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OUTLINE 
•  Challenges & sources of uncertainty 
 

– Global wave climate 

– Regional wave climate 
•  Arctic region 

•  Thoughts and tools for addressing data 
inhomogeneity 



•  Temporal inhomogeneity are inevitable in both in-situ 
and satellite observations. 

•  Poor spatial and/or temporal coverage of wave 
observations make homogenization of wave data 
particularly challenging, which needs more attention than it 
has received so far.  

(Dodet et al, 2020) 

CHALLENGES & SOURCES OF UNCERTAINTY 
OBSERVATIONS 

More data & 
more types of 
data over time 



CHALLENGES & SOURCES OF UNCERTAINTY 

•  These challenges have led to the use of model 
simulations (reanalysis/hindcast) as observation proxy. 
However, such proxy data are affected by: 
–  Model resolution/parameterization 
–  Downscaling methods (statistical, dynamical, hybrid 

models) 
–  Dynamical model’s reliance on typically less robust 

data - surface winds 
–  Data assimilation 
 

•  Also, the assessment of extreme wave climate and trend is 
confounded with internal climate variability 

MODEL SIMULATIONS 



Additional challenges in assessing future wave climate: 
-  Forcing uncertainty 
-  Limited climate model output: 

-  Most climate models do not include ocean waves 
-  High resolution wind data are not available from all 

climate models 

Global warming 

(CCCR, 2019) 

CHALLENGES & SOURCES OF UNCERTAINTY 

? 

FUTURE 



HISTORICAL WAVE CLIMATE 



Hmax :                                                                                       %/yr 

ERA-Interim CFSR 

ERA5 

DISCREPANCIES IN WAVE REANALYSIS 
Trend in annual maximum SWH (1979-2009) 

SOUSEI-derived historical wave ensemble (99 runs) 

CFSR has very different trends compared to ERA-I and ERA5!  
Reanalysis are often used to validate datasets: this is can lead to different evaluations depending on 
the wave reanalysis used for validation. 
 



DISCREPANCIES IN WAVE HINDCASTS  
INHERITED FROM WIND REANALYSIS 

Similar trend discrepancies (CFSR vs ERA5, ERA-I, MERRA2) are also seen in wave hindcasts  
(no wave data assimilation) with same wave model configuration and forced by different wind 
reanalysis. 

(Sharmar et al, 2020) 

1980-2019 

Annual mean SWH Annual p95 SWH 



GLOBAL MEAN EVOLUTION 
VS.  ASSIMILATED DATA 
Global annual mean (+ 5-yr running mean) 

Assimilated data in ERA5 

Change in trend 
coincides with 

increase of  
amount (and types) of 

assimilated data 

(Sharmar et al, 2020) 



WAVE ALTIMETER ASSIMILATION  
ALSO AFFECTS TRENDS  

Two stand alone runs forced by ERA-I winds with and without wave altimeter assimilation 

Wave altimeter assimilation leads to a decrease of the trend in the Eastern Pacific 

(Aarnes et al, 2015) ERA-I wave altimeter assimilation ERA-I no wave altimeter assimilation 



(Dodet et al, 2020; Timmermans et al, 2020) 

More recent results: ERA5 wave reanalysis vs stand alone run forced by ERA5 winds 
without wave altimeter assimilation (also with improved physics, resolution and bathymetry) 

Similarly to what is seen 
with ERA-I, ERA5-driven 
simulations also show 
larger trends when wave 
altimeter assimilation is 
not considered 

ERA5 wave altimeter assimilation 

ERA5 no wave altimeter assimilation 

WAVE ALTIMETER ASSIMILATION  
ALSO AFFECTS TRENDS  

Annual mean SWH 

Annual mean SWH 



DISCREPANCIES IN WAVE ALTIMETER TRENDS 

(Dodet et al, 2020) 

Differences in altimeter 
data post-processing 
can lead to differences in 
the trends 

Annual mean SWH 



UNCERTAINTY IN WIND DATA WITHOUT 
ASSIMILATION: CMIP5 WIND 

 
 
Large uncertainty in extreme 
winds at high latitudes 
 
 
 
 
 
 
Uncertainty in wind direction in 
the tropics 

(Morim et al, 2019) 

Inter-model uncertainty 
(sd  of bias, ref: ERA-I) 
 
Historical period 1981-2000 



WAVE “DOWNSCALING”/MODELLING UNCERTAINTY 

Historical CMIP5 simulations roughly cluster by wave downscaling method (which might or 
might not include bias calibration). 
 
