Dall, A Kusk (DTU-Space. Denmark), C Ås, D Evansberget (S&T, Norway), R Mottram (DMI, Denmark), S Andersen, M Langer (GEUS), C Hvidberg (NBI, Denmark), K Khvorostovsky (NERSC, Norway), T Nagler, K Scharrer (ENVEO, Austria), A Shepard, F Ticconi (U Leeds, UK)

The *CCI_ice_sheet* project will provide selected, consistent, easy-to-use selected ECV's for Greenland, based mainly on ESA EO data (radar altimetry and SAR)

Coverage of ECVs, based on user requirements

ECV Product	Spatial resolution	Temporal resolution	Period	Spatial and temporal coverage, first 3-yr phase
Surface Elevation Change (SEC)	5 km grid	4 per year	1991- present	All ice sheet, 1991-2012 5-year running means
Ice Velocity (IV)	500 m grid	1 per year*	1991- present	Coastal margin (winter 1995/96 and summer 2008) Timeseries on Jakobshavn and Upernavik isbræ; North Greenland interior drainage basin (winter 1991/92)
Calving Front Location (CFL)	250 m shapefile	4 per year	1991- present	19 named major glaciers (some glaciers sampled yearly, depending on data availability)
Grounding Line Location (GLL)	250 m shapefile	1 per year	1991- present	Petermann, Hagen and 79- Fjord Glaciers

* After CCI phase 1

Examples: IV and CFL

- Ice velocity and grounding lines determined by SAR feature tracking and interferometry
- CFL and GLL from optical and SAR imagery

<= Example of IV for Kangerlussuaq Glacier, East Greenland Nov 2009-Jan 2010 (Merryman, DTU-Space)

> => Example of CFL 1999-2010 for southern glaciers, East Greenland (Nagler, ENVEO)

25

20

15

10

8

6

2

0

-2

-6

-8

The ECV products will build on ERS/Envisat/Sentinel-3... with auxillary use of IceSat Final algorithm selection awaits Round-Robin exersise results ...

SEC from IceSat data 2003-9 (Sørensen et al, DTU-Space) Total mass loss ~230 GT/yr, similar to GRACE results SEC from ERS and Envisat 1992-2008 (Khvorostovsky, NERSC)

esa

Products – areas and data

Example of first phase ECV data coverage: Ice Velocity from SAR interferometry: Coastal regions, northern basin, and time Series on Jakobshavn and Upernavik Glaciers

Key regions for ECV validation from independent satellite, airborne and surface data (background image: Ice velocities from SAR, from I. Joughin)

Example: Ice Velocity

79-fjord IV from speckle tracking (GEUS/DTU)

- Ice velocity and grounding lines determined by SAR feature tracking and interferometry – *local* + *ESA GPOD*
- Three methods complementary error characteristics:
- Speckle tracking
- D-InSAR
- MAI (multi-aperture interferometry)

Area	Accu- racy	Sensors	Method
lce sheet interior	<10 m/y	ERS SAR	Calibration with balance velocities D-InSAR and MAI techniques
lce sheet margin	10 to 30 m/yr	ERS SAR, ASAR, PALSAR	Calibration with stationary control points on bedrock. Speckle-tracking (highest accuracy) and feature- tracking (lowest accuracy)

SEC Validation data

Validation of Surface Elevation Change: NASA IceBridge and ESA CryoVEx

DTU CryoVEx / Promice NASA / Parca IceBridge

IV and CFL validation data

Validation data GPS velocity (IV) and Landsat (CFL)

Envisat ASAR summer 2008 (ECV production data)

Landsat data coverage for Calving Front validation

In-situ GPS data from PROMICE and various outlet glacier projects

Auxillary data

Improved DEM of Greenland from digital mapping, ASTER, ERS/ICESat and (soon) CryoSat

- Reference for SEC and IV .. resolution 200 m-1 km, polar stereographic or UTM
- Land/ice masks ... including outlying glaciers and ice caps

Round-Robin: External tests for best methods .. Common areas, time span, data Participants: SEC: 10 researchers; IV: 11; CFL: 4; GLL: 0 (!)

Example: Surface Elevation Change – ICESat and EnviSat / x-over and repeat-track methods

Status: Round-Robin - IV

Round Robin Dataset

Goal: derive slant-range velocity map using DEME (two-pass) or DD (four-pass)

Status: Round-Robin - IV

▲ = GPS

Areas: Jakobshavn and Kangerlussuaq (East) - manual digitalizations / SPOT "ground truth"

Jakobshavn northern part: where is the CFL?

Status: RR grounding lines

Master: 28/02/1992 Slave: 02/03/1992 B_{perp}: 1 m + 3 more scenes distributed

No external participants .. but nearly same data used by Rignot (1996)

GPS ground truth anyone? Internal experimental validation: TanDEM-X repeat (ENVEO)

Antarctica experiment upcoming (Fimbul Ice Shelf, DML)

- PVASR, IODD+DPM
- System documents (SRD, SSD) in prep

Living Planet release of first prototype ECVs

Antarctica preparatory project (1 yr) – PI U Leeds - Sentinel-1 preparation for IV (1.5 yr) – PI Enveo - CryoSat-2 for bridging SEC Envisat gap – PI DTU

Greenland mass trend from GRACE

