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CHALLENGES & SOURCES OF UNCERTAINTY

OBSERVATIONS

 Temporal inhomogeneity are inevitable in both in-situ
and satellite observations.

* Poor spatial and/or temporal coverage of wave
observations make homogenization of wave data
particularly challenging, which needs more attention than it
has received so far.

e < 50km (326) ©50-100km (46) ©100-200km (67) #>200km (73)

More data &
more types of
data over time satellites

upper-air

surface

1900 1938 1957 1979

(1unoo ey1ep)30|

2010

180° 120° W 60°W  0° 60° E 120°E 180°

(Dodet et al, 2020)



CHALLENGES & SOURCES OF UNCERTAINTY

MODEL SIMULATIONS

* These challenges have led to the use of model
simulations (reanalysis/hindcast) as observation proxy.
However, such proxy data are affected by:

— Model resolution/parameterization

— Downscaling methods (statistical, dynamical, hybrid
models)

— Dynamical model’s reliance on typically less robust
data - surface winds

— Data assimilation

* Also, the assessment of extreme wave climate and trend is
confounded with internal climate variability



CHALLENGES & SOURCES OF UNCERTAINTY
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Additional challenges in assessing future wave climate:
- Forcing uncertainty
- Limited climate model output:

- Most climate models do not include ocean waves

- High resolution wind data are not available from all
climate models



HISTORICAL WAVE CLIMATE



DISCREPANCIES IN WAVE REANALYSIS

Trend in annual maximum SWH (1979-2009)

| B s
Hmax:-04 -03 —02 -01 0 01 02 03 04 Y%yr

oo ERA-Interim

,,,,,,,

30N 5

0 60E Z:UE 180 : 120W 50w 0 05 50E 120E 1 gu 120W B0W 0
SOUSEI-derived historical wave ensemble (99 runs)
90N - - - - - -

60F 120€ 180 120W 60W 0

90S : - : ‘ . :
60E 120E 180 120W 60W 0

CFSR has very different trends compared to ERA-l and ERAS5!

Reanalysis are often used to validate datasets: this is can lead to different evaluations depending on
the wave reanalysis used for validation.




DISCREPANCIES IN WAVE HINDCASTS
INHERITED FROM WIND REANALYSIS

Similar trend discrepancies (CFSR vs ERA5, ERA-I, MERRAZ2) are also seen in wave hindcasts

(no wave data assimilation) with same wave model configuration and forced by different wind
reanalysis.
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WAVE ALTIMETER ASSIMILATION
ALSO AFFECTS TRENDS

Two stand alone runs forced by ERA-I winds with and without wave altimeter assimilation

(b) Trend monthly mean Hs 1992-2011: WAM-NAS

(a) Trend monthly mean Hs 1992-2011: WAM-AS
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Wave altimeter assimilation leads to a decrease of the trend in the Eastern Pacific
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WAVE ALTIMETER ASSIMILATION
ALSO AFFECTS TRENDS

More recent results: ERAS wave reanalysis vs stand alone run forced by ERAS winds
without wave altimeter assimilation (also with improved physics, resolution and bathymetry)
(c) ERA5 [1992-2017]
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DISCREPANCIES IN WAVE ALTIMETER TRENDS
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UNCERTAINTY IN WIND DATA WITHOUT
ASSIMILATION: CMIPS WIND
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WAVE “DOWNSCALING”/MODELLING UNCERTAINTY
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COWCLIP team (Morim et al, 2019)
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CMIP5S-driven historical simulations of annual mean SWH (1979-2004)
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Historical CMIP5 simulations roughly cluster by wave downscaling method (which might or
might not include bias calibration).

However, when look at projected changes, model variability plays a larger role.



TREND ASSESSMENT IS ALSO CONFOUNDED WITH
INTERNAL CLIMATE VARIABILITY

SOUSEI: first large wave ensemble 1951-2010 (99 runs)
Statistical modelling calibrated with ERA-I (relationship between SLP and SWH)

v' Better investigate the role of internal climate variability:
v" Is the forcing signal in trend significant?
v' What is the minimum ensemble size to account for most of the variability?

v' Larger sample of extremes: no need to use parameterized distributions for EVA

Annual maxHs
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Forcing signal in moving 20-year trends
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almost globally and is much stronger in
the lower latitudes than in the high
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MINIMUM ENSEMBLE SIZE

Global mean for Ann. maxHs Global mean for Ann avgHs

° - 1 - 1
o - ' 1
=] | N |
_ T 1 g Rl 1
P - | k=3 |
K= ! 1 (7] ' 1
@» © — |_,_ o Y— - - T
ST A e T SN N S ) SRR S S o N
2 QBHEEEEEEEEEEEEE =S Sl H BBE EQEEEEEEEE$E%$E*~
S i 1+ S i i
<] 1 o 1
o V4 ! ) ' :
[} ! s : 4
e - | & 9 - s :
S+ e } E 1
a 1 > 1
> | |
1 1
- 1 - 1
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
2 3456 7 8 910 14 18 22 26 30 40 50 N@®FTwor®22dIe2IJIL338283
Ensemble size Ensemble size