However, when look at projected changes, model variability plays a larger role. 

CMIP5-driven historical simulations of annual mean SWH (1979-2004) 

COWCLIP team (Morim et al, 2019) 



SOUSEI: first large wave ensemble 1951-2010 (99 runs) 
Statistical modelling calibrated with ERA-I (relationship between SLP and SWH) 

TREND ASSESSMENT IS ALSO CONFOUNDED WITH 
INTERNAL CLIMATE VARIABILITY 

ü  Better investigate the role of internal climate variability: 
ü  Is the forcing signal in trend significant?  
ü  What is the minimum ensemble size to account for most of the variability? 

 
ü  Larger sample of extremes: no need to use parameterized distributions for EVA 

% 

Annual maxHs 

The forcing signal in trend is significant 
almost globally and is much stronger in 
the lower latitudes than in the high 
latitudes.  

Forcing signal in moving 20-year trends 



MINIMUM ENSEMBLE SIZE 
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Global mean for Ann avgHs  

Climate signal: the uncertainty range is much narrower and more stable for ensembles of size bigger than 16 

Similar results for inter-run variability: it converges for ensembles of size bigger than 16 
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Global mean for Ann. maxHs  



FUTURE PROJECTIONS 



FUTURE PROJECTIONS 

COWCLIP team (Morim et al, 2019) 

Mean SWH: Increase in SP and Southern Ocean, decrease in NA and NWP 
Extreme SWH: Similar pattern but showing non-statistical increase in NP 
Mean period: similar as mean SWH but extended areas of increase: swell contribution 

Projected changes in integrated wave parameters 

Changes in % as they are less affected by model resolution 



RCP8.5 

yr 

FUTURE: INCREASE IN VARIABILITY 

 m 
 Hs 

GEV distributions for Point (23N, 112E) 
                     – west of Cabo San Lucas 

Black: current 
(1970-99) 
Red: 2070-99 of RCP8.5 

(Wang et al, 2015) 

(Meucci et al, 2020) 

NP: Increase of most extreme SWH while 
the mean shows (statistically insignificant) 
decrease 
 
Such increase in extremes seems to be 
caused by an increase in variability 
(wider pdf). 
 
Increase in variability is seen in many 
areas. 

Future return period of historical 10-year return value 

Relative change in 100-year return value 

RCP8.5 



FUTURE PROJECTIONS: FORCING UNCERTAINTY 

Model variability has the largest contribution in general but there are regional differences. 
In the North Atlantic, RCPs contributes the most to uncertainty; in the tropics the wave downscaling method is 
more relevant factor that contributes to uncertainty in the projected changes in the annual mean SWH. 

Uncertainty in projected changes in the annual mean SWH (2081-2100) 

COWCLIP team  
(Morim et al, 2019) 



For example, as represented by RCP4.5 and RCP8.5, 
forcing uncertainty increases over time 

FORCING UNCERTAINTY OVER TIME 

(Wang et al, 2015) 

Tropical Eastern Pacific 
annual mean/max SWH  

The fractional contribution of individual sources to total uncertainty is not constant over time 

This has been quantified in more detail for 
other climate variables such as temperature 

or precipitation 

Fractional contribution 
in global annual mean 

temperature 

(Lenher et al 2020) 

Here the wave downscaling method is the same. Therefore, each 
red/blue band illustrates model uncertainty, while deviation between 
bold lines illustrate scenario uncertainty 

RCP4.5  PCP8.5 



REGIONAL SCALE 



HETEROGENEOUS COVERAGE OF REGIONAL 
STUDIES OF WAVE PROJECTIONS 

(Morim et al, 2018) 

Projected changes at regional scale mostly cover the North Hemisphere.  



