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Radar observations of the sea surface can provide information on key geophysical parameters

such as :
*  Wind speed + Wind direction
* Ocean wave properties (effects are second order)

Recent L-band radar systems have also demonstrated a wind retrieval capability based on
empirically-derived Geophysical Model Functions (GMFs)

* PALSAR (single pol, high spatial resolution)

* Agquarius (multi-pol, multi-angle, resolution O (100 km))

*  SMAP (multi-pol, single angle, wind retrievals shown at ~ 30 km resolution)

SMAP radar also provides a 1 km resolution product called “L1C data”
* Do these provide additional higher resolution information on ocean winds or waves?
* Can possible swell wave effects be modeled using approximate EM scattering models?

Objectives

1) Forward model SMAP L1C data using approximate EM scattering models
2) Investigate the presence and impact of ocean swell waves on SMAP L1C data
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» SMAP mission overview
Forward Modeling of SMAP L1C Data
Results

Concluding remarks
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Soil Moisture Active/Passive (SMAP) Mission

* Objective: provide accurate soil moisture and freeze/
thaw measurements over land surfaces

* L-band radar (1.26 GHz) and L-band radiometer (1.41
GHz)

* Global revisit rate: 2-3 days

* Multiple radar polarizations: HH, VV, HV (operated
for ~ 3 months)

* Two high- and low-resolution SAR radar data
products
* L1B - 30 km multi-looked SAR imagery
* L1C -1 km multi-looked SAR imagery
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Forward Modeling Overview

Model Truth Output
Wind
Spectrum
SMAP
R =\ a...,| RadarData | Modeled
Model o and SMAP Data
GMF*
Swell
Spectrum

* Wind Spectrum: Based on the Durden-Vesecky (DV) spectrum
* Swell Spectrum: Based on the JONSWAP spectrum
* EM Model: Two-scale (composite) model (co-pol); SSA2-HF (cross-pol)

* Represents swell effects as an additional slope contribution
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Two-Scale Model (TSM)

e Two-scale Model

tand )W (240 sindT' )

e . In-plane tilting; J: Out-of-plane tilting; &: Incidence angle

o gliyT (6):Tilted, rotated backscatter coefficients combing first order SPM kernels in
multiple polarizations

* P(tany,tand ): Slope PDF of large-scale roughness due to wind

* W/(--): Spectrum model (based on the DV spectrum)

 Cutoff wavenumber: £lc=#40 /2

* Integration over slope PDF performed numerically
* Additional swell-induced contributions to slope variances can also be included

* Captures “tilt” effects on co-pol returns as well as tilt-induced creation of cross-pol backscatter

* Neglects second order multiple scattering cross-pol contributions however

G. R. Valenzuela, “Theories for the Interaction of Electromagnetic and Oceanic Waves | A
Review,” Boundary-Layer Meteorology, vol. 13, no. 1, pp. 61-85, Jan 1978.
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SSA2 (Second-order Small Slope) High-Frequency (HF) Approximation

e SSA2-HF Model

* TSM does not account for second-order scattering effects
* Use of SSA2 constrained by its computational complexity
* Use SSA2-HF proposed by C. A. Guerin and J. T. Johnson in 2015

alhvl0 =47|G[T2 cotT2 84i QLHTA W(QIH )slyT2

o QIH=2kI0sinbli
* (: Afunction of permittivity
* sUyT2 : Cross-plane slope variance

C. Guerin and J. T. Johnson, “A Simplied Formulation for Rough Surface Cross-Polarized Backscattering Under
the Second-Order Small-Slope Approximation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53,
no. 11, pp. 6308-6314, Nov 2015
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Truth Data — Constructing a NRCS vs. Wind Match-up Dataset

SMAP Quality Flags
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Apply SMAP Quality flags

Use NOAA GFS operational winds through
WW3 model

* Available over multiple resolutions
* Primarily use glo_30m

Degrade SMAP spatial resolution to WW3
wind resolution using a nearest neighbor
algorithm

Apply user-defined spatial filters to
minimize contamination due to land
clutter and seaice

Results in a NRCS vs. Wind match-up
dataset

ElectroSeience

LABORATORY




Truth Data — SMAP-based Scatter plots and GMFs
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e GMF: 2" order cosine-series Zhou et. al, JSTARS 2017; based on SMAP L1B data

*  GMF captures the SMAP backscatter NRCS scatter density data more accurately compared to TSM
model predictions using the fully-developed wind-driven DV spectrum
* Model underestimates; the dependence of this underestimation on polarization and wind
speed indicate the presence of swell waves
*  GMF includes swell effects
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Wind + Swell Model

*  Model Assumptions: S B)=Slw (kB)+Sls (&
* Wind seas driven by local winds sources (%) (%) (£9)
* Swell seas driven by remote winds sources sixT2 =S¢{x, W} 2 +S¢{x,

* Two contributions are independent
Sy 12 =si{yw}T2 +sd{y

* Slope variances (second-order moments) add linearly

* Captures swell-effects as an excess slope contribution
* Introduces additional tilting of Bragg waves under TSM