Climate signal: the uncertainty range is much narrower and more stable for ensembles of size bigger than 16
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Similar results for inter-run variability: it converges for ensembles of size bigger than 16




FUTURE PROJECTIONS



FUTURE PROJECTIONS

Projected changes in integrated wave parameters

a Historical (1979-2004) b RCP4.5 (2081-2100) c RCP8.5 (2081-2100)
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COWCLIP team (Morim et al, 2019) Changes in % as they are less affected by model resolution

Mean SWH: Increase in SP and Southern Ocean, decrease in NA and NWP
Extreme SWH: Similar pattern but showing non-statistical increase in NP «
Mean period: similar as mean SWH but extended areas of increase: swell contribution




FUTURE: INCREASE IN VARIABILITY

Future return period of historical 10-year return value
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Such increase in extremes seems to be
caused by an increase in variability
(wider pdf).

Increase in variability is seen in many
areas.
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FUTURE PROJECTIONS: FORCING UNCERTAINTY

Uncertainty in projected changes in the annual mean SWH (2081-2100)

COWCLIP team

) Fraction of total uncertainty
(Morim et al, 2019)
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Model variability has the largest contribution in general but there are regional differences.
In the North Atlantic, RCPs contributes the most to uncertainty; in the tropics the wave downscaling method is
more relevant factor that contributes to uncertainty in the projected changes in the annual mean SWH.




FORCING UNCERTAINTY OVER TIME

The fractional contribution of individual sources to total uncertainty is not constant over time

For example, as represented by RCP4.5 and RCP8.5,
forcing uncertainty increases over time

Tropical Eastern Pacific RCP4.5 PCP8.5
4 -annual mean/max SWH : i

This has been quantified in more detail for
other climate variables such as temperature
or precipitation

100
Fractional contribution
80 in global annual mean
temperature
60
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(Wang et al, 2015)

20 P Int. variability
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Here the wave downscaling method is the same. Therefore, each
red/blue band illustrates model uncertainty, while deviation between

bold lines illustrate scenario uncertainty 2020 2040 2060 2080

(Lenher et al 2020)



REGIONAL SCALE



HETEROGENEOUS COVERAGE OF REGIONAL
STUDIES OF WAVE PROJECTIONS

Projected changes at regional scale mostly cover the North Hemisphere.

(Morim et al, 2018)



NORTH ATLANTIC: WIND RESOLUTION
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(Gavrikov et al 2020)

2 wave hindcasts forced
by:

70 km vs 14 km winds

Up to 20% differences in
wind speeds along
Greenland coast

Higher resolution leads to
better representation of #
cyclones, which affects the
assessment of wave
extremes

The assessment of trends

are less affected by model
resolution




ARCTIC REGION: SEA ICE RETREAT

010ct

08Ot 150ct

(Thomson et al 2018)

220ct
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How does sea ice retreat might affect waves?

New water areas: new areas for waves

Widening of existing water areas:

Larger “fetch” contributes to wave growth

Larger water surface: increases chance
of strong winds to occur over water
areas

Longer ice-free season: waves become
more exposed to fall with more extreme
winds.

Development of swells (remote waves)

Wind-ice feedback processes: possible wind
intensification due to sea ice retreat

Wave-ice feedback processes: positive
feedback



ROBUST INCREASE IN WAVE EXTREMES B -

1979-2005 Annual maximum 2081-2100
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SEA ICE RETREAT PLAYS A LARGE ROLE IN
THE INCREASE OF REG. MAX. SWH
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year 94% ice-free year 94% ice-free

year 94% ice-free

FUTURE SEA ICE: LARGE UNCERTAINTY
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CMIPS sea ice simulations (Laliberte et al, 2016)

At high latitudes, sea ice coverage is an
additional significant factor of uncertainty
of wave climate

Arctic Ocean projected to become
ice-free by 2045-2070 (in September).

Recent study (Guarino et al 2020) with
improved physics:
Arctic could become ice free by 2035.
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SEA ICE: LARGE INTER-ANNUAL VAR
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Moreover, despite the steady sea ice retreat trend, sea ice cover presents large inter-
annual variability

Large inter-annual variability: more challenging to discern long trend trends from
inter-annual/decadal variability in “short” samples.



MORE REGIONAL ANALYSIS ALSO SHOW STEADY
SEA ICE RETREAT AND INCREASE IN SWH

Beaufort—Chukchi Seas

Mean area of open water:

76

(Wang et al, 2015b)

Davis Straight-Baffin Bay

(Wang et al, in revision)

September mean SWH trend
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HOMOGENEITY ISSUES:
WAY FORWARD



Thoughts/tools for addressing data homogeneity issues

- Wave observations are of short record length and have poor spatial coverage,
which make data homogenization particularly challenging.