NORTH ATLANTIC: WIND RESOLUTION 

2 wave hindcasts forced 
by: 
 
70 km vs 14 km winds 
 
Up to 20% differences in 
wind speeds along 
Greenland coast 
 
Higher resolution leads to 
better representation of # 
cyclones, which affects the 
assessment of wave 
extremes 
 
The assessment of trends 
are less affected by model 
resolution 
 
 

(Gavrikov et al 2020) 



How does sea ice retreat might affect waves? 
 
New water areas: new areas for waves 
 
Widening of existing water areas: 

-  Larger “fetch” contributes to wave growth 
-  Larger water surface: increases chance 

of strong winds to occur over water 
areas  

-  Longer ice-free season: waves become 
more exposed to fall with more extreme 
winds. 

-  Development of swells (remote waves) 

Wind-ice feedback processes: possible wind 
intensification due to sea ice retreat 
 
Wave-ice feedback processes: positive 
feedback 

ARCTIC REGION: SEA ICE RETREAT 

? 

October 2016 

(Thomson et al 2018) 



ROBUST INCREASE IN WAVE EXTREMES 

Annual maximum  
Hs (m) 

1979-2005 2081-2100 

Increase <6m offshore 
Factor 2-3 along coastlines 

26 5-member ensemble shows robust signal in projected changes in the annual max. SWH 
(Casas-Prat & Wang 2020a) 



SEA ICE RETREAT PLAYS A LARGE ROLE IN 
THE INCREASE OF REG. MAX. SWH 

(Casas-Prat & Wang 2020b) 



FUTURE SEA ICE: LARGE UNCERTAINTY 

CMIP5 sea ice simulations (Laliberte et al, 2016) 

At high latitudes, sea ice coverage is an 
additional significant factor of uncertainty 
of wave climate 
 
Arctic Ocean projected to become 
ice-free by 2045-2070 (in September). 
 
Recent study (Guarino et al 2020) with 
improved physics:  
Arctic could become ice free by 2035. 



(Thomson et al, 2018) 

ICE – WAVE PARAMETERIZATION 
UNCERTAINTY 

Model parameterization of ice-
wave interactions can lead to 
80% discrepancies during 
storms 
 
 
Also, wave-induced ice 
breaking/melting is not 
included in current climate 
projections 

Current sea ice projections 
might underestimate sea 
ice retreat 



SEA ICE: LARGE INTER-ANNUAL VAR 

(Stopa, 2016) 

Moreover, despite the steady sea ice retreat trend, sea ice cover presents large inter-
annual variability 
 
Large inter-annual variability: more challenging to discern long trend trends from 
inter-annual/decadal variability in “short” samples. 
 



Mean area of open water: 

Normalized time series of the area of open water: 

MORE REGIONAL ANALYSIS ALSO SHOW STEADY 
SEA ICE RETREAT AND INCREASE IN SWH 

(Wang et al, 2015b) 

Beaufort–Chukchi Seas 

Davis Straight-Baffin Bay 
(Wang et al, in revision) 

1971-2013 

1992-2013 

September mean SWH trend 



HOMOGENEITY ISSUES: 
WAY FORWARD 



Thoughts/tools for addressing data homogeneity issues 

-  Homogenization methods that rely heavily on high observing network density will not 
work for wave data homogenization. We need a bit innovation here. 

-  Our data homogenization software RHtests package is freely available at 
https://github.com/ECCC-CDAS, which includes a method that doesn’t need to use 
reference series, can also test for both documented and undocumented changepoints. 

-  Metadata is critical for data homogenization, e.g. metadata for reanalysis:  

The NCEP1 reanalysis:  
The basic radiances are available for 
 the following periods: 

The ERA40 reanalysis                        

•  Time series of seasonal counts of assimilated observations in each area (see next slide) 

-  Wave observations are of short record length and have poor spatial coverage, 
which make data homogenization particularly challenging.  



-  Our next step:           
use Twentieth Century Reanalysis (20CR)-based historical wave simulations as 
reference to detect changepoints in modern wave reanalysis, since 20CRv3 does 
not have data homogeneity issues in the NH sea after 1957: 

U
nc

er
ta

in
ty

 in
 

Uncertainty = ensemble spread (width of the 95% confidence interval) 

No significant sudden  
change after 1957 

NH Cyclone Index vs # assimilated observations  

Thank you! Questions? 