* Need swell-only slope variances
* Can leverage existing models (WW3, ECMWEF, ect...), but MSS is not publically available
« Compute 2-D swell-only spectrum SUs (4,@)

* Latter approach pursued

THE OHIO STATE UNIVERSITY gé“m Seience "

COLLEGE OF ENGINEERING LABORATORY



2D Swell Spectrum : JONSWAP Spectrum with WW3 Partitioned Data

Swell spectrum definition:

Swell 2

Sisn (f,0)=1/f SIs,n (f)¥PIs (f,9)

1D Spectrum — Use JONSWAP Spectrum:

Energy Density (m?/Hz/deg)

025 Dieetion () SIs (f)=CI0 g12 2m)T—4 fT-5 eT—1..
Frequency (Hz) ¢ /=f/f\lm
G=el—(f—/fIm )12 J20T2 flmT2
@ | dlg

Partition | HLS T\lp A
# (7| [s] | [7] [aieg [aieg wif

* Spreading Function: Use cos?® form

0 293 | 11.28 | 198.59 | 32599 | 33.22 | 0.13
1 2.80 | 11.55 | 208.36 | 326.48 | 24.49 | 0.15 Wis (f,¢)=A40 cosT2s [(p—pdm )/2 |
2 062 | 921 | 13251 183 | 6.94 0 s=2/0lpT2 -1
|3 0.37 | 13.72 | 293.87 | 191.07 | 10.12 0
I Ootal wave-tield | -Sed pargton Swell-only partitions
4 0.34 | T1.03 | 189.83 | 193. 7.73 0
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Modeled 2D Swell Spectrum — Comparison with Buoy Spectra

Zoomed-in view
0.05 -~

0.2

o
o

Buoy Spectra
(Wind + Swell)

Wavenumber k [rad/m]
S
= o

Wavenumber k [rad/m]
o

-0.2

-0.2 -0.1 0 0.1 0.2
Wavenumber k [rad/m] Wavenumber k [rad/m]
0.05 2
0 0.2
Modeled Spectra 3 4= 3
= N <
(swell-only on left; 5 o ® s % 5 o
Wind + swell on right) 2 t g 2
g -10 § -0.1
12
-14 02
-0.05 L L L
-0.05 0 0.05 -0.2 -0.1 0 0.1 0.2
Wavenumber k [rad/m] Wavenumber k [rad/m]

* Modeled swell-only spectra capture swell contributions reasonably accurately in both magnitude
and direction. They can be numerically integrated to compute swell-only slope variances
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Initial Results
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* All polarizations respond to swell in varying degrees
* VV -very limited response to swell
* HV -swell observations are limited by system noise (-38 dB noise added)
* HH —clear response to swell—proceed further

*  Model refinements
* Fetch limited seas and low wind correction term
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Model Refinements

* Fetch-limited seas
Observed under high winds
and over near-coastal
regions
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Results: Model vs. SMAP NRCS Comparison For a Single Pass

Wind + Swell Model Measured vs. Modeled
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* Modeled NRCS values within +1 dB of SMAP data increases from 23% for wind-only mode to
85% for wind + swell model
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Results: Swell Prediction Comparison
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Swell features present in SMAP data are captured by model results (indicated using black circles)

SMAP also presents features that the WW3 model does not capture (red circles)
The prediction capability is ultimately limited by the quality of the WW3 predictions
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Results: Model Backscatter NRCS at SMAP L1C Resolution

Wind + Swell Model

SMAP Wind-only Model
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High-resolution model results are in agreement with observations thus far
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Cumulative HH Results

SMAP vs. Wind-only Distributions
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* Model predictions between +1 dB of SMAP measurements improve significantly
* From 39% to 65%

« A mean NRCS increase of 2 @/ observed

*  Wind + Swell model distribution mean aligns with SMAP mean
* Variance is constrained by the wind model
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Inverse Problem: Swell Retrieval

Excess MSS vs. Excess NRCS vs. Wind Speed Excess MSS vs. Excess NRCS vs. Azimuth
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* The SMAP and Wind + Swell model excess NRCS can be mapped to an excess swell
* Many-to-one mapping
* 2-D mapping space varies with wind speed and azimuth
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Inverse Problem: Swell Retrieval — Initial Results

Retrieved Based on SMAP Retrieved Based on TSM (S+W) model Modeled Swell-only MSS
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* Initial results are encouraging
* Retrieved swell captures some of swell features
* Note: Retrieved vs. modeled MSS scales are different

* More analysis required
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Summary/Conclusions

*  SMAP high-resolution (L1C) backscatter NRCS data over near-coastal regions modeled using
physical models
* TSM and SSA2-HF models used for backscatter NRCS modeling

* A combined wind + swell spectrum used to characterized the ocean surface

* Wind: Durden-Vesecky-based spectrum
* Swell: JONSWAP-based spectrum
* Swell effects represented as an excess slope

*  SMAP data forward modeled using the wind + swell model
* The model improves backscatter NRCS predictions
* Captures swell effects reasonably well
* Initial indications for possible swell retrieval

* Future work:
* Further refine the model increase the prediction accuracy
* Compare and contrast modeled and retrieved swell MSS using those predicted by a
numerical wave model
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Thank You
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