- Homogenization methods that rely heavily on high observing network density will not
work for wave data homogenization. We need a bit innovation here.

- Our data homogenization software RHtests package is freely available at
https://github.com/ECCC-CDAS, which includes a method that doesn’t need to use
reference series, can also test for both documented and undocumented changepoints.

- Metadata is critical for data homogenization, e.g. metadata for reanalysis:

The ERA40 reanalysis 2965
The NCEP1 reanalysis: 1067 1o73 1om0 foe7 1991 1988 2002
U TR NN TN TN TN TN T TN T TN N T T YT U W N O T W W A N W W O U U W O A A O O Y
i i i ir wind, temperature and humidity from radiosondes; wind and temp ¢ from drops:
The basic radiances are available for UFW'.:“:‘ from pilot b.iu'm., TVTER'?E L.:l‘:oom (1976-1978;m608ptoﬁm (19'::-‘20021
the following periods: Surface pressure, temperature and humidity from land SYNOP reports; surface pressure, temperature,
humidity and wind from SHIP reports; snow depth from SYNOP reports and specialised datasets
. 3 ; - . T d humidity-sensitive infrared radiances f|
SIRS* IR sounders Apr 1969-Apr 1971 PO TR (1973-1878) and HIRS/SSU (10792002 "
* SIRS on early NMC Synthetic surface-pressure obs from satellite Imagery (PAOBS)
tapes (not radiances) Nov 1969-Sept 1992 Flightievel wind and temperature rom alroralt
] Temp sensitive micr di from
* VTPR"IR sounders Nov 1972-Feb 1979 MSU (1979-2002) and AMSU-A (1998-2002)
« TOVS sounders Winds from tracking of features by geostationary satellites
Na ‘ n Surface pressure, temperature and wind from buoys
(HIRS, MSU, SSU) Nov 1978-present Totad O o TOMS snd O profie from S9UV
+ HIRS data test system Aug 1975-Mar 1976 Total column water vapour and surface
wind-speed over ocean from SSMI
Oceanic wave height and
surface wind from ERS 1&2

Figure 1. Chronology of types of observations assimilated in ERA-40 from 1957 to 2002. (Sce appendix A
for acronyms.)

« Time series of seasonal counts of assimilated observations in each area (see next slide)



Our next step:
use Twentieth Century Reanalysis (20CR)-based historical wave simulations as
reference to detect changepoints in modern wave reanalysis, since 20CRv3 does

not have data homogeneity issues in the NH sea after 1957:

NH Cyclone Index vs # assimilated observations

AliCyclonelndex_NHsea_Clwidth_SNL.txt
Uncertainty = ensemble spread (width of the 95% confidence interval)
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“*What tests can be done with the RHtests package?

The different versions of RHtests (currently RHtestsV5) is a software
package for homogenization of climate data that can be made to
approximate a normal/Gaussian distribution, such as annual surface air
temperature (SAT), de-seasonalized SAT, atmospheric pressure, etc..
This software allows users to perform four statistical tests:

(1) the Penalized Maximum t (PMT) test for detection of unknown
changepoints (Wang et al. 2007) using a reference series
(FindU.wRef);

(2) the Student t test for determining the statistical significance of
known changepoints using a reference series (FindUD.wRef or
StepSize.wRef);

(3) the Penalized Maximum F (PMF) test for detection of unknown
changepoints (Wang 2008b) without using a reference series
(FindU);

(4) the reqgular F test for determining the statistical significance of
known changepoints without using a reference series (FindUD or
StepSize).

It also allows users to convert the daily data series in the RClimDex

standard format to the monthly mean series in the RHtests format.



*»The unique features of the RHtests packages include:
(1) This and the RHtests_dlyPrcp package (presented earlier this afternoon)

are the only existing data homogenization software that allows users to

test both known and unknown changepoints.
(2) The RHtestsV5 allows users to make Quantile-Matching (QM)

adjustments (Wang et al. 2010, Vincent et al. 2012) to daily or subdaily
(up to hourly) data series for the changepoints already identified in the
corresponding annual or monthly data series.

(3) The lag-1 autocorrelation in the data series being tested is accounted
for, which greatly minimizes the false alarm rate (Wang 2008a);

(4) The annual cycle and lag-1 autocorrelation (and linear trend of the base
series when no reference is used) are modelled in tandem while
accounting for all identified shifts (Wang 2008a);

(5) Both the mean-adjusted and QM-adjusted data series, along with plots
of the series and the resulting regression fit are provided in the output.

(6) users can also

(i) choose the segment to which the base series is to be adjusted;
(i) choose to use the whole or part of the segments before and after
a shift to estimate the QM-adjustments;

(iif) choose the level of significance at which to conduct the tests



