

Exploitation of CCI products in the second Regional Carbon Cycle Assessment and Processes (RECCAP-2)

LABORATOIRE DES SCIENCES DU CLIMAT & DE L'ENVIRONNEMENT

INCEST OF FUTUROST

research for global sustainabilit

Max Planck Institute for Biogeochemistry **ESA CMUG meeting**

J. Winckler, A. Bastos, P. Ciais, F. Chevallier, W. Li, P. Friedlingstein, S. Sitch, M. O'Sullivan, M. Jung, M. Reichstein, P. Canadell

29-31 October 2018

Exeter, UK

:::::: ESA CMUG meeting :::::: 29-31 October 2018 ::::::

• To establish the mean carbon balance of large regions, their trends and inter-annual variability, including their component fluxes, consistent with global carbon budgets.

• To do it by comparing and reconciling multiple bottom-up estimates (e.g. land surface models) with the results of top-down atmospheric inversions, with attribution to main flux components.

• To evaluate the regional 'hot-spots' of inter-annual variability and possibly the trends and underlying processes over the past two (or more) decades by combining available long-term observations and modeling.

Project overview

:::::: ESA-CCI Collocation meeting :::::: 20-22 March 2018 ::::::

CCI + GHG

- 'Standard' set of atmospheric CO2 inversions: based on in situ observations
- Also investigate inversions based on XCO₂ from GOSAT satellite (2009-present)
- → Complement to GHG-CCI+ team that should address more recent satellites (OCO-2, TanSat, and GOSAT-2)

Evaluation of land-surface models

Modelled Burned Area Data / Fire size

soil moisture

CCI+ Soil Moisture

Modelled soil moisture

CCI+ Biomass

Above groud biomass C-stocks

CCI+ Land Cover

Distribution of forest area LULCC

:::::: ESA CMUG meeting :::::: 29-31 October 2018 ::::::

Preliminary results using CCI+ Soil Moisture

Grid-level scores:

M. O'Sullivan

Consistency when comparing observed ECVs & climate model data

Global land surface models are perfect « users » of CCI+ data for evaluation purpose. However, need assumptions and preprocessing for land model output to be constrainable CCI+ data.

• Example: soil moisture in ILAMB

Data gaps

Gaps can limit usefulness in applications.

- Example: soil moisture has large spatial gaps in tropics and high latitudes
 - Potential application in data-driven C flux products (FLUXCOM)
 - Potential application as predictor in regressions for the analysis of drivers of land C variability

Climatic drivers of land carbon variability

FLUXCOM dataset

- Includes data-driven estimation of landatmosphere carbon fluxes
- Input: Climate
 - 'Water availability'
 - Temperature
 - Incoming solar radiation
- Output: carbon-related fluxes
 - Gross primary production
 - Terrestrial ecosystem respiration

Tramontana et al., Biogeosciences (2016)

Climatic drivers of land carbon variability

Identify climatic drivers using regression

Attribute variability in C fluxes to variability in water availability ('WAI'), Temperature ('TEMP'), incoming solar radiation (RAD).

- IAV driven by WAI (Humphrey et al., 2018) or TEMP (Jung et al., 2017)?
- Do different regression approaches influence attribution to drivers?
- Influence of 'land C memory' and volcanoes?

johannes.winckler@lsce.ipsl.fr

Consistency between ECVs & gaps

Global land surface models are perfect « users » of CCI+ data for evaluation purpose.

However, consistency cannot be achieved because land models have other degrees of freedom / parameters that will not be constrainable even with all relevant CCI+ data.

Uncertainties in products

Wherever possible, reported uncertainties will be used to defined metrics and scores for models.

Uncertainties in the forcing variables (FLUXCOM, inversions) can be used to evaluate uncertainties in the fluxes.

Feedback to ECV teams

Invitation to participate in project meetings Regular discussion of problems / questions Presentation of evaluation results and impact of CCI+ data Participation to ESA meetings (CMUG, Collocation, etc)

- 1. What are your experiment plans for working with CCI+ ECV data?
- 2. How will you interact with the relevant teams?
- 3. How will you address the integrated perspective for consistency between the ECVs, including identification of gaps?
- 4. How will you use uncertainties in products?
- 5. What mechanisms will you use to provide feedback to the ECV teams